/* * Copyright (c) 2021 Loongson Technology Corporation Limited * All rights reserved. * Contributed by Shiyou Yin * Xiwei Gu * Lu Wang * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ #ifndef AVUTIL_LOONGARCH_LOONGSON_INTRINSICS_H #define AVUTIL_LOONGARCH_LOONGSON_INTRINSICS_H /* * Copyright (c) 2021 Loongson Technology Corporation Limited * All rights reserved. * Contributed by Shiyou Yin * Xiwei Gu * Lu Wang * * This file is a header file for loongarch builtin extension. * */ #ifndef LOONGSON_INTRINSICS_H #define LOONGSON_INTRINSICS_H /** * MAJOR version: Macro usage changes. * MINOR version: Add new functions, or bug fixes. * MICRO version: Comment changes or implementation changes. */ #define LSOM_VERSION_MAJOR 1 #define LSOM_VERSION_MINOR 1 #define LSOM_VERSION_MICRO 0 #define DUP2_ARG1(_INS, _IN0, _IN1, _OUT0, _OUT1) \ { \ _OUT0 = _INS(_IN0); \ _OUT1 = _INS(_IN1); \ } #define DUP2_ARG2(_INS, _IN0, _IN1, _IN2, _IN3, _OUT0, _OUT1) \ { \ _OUT0 = _INS(_IN0, _IN1); \ _OUT1 = _INS(_IN2, _IN3); \ } #define DUP2_ARG3(_INS, _IN0, _IN1, _IN2, _IN3, _IN4, _IN5, _OUT0, _OUT1) \ { \ _OUT0 = _INS(_IN0, _IN1, _IN2); \ _OUT1 = _INS(_IN3, _IN4, _IN5); \ } #define DUP4_ARG1(_INS, _IN0, _IN1, _IN2, _IN3, _OUT0, _OUT1, _OUT2, _OUT3) \ { \ DUP2_ARG1(_INS, _IN0, _IN1, _OUT0, _OUT1); \ DUP2_ARG1(_INS, _IN2, _IN3, _OUT2, _OUT3); \ } #define DUP4_ARG2(_INS, _IN0, _IN1, _IN2, _IN3, _IN4, _IN5, _IN6, _IN7, _OUT0, \ _OUT1, _OUT2, _OUT3) \ { \ DUP2_ARG2(_INS, _IN0, _IN1, _IN2, _IN3, _OUT0, _OUT1); \ DUP2_ARG2(_INS, _IN4, _IN5, _IN6, _IN7, _OUT2, _OUT3); \ } #define DUP4_ARG3(_INS, _IN0, _IN1, _IN2, _IN3, _IN4, _IN5, _IN6, _IN7, _IN8, \ _IN9, _IN10, _IN11, _OUT0, _OUT1, _OUT2, _OUT3) \ { \ DUP2_ARG3(_INS, _IN0, _IN1, _IN2, _IN3, _IN4, _IN5, _OUT0, _OUT1); \ DUP2_ARG3(_INS, _IN6, _IN7, _IN8, _IN9, _IN10, _IN11, _OUT2, _OUT3); \ } #ifdef __loongarch_sx #include /* * ============================================================================= * Description : Dot product & addition of byte vector elements * Arguments : Inputs - in_c, in_h, in_l * Outputs - out * Return Type - halfword * Details : Signed byte elements from in_h are multiplied by * signed byte elements from in_l, and then added adjacent to * each other to get results with the twice size of input. * Then the results plus to signed half-word elements from in_c. * Example : out = __lsx_vdp2add_h_b(in_c, in_h, in_l) * in_c : 1,2,3,4, 1,2,3,4 * in_h : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8 * in_l : 8,7,6,5, 4,3,2,1, 8,7,6,5, 4,3,2,1 * out : 23,40,41,26, 23,40,41,26 * ============================================================================= */ static inline __m128i __lsx_vdp2add_h_b(__m128i in_c, __m128i in_h, __m128i in_l) { __m128i out; out = __lsx_vmaddwev_h_b(in_c, in_h, in_l); out = __lsx_vmaddwod_h_b(out, in_h, in_l); return out; } /* * ============================================================================= * Description : Dot product & addition of byte vector elements * Arguments : Inputs - in_c, in_h, in_l * Outputs - out * Return Type - halfword * Details : Unsigned byte elements from in_h are multiplied by * unsigned byte elements from in_l, and then added adjacent to * each other to get results with the twice size of input. * The results plus to signed half-word elements from in_c. * Example : out = __lsx_vdp2add_h_bu(in_c, in_h, in_l) * in_c : 1,2,3,4, 1,2,3,4 * in_h : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8 * in_l : 8,7,6,5, 4,3,2,1, 8,7,6,5, 4,3,2,1 * out : 23,40,41,26, 23,40,41,26 * ============================================================================= */ static inline __m128i __lsx_vdp2add_h_bu(__m128i in_c, __m128i in_h, __m128i in_l) { __m128i out; out = __lsx_vmaddwev_h_bu(in_c, in_h, in_l); out = __lsx_vmaddwod_h_bu(out, in_h, in_l); return out; } /* * ============================================================================= * Description : Dot product & addition of byte vector elements * Arguments : Inputs - in_c, in_h, in_l * Outputs - out * Return Type - halfword * Details : Unsigned byte elements from in_h are multiplied by * signed byte elements from in_l, and then added adjacent to * each other to get results with the twice size of input. * The results plus to signed half-word elements from in_c. * Example : out = __lsx_vdp2add_h_bu_b(in_c, in_h, in_l) * in_c : 1,1,1,1, 1,1,1,1 * in_h : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8 * in_l : -1,-2,-3,-4, -5,-6,-7,-8, 1,2,3,4, 5,6,7,8 * out : -4,-24,-60,-112, 6,26,62,114 * ============================================================================= */ static inline __m128i __lsx_vdp2add_h_bu_b(__m128i in_c, __m128i in_h, __m128i in_l) { __m128i out; out = __lsx_vmaddwev_h_bu_b(in_c, in_h, in_l); out = __lsx_vmaddwod_h_bu_b(out, in_h, in_l); return out; } /* * ============================================================================= * Description : Dot product & addition of half-word vector elements * Arguments : Inputs - in_c, in_h, in_l * Outputs - out * Return Type - __m128i * Details : Signed half-word elements from in_h are multiplied by * signed half-word elements from in_l, and then added adjacent to * each other to get results with the twice size of input. * Then the results plus to signed word elements from in_c. * Example : out = __lsx_vdp2add_h_b(in_c, in_h, in_l) * in_c : 1,2,3,4 * in_h : 1,2,3,4, 5,6,7,8 * in_l : 8,7,6,5, 4,3,2,1 * out : 23,40,41,26 * ============================================================================= */ static inline __m128i __lsx_vdp2add_w_h(__m128i in_c, __m128i in_h, __m128i in_l) { __m128i out; out = __lsx_vmaddwev_w_h(in_c, in_h, in_l); out = __lsx_vmaddwod_w_h(out, in_h, in_l); return out; } /* * ============================================================================= * Description : Dot product of byte vector elements * Arguments : Inputs - in_h, in_l * Outputs - out * Return Type - halfword * Details : Signed byte elements from in_h are multiplied by * signed byte elements from in_l, and then added adjacent to * each other to get results with the twice size of input. * Example : out = __lsx_vdp2_h_b(in_h, in_l) * in_h : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8 * in_l : 8,7,6,5, 4,3,2,1, 8,7,6,5, 4,3,2,1 * out : 22,38,38,22, 22,38,38,22 * ============================================================================= */ static inline __m128i __lsx_vdp2_h_b(__m128i in_h, __m128i in_l) { __m128i out; out = __lsx_vmulwev_h_b(in_h, in_l); out = __lsx_vmaddwod_h_b(out, in_h, in_l); return out; } /* * ============================================================================= * Description : Dot product of byte vector elements * Arguments : Inputs - in_h, in_l * Outputs - out * Return Type - halfword * Details : Unsigned byte elements from in_h are multiplied by * unsigned byte elements from in_l, and then added adjacent to * each other to get results with the twice size of input. * Example : out = __lsx_vdp2_h_bu(in_h, in_l) * in_h : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8 * in_l : 8,7,6,5, 4,3,2,1, 8,7,6,5, 4,3,2,1 * out : 