/* * Copyright (c) 2003-2013 Loren Merritt * Copyright (c) 2015 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /* Computes the Structural Similarity Metric between two video streams. * original algorithm: * Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, * "Image quality assessment: From error visibility to structural similarity," * IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004. * * To improve speed, this implementation uses the standard approximation of * overlapped 8x8 block sums, rather than the original gaussian weights. */ /* * @file * Calculate the SSIM between two input videos. */ #include "libavutil/avstring.h" #include "libavutil/file_open.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "avfilter.h" #include "drawutils.h" #include "framesync.h" #include "internal.h" #include "ssim.h" typedef struct SSIMContext { const AVClass *class; FFFrameSync fs; FILE *stats_file; char *stats_file_str; int nb_components; int nb_threads; int max; uint64_t nb_frames; double ssim[4], ssim_total; char comps[4]; double coefs[4]; uint8_t rgba_map[4]; int planewidth[4]; int planeheight[4]; int **temp; int is_rgb; double **score; int (*ssim_plane)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs); SSIMDSPContext dsp; } SSIMContext; #define OFFSET(x) offsetof(SSIMContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM static const AVOption ssim_options[] = { {"stats_file", "Set file where to store per-frame difference information", OFFSET(stats_file_str), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, {"f", "Set file where to store per-frame difference information", OFFSET(stats_file_str), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, { NULL } }; FRAMESYNC_DEFINE_CLASS(ssim, SSIMContext, fs); static void set_meta(AVDictionary **metadata, const char *key, char comp, float d) { char value[128]; snprintf(value, sizeof(value), "%f", d); if (comp) { char key2[128]; snprintf(key2, sizeof(key2), "%s%c", key, comp); av_dict_set(metadata, key2, value, 0); } else { av_dict_set(metadata, key, value, 0); } } static void ssim_4x4xn_16bit(const uint8_t *main8, ptrdiff_t main_stride, const uint8_t *ref8, ptrdiff_t ref_stride, int64_t (*sums)[4], int width) { const uint16_t *main16 = (const uint16_t *)main8; const uint16_t *ref16 = (const uint16_t *)ref8; int x, y, z; main_stride >>= 1; ref_stride >>= 1; for (z = 0; z < width; z++) { uint64_t s1 = 0, s2 = 0, ss = 0, s12 = 0; for (y = 0; y < 4; y++) { for (x = 0; x < 4; x++) { unsigned a = main16[x + y * main_stride]; unsigned b = ref16[x + y * ref_stride]; s1 += a; s2 += b; ss += a*a; ss += b*b; s12 += a*b; } } sums[z][0] = s1; sums[z][1] = s2; sums[z][2] = ss; sums[z][3] = s12; main16 += 4; ref16 += 4; } } static void ssim_4x4xn_8bit(const uint8_t *main, ptrdiff_t main_stride, const uint8_t *ref, ptrdiff_t ref_stride, int (*sums)[4], int width) { int x, y, z; for (z = 0; z < width; z++) { uint32_t s1 = 0, s2 = 0, ss = 0, s12 = 0; for (y = 0; y < 4; y++) { for (x = 0; x < 4; x++) { int a = main[x + y * main_stride]; int b = ref[x + y * ref_stride]; s1 += a; s2 += b; ss += a*a; ss += b*b; s12 += a*b; } } sums[z][0] = s1; sums[z][1] = s2; sums[z][2] = ss; sums[z][3] = s12; main += 4; ref += 4; } } static float ssim_end1x(int64_t s1, int64_t s2, int64_t ss, int64_t s12, int max) { int64_t ssim_c1 = (int64_t)(.01*.01*max*max*64 + .5); int64_t ssim_c2 = (int64_t)(.03*.03*max*max*64*63 + .5); int64_t fs1 = s1; int64_t fs2 = s2; int64_t fss = ss; int64_t fs12 = s12; int64_t vars = fss * 64 - fs1 * fs1 - fs2 * fs2; int64_t covar = fs12 * 64 - fs1 * fs2; return (float)(2 * fs1 * fs2 + ssim_c1) * (float)(2 * covar + ssim_c2) / ((float)(fs1 * fs1 + fs2 * fs2 + ssim_c1) * (float)(vars + ssim_c2)); } static float ssim_end1(int s1, int s2, int ss, int s12) { static const int ssim_c1 = (int)(.01*.01*255*255*64 + .5); static const int ssim_c2 = (int)(.03*.03*255*255*64*63 + .5); int fs1 = s1; int fs2 = s2; int fss = ss; int fs12 = s12; int vars = fss * 64 - fs1 * fs1 - fs2 * fs2; int covar = fs12 * 64 - fs1 * fs2; return (float)(2 * fs1 * fs2 + ssim_c1) * (float)(2 * covar + ssim_c2) / ((float)(fs1 * fs1 + fs2 * fs2 + ssim_c1) * (float)(vars + ssim_c2)); } static float ssim_endn_16bit(const int64_t (*sum0)[4], const int64_t (*sum1)[4], int width, int max) { float ssim = 0.0; int i; for (i = 0; i < width; i++) ssim += ssim_end1x(sum0[i][0] + sum0[i + 1][0] + sum1[i][0] + sum1[i + 1][0], sum0[i][1] + sum0[i + 1][1] + sum1[i][1] + sum1[i + 1][1], sum0[i][2] + sum0[i + 1][2] + sum1[i][2] + sum1[i + 1][2], sum0[i][3] + sum0[i + 1][3] + sum1[i][3] + sum1[i + 1][3], max); return ssim; } static double ssim_endn_8bit(const int (*sum0)[4], const int (*sum1)[4], int width) { double ssim = 0.0; int i; for (i = 0; i < width; i++) ssim += ssim_end1(sum0[i][0] + sum0[i + 1][0] + sum1[i][0] + sum1[i + 1][0], sum0[i][1] + sum0[i + 1][1] + sum1[i][1] + sum1[i + 1][1], sum0[i][2] + sum0[i + 1][2] + sum1[i][2] + sum1[i + 1][2], sum0[i][3] + sum0[i + 1][3] + sum1[i][3] + sum1[i + 1][3]); return ssim; } #define SUM_LEN(w) (((w) >> 2) + 3) typedef struct ThreadData { const uint8_t *main_data[4]; const uint8_t *ref_data[4]; int main_linesize[4]; int ref_linesize[4]; int planewidth[4]; int planeheight[4]; double **score; int **temp; int nb_components; int max; SSIMDSPContext *dsp; } ThreadData; static int ssim_plane_16bit(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ThreadData *td = arg; double *score = td->score[jobnr]; void *temp = td->temp[jobnr]; const int max = td->max; for (int c = 0; c < td->nb_components; c++) { const uint8_t *main_data = td->main_data[c]; const uint8_t *ref_data = td->ref_data[c]; const int main_stride = td->main_linesize[c]; const int ref_stride = td->ref_linesize[c]; int width = td->planewidth[c]; int height = td->planeheight[c]; const int slice_start = ((height >> 2) * jobnr) / nb_jobs; const int slice_end = ((height >> 2) * (jobnr+1)) / nb_jobs; const int ystart = FFMAX(1, slice_start); int z = ystart - 1; double ssim = 0.0; int64_t (*sum0)[4] = temp; int64_t (*sum1)[4] = sum0 + SUM_LEN(width); width >>= 2; height >>= 2; for (int y = ystart; y < slice_end; y++) { for (; z <= y; z++) { FFSWAP(void*, sum0, sum1); ssim_4x4xn_16bit(&main_data[4 * z * main_stride], main_stride, &ref_data[4 * z * ref_stride], ref_stride, sum0, width); } ssim += ssim_endn_16bit((const int64_t (*)[4])sum0, (const int64_t (*)[4])sum1, width - 1, max); } score[c] = ssim; } return 0; } static int ssim_plane(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ThreadData *td = arg; double *score = td->score[jobnr]; void *temp = td->temp[jobnr]; SSIMDSPContext *dsp = td->dsp; for (int c = 0; c < td->nb_components; c++) { const uint8_t *main_data = td->main_data[c]; const uint8_t *ref_data = td->ref_data[c]; const int main_stride = td->main_linesize[c]; const int ref_stride = td->ref_linesize[c]; int width = td->planewidth[c]; int height = td->planeheight[c]; const int slice_start = ((height >> 2) * jobnr) / nb_jobs; const int slice_end = ((height >> 2) * (jobnr+1)) / nb_jobs; const int ystart = FFMAX(1, slice_start); int z = ystart - 1; double ssim = 0.0; int (*sum0)[4] = temp; int (*sum1)[4] = sum0 + SUM_LEN(width); width >>= 2; height >>= 2; for (int y = ystart; y < slice_end; y++) { for (; z <= y; z++) { FFSWAP(void*, sum0, sum1); dsp->ssim_4x4_line(&main_data[4 * z * main_stride], main_stride, &ref_data[4 * z * ref_stride], ref_stride, sum0, width); } ssim += dsp->ssim_end_line((const int (*)[4])sum0, (const int (*)[4])sum1, width - 1); } score[c] = ssim; } return 0; } static double ssim_db(double ssim, double weight) { return (fabs(weight - ssim) > 1e-9) ? 