/* * Copyright (c) 2021 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include "libavutil/opt.h" #include "libavutil/imgutils.h" #include "avfilter.h" #include "drawutils.h" #include "formats.h" #include "internal.h" #include "video.h" #define R 0 #define G 1 #define B 2 typedef struct ColorTemperatureContext { const AVClass *class; float temperature; float mix; float preserve; float color[3]; int step; int depth; uint8_t rgba_map[4]; int (*do_slice)(AVFilterContext *s, void *arg, int jobnr, int nb_jobs); } ColorTemperatureContext; static float saturate(float input) { return av_clipf(input, 0.f, 1.f); } static void kelvin2rgb(float k, float *rgb) { float kelvin = k / 100.0f; if (kelvin <= 66.0f) { rgb[0] = 1.0f; rgb[1] = saturate(0.39008157876901960784f * logf(kelvin) - 0.63184144378862745098f); } else { const float t = fmaxf(kelvin - 60.0f, 0.0f); rgb[0] = saturate(1.29293618606274509804f * powf(t, -0.1332047592f)); rgb[1] = saturate(1.12989086089529411765f * powf(t, -0.0755148492f)); } if (kelvin >= 66.0f) rgb[2] = 1.0f; else if (kelvin <= 19.0f) rgb[2] = 0.0f; else rgb[2] = saturate(0.54320678911019607843f * logf(kelvin - 10.0f) - 1.19625408914f); } static float lerpf(float v0, float v1, float f) { return v0 + (v1 - v0) * f; } #define PROCESS() \ nr = r * color[0]; \ ng = g * color[1]; \ nb = b * color[2]; \ \ nr = lerpf(r, nr, mix); \ ng = lerpf(g, ng, mix); \ nb = lerpf(b, nb, mix); \ \ l0 = (FFMAX3(r, g, b) + FFMIN3(r, g, b)) + FLT_EPSILON; \ l1 = (FFMAX3(nr, ng, nb) + FFMIN3(nr, ng, nb)) + FLT_EPSILON; \ l = l0 / l1; \ \ r = nr * l; \ g = ng * l; \ b = nb * l; \ \ nr = lerpf(nr, r, preserve); \ ng = lerpf(ng, g, preserve); \ nb = lerpf(nb, b, preserve); static int temperature_slice8(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ColorTemperatureContext *s = ctx->priv; AVFrame *frame = arg; const int width = frame->width; const int height = frame->height; const float mix = s->mix; const float preserve = s->preserve; const float *color = s->color; const int slice_start = (height * jobnr) / nb_jobs; const int slice_end = (height * (jobnr + 1)) / nb_jobs; const int glinesize = frame->linesize[0]; const int blinesize = frame->linesize[1]; const int rlinesize = frame->linesize[2]; uint8_t *gptr = frame->data[0] + slice_start * glinesize; uint8_t *bptr = frame->data[1] + slice_start * blinesize; uint8_t *rptr = frame->data[2] + slice_start * rlinesize; for (int y = slice_start; y < slice_end; y++) { for (int x = 0; x < width; x++) { float g = gptr[x]; float b = bptr[x]; float r = rptr[x]; float nr, ng, nb; float l0, l1, l; PROCESS() gptr[x] = av_clip_uint8(ng); bptr[x] = av_clip_uint8(nb); rptr[x] = av_clip_uint8(nr); } gptr += glinesize; bptr += blinesize; rptr += rlinesize; } return 0; } static int temperature_slice16(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ColorTemperatureContext *s = ctx->priv; AVFrame *frame = arg; const int depth = s->depth; const int width = frame->width; const int height = frame->height; const float preserve = s->preserve; const float mix = s->mix; const float *color = s->color; const int slice_start = (height * jobnr) / nb_jobs; const int slice_end = (height * (jobnr + 1)) / nb_jobs; const int glinesize = frame->linesize[0] / sizeof(uint16_t); const int blinesize = frame->linesize[1] / sizeof(uint16_t); const int rlinesize = frame->linesize[2] / sizeof(uint16_t); uint16_t *gptr = (uint16_t *)frame->data[0] + slice_start * glinesize; uint16_t *bptr = (uint16_t *)frame->data[1] + slice_start * blinesize; uint16_t *rptr = (uint16_t *)frame->data[2] + slice_start * rlinesize; for (int y = slice_start; y < slice_end; y++) { for (int x = 0; x < width; x++) { float g = gptr[x]; float b = bptr[x]; float r = rptr[x]; float nr, ng, nb; float l0, l1, l; PROCESS() gptr[x] = av_clip_uintp2_c(ng, depth); bptr[x] = av_clip_uintp2_c(nb, depth); rptr[x] = av_clip_uintp2_c(nr, depth); } gptr += glinesize; bptr += blinesize; rptr += rlinesize; } return 0; } static int temperature_slice8p(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ColorTemperatureContext *s = ctx->priv; AVFrame *frame = arg; const int step = s->step; const int width = frame->width; const int height = frame->height; const float mix = s->mix; const float preserve = s->preserve; const float *color = s->color; const uint8_t roffset = s->rgba_map[R]; const uint8_t goffset = s->rgba_map[G]; const uint8_t boffset = s->rgba_map[B]; const int slice_start = (height * jobnr) / nb_jobs; const int slice_end = (height * (jobnr + 1)) / nb_jobs; const int linesize = frame->linesize[0]; uint8_t *ptr = frame->data[0] + slice_start * linesize; for (int y = slice_start; y < slice_end; y++) { for (int x = 0; x < width; x++) { float g = ptr[x * step + goffset]; float b = ptr[x * step + boffset]; float r = ptr[x * step + roffset]; float nr, ng, nb; float l0, l1, l; PROCESS() ptr[x * step + goffset] = av_clip_uint8(ng); ptr[x * step + boffset] = av_clip_uint8(nb); ptr[x * step + roffset] = av_clip_uint8(nr); } ptr += linesize; } return 0; } static int temperature_slice16p(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ColorTemperatureContext *s = ctx->priv; AVFrame *frame = arg; const int step = s->step; const int depth = s->depth; const int width = frame->width; const int height = frame->height; const float preserve = s->preserve; const float mix = s->mix; const float *color = s->color; const uint8_t roffset = s->rgba_map[R]; const uint8_t goffset = s->rgba_map[G]; const uint8_t boffset = s->rgba_map[B]; const int slice_start = (height * jobnr) / nb_jobs; const int slice_end = (height * (jobnr + 1)) / nb_jobs; const int linesize = frame->linesize[0] / sizeof(uint16_t); uint16_t *ptr = (uint16_t *)frame->data[0] + slice_start * linesize; for (int y = slice_start; y < slice_end; y++) { for (int x = 0; x < width; x++) { float g = ptr[x * step + goffset]; float b = ptr[x * step + boffset]; float r = ptr[x * step + roffset]; float nr, ng, nb; float l0, l1, l; PROCESS() ptr[x * step + goffset] = av_clip_uintp2_c(ng, depth); ptr[x * step + boffset] = av_clip_uintp2_c(nb, depth); ptr[x * step + roffset] = av_clip_uintp2_c(nr, depth); } ptr += linesize; } return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *frame) { AVFilterContext *ctx = inlink->dst; ColorTemperatureContext *s = ctx->priv; kelvin2rgb(s->temperature, s->color); ff_filter_execute(ctx, s->do_slice, frame, NULL, FFMIN(frame->height, ff_filter_get_nb_threads(ctx))); return ff_filter_frame(ctx->outputs[0], frame); } static const enum AVPixelFormat pixel_fmts[] = { AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24, AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA, AV_PIX_FMT_ARGB, AV_PIX_FMT_ABGR, AV_PIX_FMT_0RGB, AV_PIX_FMT_0BGR, AV_PIX_FMT_RGB0, AV_PIX_FMT_BGR0, AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16, AV_PIX_FMT_RGB48, AV_PIX_FMT_BGR48, AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64, AV_PIX_FMT_NONE }; static av_cold int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; ColorTemperatureContext *s = ctx->priv; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); int planar = desc->flags & AV_PIX_FMT_FLAG_PLANAR; s->step = desc->nb_components; if (inlink->format == AV_PIX_FMT_RGB0 || inlink->format == AV_PIX_FMT_0RGB || inlink->format == AV_PIX_FMT_BGR0 || inlink->format == AV_PIX_FMT_0BGR) s->step = 4; s->depth = desc->comp[0].depth; s->do_slice = s->depth <= 8 ? temperature_slice8 : temperature_slice16; if (!planar) s->do_slice = s->depth <= 8 ? temperature_slice8p : temperature_slice16p; ff_fill_rgba_map(s->rgba_map, inlink->format); return 0; } static const AVFilterPad inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .flags = AVFILTERPAD_FLAG_NEEDS_WRITABLE, .filter_frame = filter_frame, .config_props = config_input, }, }; static const AVFilterPad outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, }, }; #define OFFSET(x) offsetof(ColorTemperatureContext, x) #define VF AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM static const AVOption colortemperature_options[] = { { "temperature", "set the temperature in Kelvin", OFFSET(temperature), AV_OPT_TYPE_FLOAT, {.dbl=6500}, 1000, 40000, VF }, { "mix", "set the mix with filtered output", OFFSET(mix), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, VF }, { "pl", "set the amount of preserving lightness", OFFSET(preserve), AV_OPT_TYPE_FLOAT, {.dbl=0}, 0, 1, VF }, { NULL } }; AVFILTER_DEFINE_CLASS(colortemperature); const AVFilter ff_vf_colortemperature = { .name = "colortemperature", .description = NULL_IF_CONFIG_SMALL("Adjust color temperature of video."), .priv_size = sizeof(ColorTemperatureContext), .priv_class = &colortemperature_class, FILTER_INPUTS(inputs), FILTER_OUTPUTS(outputs), FILTER_PIXFMTS_ARRAY(pixel_fmts), .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, .process_command = ff_filter_process_command, };