22,38,38,22, 22,38,38,22 * ============================================================================= */ static inline __m128i __lsx_vdp2_h_bu(__m128i in_h, __m128i in_l) { __m128i out; out = __lsx_vmulwev_h_bu(in_h, in_l); out = __lsx_vmaddwod_h_bu(out, in_h, in_l); return out; } /* * ============================================================================= * Description : Dot product of byte vector elements * Arguments : Inputs - in_h, in_l * Outputs - out * Return Type - halfword * Details : Unsigned byte elements from in_h are multiplied by * signed byte elements from in_l, and then added adjacent to * each other to get results with the twice size of input. * Example : out = __lsx_vdp2_h_bu_b(in_h, in_l) * in_h : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8 * in_l : 8,7,6,5, 4,3,2,1, 8,7,6,5, 4,3,2,-1 * out : 22,38,38,22, 22,38,38,6 * ============================================================================= */ static inline __m128i __lsx_vdp2_h_bu_b(__m128i in_h, __m128i in_l) { __m128i out; out = __lsx_vmulwev_h_bu_b(in_h, in_l); out = __lsx_vmaddwod_h_bu_b(out, in_h, in_l); return out; } /* * ============================================================================= * Description : Dot product of byte vector elements * Arguments : Inputs - in_h, in_l * Outputs - out * Return Type - halfword * Details : Signed byte elements from in_h are multiplied by * signed byte elements from in_l, and then added adjacent to * each other to get results with the twice size of input. * Example : out = __lsx_vdp2_w_h(in_h, in_l) * in_h : 1,2,3,4, 5,6,7,8 * in_l : 8,7,6,5, 4,3,2,1 * out : 22,38,38,22 * ============================================================================= */ static inline __m128i __lsx_vdp2_w_h(__m128i in_h, __m128i in_l) { __m128i out; out = __lsx_vmulwev_w_h(in_h, in_l); out = __lsx_vmaddwod_w_h(out, in_h, in_l); return out; } /* * ============================================================================= * Description : Clip all halfword elements of input vector between min & max * out = ((_in) < (min)) ? (min) : (((_in) > (max)) ? (max) : * (_in)) * Arguments : Inputs - _in (input vector) * - min (min threshold) * - max (max threshold) * Outputs - out (output vector with clipped elements) * Return Type - signed halfword * Example : out = __lsx_vclip_h(_in) * _in : -8,2,280,249, -8,255,280,249 * min : 1,1,1,1, 1,1,1,1 * max : 9,9,9,9, 9,9,9,9 * out : 1,2,9,9, 1,9,9,9 * ============================================================================= */ static inline __m128i __lsx_vclip_h(__m128i _in, __m128i min, __m128i max) { __m128i out; out = __lsx_vmax_h(min, _in); out = __lsx_vmin_h(max, out); return out; } /* * ============================================================================= * Description : Set each element of vector between 0 and 255 * Arguments : Inputs - _in * Outputs - out * Return Type - halfword * Details : Signed byte elements from _in are clamped between 0 and 255. * Example : out = __lsx_vclip255_h(_in) * _in : -8,255,280,249, -8,255,280,249 * out : 0,255,255,249, 0,255,255,249 * ============================================================================= */ static inline __m128i __lsx_vclip255_h(__m128i _in) { __m128i out; out = __lsx_vmaxi_h(_in, 0); out = __lsx_vsat_hu(out, 7); return out; } /* * ============================================================================= * Description : Set each element of vector between 0 and 255 * Arguments : Inputs - _in * Outputs - out * Return Type - word * Details : Signed byte elements