10.0 * log10(weight / (weight - ssim)) : INFINITY; } static int do_ssim(FFFrameSync *fs) { AVFilterContext *ctx = fs->parent; SSIMContext *s = ctx->priv; AVFrame *master, *ref; AVDictionary **metadata; double c[4] = {0}, ssimv = 0.0; ThreadData td; int ret, i; ret = ff_framesync_dualinput_get(fs, &master, &ref); if (ret < 0) return ret; if (ctx->is_disabled || !ref) return ff_filter_frame(ctx->outputs[0], master); metadata = &master->metadata; s->nb_frames++; td.nb_components = s->nb_components; td.dsp = &s->dsp; td.score = s->score; td.temp = s->temp; td.max = s->max; for (int n = 0; n < s->nb_components; n++) { td.main_data[n] = master->data[n]; td.ref_data[n] = ref->data[n]; td.main_linesize[n] = master->linesize[n]; td.ref_linesize[n] = ref->linesize[n]; td.planewidth[n] = s->planewidth[n]; td.planeheight[n] = s->planeheight[n]; } ff_filter_execute(ctx, s->ssim_plane, &td, NULL, FFMIN((s->planeheight[1] + 3) >> 2, s->nb_threads)); for (i = 0; i < s->nb_components; i++) { for (int j = 0; j < s->nb_threads; j++) c[i] += s->score[j][i]; c[i] = c[i] / (((s->planewidth[i] >> 2) - 1) * ((s->planeheight[i] >> 2) - 1)); } for (i = 0; i < s->nb_components; i++) { ssimv += s->coefs[i] * c[i]; s->ssim[i] += c[i]; } for (i = 0; i < s->nb_components; i++) { int cidx = s->is_rgb ? s->rgba_map[i] : i; set_meta(metadata, "lavfi.ssim.", s->comps[i], c[cidx]); } s->ssim_total += ssimv; set_meta(metadata, "lavfi.ssim.All", 0, ssimv); set_meta(metadata, "lavfi.ssim.dB", 0, ssim_db(ssimv, 1.0)); if (s->stats_file) { fprintf(s->stats_file, "n:%"PRId64" ", s->nb_frames); for (i = 0; i < s->nb_components; i++) { int cidx = s->is_rgb ? s->rgba_map[i] : i; fprintf(s->stats_file, "%c:%f ", s->comps[i], c[cidx]); } fprintf(s->stats_file, "All:%f (%f)\n", ssimv, ssim_db(ssimv, 1.0)); } return ff_filter_frame(ctx->outputs[0], master); } static av_cold int init(AVFilterContext *ctx) { SSIMContext *s = ctx->priv; if (s->stats_file_str) { if (!strcmp(s->stats_file_str, "-")) { s->stats_file = stdout; } else { s->stats_file = avpriv_fopen_utf8(s->stats_file_str, "w"); if (!s->stats_file) { int err = AVERROR(errno); char buf[128]; av_strerror(err, buf, sizeof(buf)); av_log(ctx, AV_LOG_ERROR, "Could not open stats file %s: %s\n", s->stats_file_str, buf); return err; } } } s->fs.on_event = do_ssim; return 0; } static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_GBRP, #define PF(suf) AV_PIX_FMT_YUV420##suf, AV_PIX_FMT_YUV422##suf, AV_PIX_FMT_YUV444##suf, AV_PIX_FMT_GBR##suf PF(P9), PF(P10), PF(P12), PF(P14), PF(P16), AV_PIX_FMT_NONE }; static int config_input_ref(AVFilterLink *inlink) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); AVFilterContext *ctx = inlink->dst; SSIMContext *s = ctx->priv; int sum = 0, i; s->nb_threads = ff_filter_get_nb_threads(ctx); s->nb_components = desc->nb_components; if (ctx->inputs[0]->w != ctx->inputs[1]->w || ctx->inputs[0]->h != ctx->inputs[1]->h) { av_log(ctx, AV_LOG_ERROR, "Width and height of input videos must be same.\n"); return AVERROR(EINVAL); } s->is_rgb = ff_fill_rgba_map(s->rgba_map, inlink->format) >= 0; s->comps[0] = s->is_rgb ? 'R' : 'Y'; s->comps[1] = s->is_rgb ? 'G' : 'U'; s->comps[2] = s->is_rgb ? 'B' : 'V'; s->comps[3] = 'A'; s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); s->planeheight[0] = s->planeheight[3] = inlink->h; s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w); s->planewidth[0] = s->planewidth[3] = inlink->w; for (i = 0; i < s->nb_components; i++) sum += s->planeheight[i] * s->planewidth[i]; for (i = 0; i < s->nb_components; i++) s->coefs[i] = (double) s->planeheight[i] * s->planewidth[i] / sum; s->temp = av_calloc(s->nb_threads, sizeof(*s->temp)); if (!s->temp) return AVERROR(ENOMEM); for (int t = 0; t < s->nb_threads; t++) { s->temp[t] = av_calloc(2 * SUM_LEN(inlink->w), (desc->comp[0].depth > 8) ? sizeof(int64_t[4]) : sizeof(int[4])); if (!s->temp[t]) return AVERROR(ENOMEM); } s->max = (1 << desc->comp[0].depth) - 1; s->ssim_plane = desc->comp[0].depth > 8 ? ssim_plane_16bit : ssim_plane; s->dsp.ssim_4x4_line = ssim_4x4xn_8bit; s->dsp.ssim_end_line = ssim_endn_8bit; #if ARCH_X86 ff_ssim_init_x86(&s->dsp); #endif s->score = av_calloc(s->nb_threads, sizeof(*s->score)); if (!s->score) return AVERROR(ENOMEM); for (int t = 0; t < s->nb_threads; t++) { s->score[t] = av_calloc(s->nb_components, sizeof(*s->score[0])); if (!s->score[t]) return AVERROR(ENOMEM); } return 0; } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; SSIMContext *s = ctx->priv; AVFilterLink *mainlink = ctx->inputs[0]; int ret; ret = ff_framesync_init_dualinput(&s->fs, ctx); if (ret < 0) return ret; outlink->w = mainlink->w; outlink->h = mainlink->h; outlink->time_base = mainlink->time_base; outlink->sample_aspect_ratio = mainlink->sample_aspect_ratio; outlink->frame_rate = mainlink->frame_rate; if ((ret = ff_framesync_configure(&s->fs)) < 0) return ret; outlink->time_base = s->fs.time_base; if (av_cmp_q(mainlink->time_base, outlink->time_base) || av_cmp_q(ctx->inputs[1]->time_base, outlink->time_base)) av_log(ctx, AV_LOG_WARNING, "not matching timebases found between first input: %d/%d and second input %d/%d, results may be incorrect!\n", mainlink->time_base.num, mainlink->time_base.den, ctx->inputs[1]->time_base.num, ctx->inputs[1]->time_base.den); return 0; } static int activate(AVFilterContext *ctx) { SSIMContext *s = ctx->priv; return ff_framesync_activate(&s->fs); } static av_cold void uninit(AVFilterContext *ctx) { SSIMContext *s = ctx->priv; if (s->nb_frames > 0) { char buf[256]; int i; buf[0] = 0; for (i = 0; i < s->nb_components; i++) { int c = s->is_rgb ? s->rgba_map[i] : i; av_strlcatf(buf, sizeof(buf), " %c:%f (%f)", s->comps[i], s->ssim[c] / s->nb_frames, ssim_db(s->ssim[c], s->nb_frames)); } av_log(ctx, AV_LOG_INFO, "SSIM%s All:%f (%f)\n", buf, s->ssim_total / s->nb_frames, ssim_db(s->ssim_total, s->nb_frames)); } ff_framesync_uninit(&s->fs); if (s->stats_file && s->stats_file != stdout) fclose(s->stats_file); for (int t = 0; t < s->nb_threads && s->score; t++) av_freep(&s->score[t]); av_freep(&s->score); for (int t = 0; t < s->nb_threads && s->temp; t++) av_freep(&s->temp[t]); av_freep(&s->temp); } static const AVFilterPad ssim_inputs[] = { { .name = "main", .type = AVMEDIA_TYPE_VIDEO, },{ .name = "reference", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_input_ref, }, }; static const AVFilterPad ssim_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, }, }; const AVFilter ff_vf_ssim = { .name = "ssim", .description = NULL_IF_CONFIG_SMALL("Calculate the SSIM between two video streams."), .preinit = ssim_framesync_preinit, .init = init, .uninit = uninit, .activate = activate, .priv_size = sizeof(SSIMContext), .priv_class = &ssim_class, FILTER_INPUTS(ssim_inputs), FILTER_OUTPUTS(ssim_outputs), FILTER_PIXFMTS_ARRAY(pix_fmts), .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS | AVFILTER_FLAG_METADATA_ONLY, };