from _in are clamped between 0 and 255. * Example : out = __lsx_vclip255_w(_in) * _in : -8,255,280,249 * out : 0,255,255,249 * ============================================================================= */ static inline __m128i __lsx_vclip255_w(__m128i _in) { __m128i out; out = __lsx_vmaxi_w(_in, 0); out = __lsx_vsat_wu(out, 7); return out; } /* * ============================================================================= * Description : Swap two variables * Arguments : Inputs - _in0, _in1 * Outputs - _in0, _in1 (in-place) * Details : Swapping of two input variables using xor * Example : LSX_SWAP(_in0, _in1) * _in0 : 1,2,3,4 * _in1 : 5,6,7,8 * _in0(out) : 5,6,7,8 * _in1(out) : 1,2,3,4 * ============================================================================= */ #define LSX_SWAP(_in0, _in1) \ { \ _in0 = __lsx_vxor_v(_in0, _in1); \ _in1 = __lsx_vxor_v(_in0, _in1); \ _in0 = __lsx_vxor_v(_in0, _in1); \ } /* * ============================================================================= * Description : Transpose 4x4 block with word elements in vectors * Arguments : Inputs - in0, in1, in2, in3 * Outputs - out0, out1, out2, out3 * Details : * Example : * 1, 2, 3, 4 1, 5, 9,13 * 5, 6, 7, 8 to 2, 6,10,14 * 9,10,11,12 =====> 3, 7,11,15 * 13,14,15,16 4, 8,12,16 * ============================================================================= */ #define LSX_TRANSPOSE4x4_W(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \ { \ __m128i _t0, _t1, _t2, _t3; \ \ _t0 = __lsx_vilvl_w(_in1, _in0); \ _t1 = __lsx_vilvh_w(_in1, _in0); \ _t2 = __lsx_vilvl_w(_in3, _in2); \ _t3 = __lsx_vilvh_w(_in3, _in2); \ _out0 = __lsx_vilvl_d(_t2, _t0); \ _out1 = __lsx_vilvh_d(_t2, _t0); \ _out2 = __lsx_vilvl_d(_t3, _t1); \ _out3 = __lsx_vilvh_d(_t3, _t1); \ } /* * ============================================================================= * Description : Transpose 8x8 block with byte elements in vectors * Arguments : Inputs - _in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7 * Outputs - _out0, _out1, _out2, _out3, _out4, _out5, _out6, * _out7 * Details : The rows of the matrix become columns, and the columns * become rows. * Example : LSX_TRANSPOSE8x8_B * _in0 : 00,01,02,03,04,05,06,07, 00,00,00,00,00,00,00,00 * _in1 : 10,11,12,13,14,15,16,17, 00,00,00,00,00,00,00,00 * _in2 : 20,21,22,23,24,25,26,27, 00,00,00,00,00,00,00,00 * _in3 : 30,31,32,33,34,35,36,37, 00,00,00,00,00,00,00,00 * _in4 : 40,41,42,43,44,45,46,47, 00,00,00,00,00,00,00,00 * _in5 : 50,51,52,53,54,55,56,57, 00,00,00,00,00,00,00,00 * _in6 : 60,61,62,63,64,65,66,67, 00,00,00,00,00,00,00,00 * _in7 : 70,71,72,73,74,75,76,77, 00,00,00,00,00,00,00,00 * * _ out0 : 00,10,20,30,40,50,60,70, 00,00,00,00,00,00,00,00 * _ out1 : 01,11,21,31,41,51,61,71, 00,00,00,00,00,00,00,00 * _ out2 : 02,12,22,32,42,52,62,72, 00,00,00,00,00,00,00,00 * _ out3 : 03,13,23,33,43,53,63,73, 00,00,00,00,00,00,00,00 * _ out4 : 04,14,24,34,44,54,64,74, 00,00,00,00,00,00,00,00 * _ out5 : 05,15,25,35,45,55,65,75, 00,00,00,00,00,00,00,00 * _ out6 : 06,16,26,36,46,56,66,76, 00,00,00,00,00,00,00,00 * _ out7 : 07,17,27,37,47,57,67,77, 00,00,00,00,00,00,00,00 * ============================================================================= */ #define LSX_TRANSPOSE8x8_B(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \ _out0, _out1, _out2, _out3, _out4, _out5, _out6, \ _out7) \ { \ __m128i zero = { 0 }; \ __m128i shuf8 = { 0x0F0E0D0C0B0A0908, 0x1716151413121110 }; \ __m128i _t0, _t1, _t2, _t3, _t4, _t5, _t6, _t7; \ \ _t0 = __lsx_vilvl_b(_in2, _in0); \ _t1 = __lsx_vilvl_b(_in3, _in1); \ _t2 = __lsx_vilvl_b(_in6, _in4); \ _t3 = __lsx_vilvl_b(_in7, _in5); \ _t4 = __lsx_vilvl_b(_t1, _t0); \ _t5 = __lsx_vilvh_b(_t1, _t0); \ _t6 = __lsx_vilvl_b(_t3, _t2); \ _t7 = __lsx_vilvh_b(_t3, _t2); \ _out0 = __lsx_vilvl_w(_t6, _t4); \ _out2 = __lsx_vilvh_w(_t6, _t4); \ _out4 = __lsx_vilvl_w(_t7, _t5); \ _out6 = __lsx_vilvh_w(_t7, _t5); \ _out1 = __lsx_vshuf_b(zero, _out0, shuf8); \ _out3 = __lsx_vshuf_b(zero, _out2, shuf8); \ _out5 = __lsx_vshuf_b(zero, _out4, shuf8); \ _out7 = __lsx_vshuf_b(zero, _out6, shuf8); \ } /* * ============================================================================= * Description : Transpose 8x8 block with half-word elements in vectors * Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 * Outputs - out0, out1, out2, out3, out4, out5, out6, out7 * Details : * Example : * 00,01,02,03,04,05,06,07 00,10,20,30,40,50,60,70 * 10,11,12,13,14,15,16,17 01,11,21,31,41,51,61,71 * 20,21,22,23,24,25,26,27 02,12,22,32,42,52,62,72 * 30,31,32,33,34,35,36,37 to 03,13,23,33,43,53,63,73 * 40,41,42,43,44,45,46,47 ======> 04,14,24,34,44,54,64,74 * 50,51,52,53,54,55,56,57 05,15,25,35,45,55,65,75 * 60,61,62,63,64,65,66,67 06,16,26,36,46,56,66,76 * 70,71,72,73,74,75,76,77 07,17,27,37,47,57,67,77 * ============================================================================= */ #define LSX_TRANSPOSE8x8_H(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \ _out0, _out1, _out2, _out3, _out4, _out5, _out6, \ _out7) \ { \ __m128i _s0, _s1, _t0, _t1, _t2, _t3, _t4, _t5, _t6, _t7; \ \ _s0 = __lsx_vilvl_h(_in6, _in4); \ _s1 = __lsx_vilvl_h(_in7, _in5); \ _t0 = __lsx_vilvl_h(_s1, _s0); \ _t1 = __lsx_vilvh_h(_s1, _s0); \ _s0 = __lsx_vilvh_h(_in6, _in4); \ _s1 = __lsx_vilvh_h(_in7, _in5); \ _t2 = __lsx_vilvl_h(_s1, _s0); \ _t3 = __lsx_vilvh_h(_s1, _s0); \ _s0 = __lsx_vilvl_h(_in2, _in0); \ _s1 = __lsx_vilvl_h(_in3, _in1); \ _t4 = __lsx_vilvl_h(_s1, _s0); \ _t5 = __lsx_vilvh_h(_s1, _s0); \ _s0 = __lsx_vilvh_h(_in2, _in0); \ _s1 = __lsx_vilvh_h(_in3, _in1); \ _t6 = __lsx_vilvl_h(_s1, _s0); \ _t7 = __lsx_vilvh_h(_s1, _s0); \ \ _out0 = __lsx_vpickev_d(_t0, _t4); \ _out2 = __lsx_vpickev_d(_t1, _t5); \ _out4 = __lsx_vpickev_d(_t2, _t6); \ _out6 = __lsx_vpickev_d(_t3, _t7); \ _out1 = __lsx_vpickod_d(_t0, _t4); \ _out3 = __lsx_vpickod_d(_t1, _t5); \ _out5 = __lsx_vpickod_d(_t2, _t6); \ _out7 = __lsx_vpickod_d(_t3, _t7); \ } /* * ============================================================================= * Description : Transpose input 8x4 byte block into 4x8 * Arguments : Inputs - _in0, _in1, _in2, _in3 (input 8x4 byte block) * Outputs - _out0, _out1, _out2, _out3 (output 4x8 byte block) * Return Type - as per RTYPE * Details : The rows of the matrix become columns, and the columns become * rows. * Example : LSX_TRANSPOSE8x4_B * _in0 : 00,01,02,03,00,00,00,00, 00,00,00,00,00,00,00,00 * _in1 : 10,11,12,13,00,00,00,00, 00,00,00,00,00,00,00,00 * _in2 : 20,21,22,23,00,00,00,00, 00,00,00,00,00,00,00,00 * _in3 : 30,31,32,33,00,00,00,00, 00,00,00,00,00,00,00,00 * _in4 : 40,41,42,43,00,00,00,00, 00,00,00,00,00,00,00,00 * _in5 : 50,51,52,53,00,00,00,00, 00,00,00,00,00,00,00,00 * _in6 : 60,61,62,63,00,00,00,00, 00,00,00,00,00,00,00,00 * _in7 : 70,71,72,73,00,00,00,00, 00,00,00,00,00,00,00,00 * * _out0 : 00,10,20,30,40,50,60,70, 00,00,00,00,00,00,00,00 * _out1 : 01,11,21,31,41,51,61,71, 00,00,00,00,00,00,00,00 * _out2 : 02,12,22,32,42,52,62,72, 00,00,00,00,00,00,00,00 * _out3 : 03,13,23,33,43,53,63,73, 00,00,00,00,00,00,00,00 * ============================================================================= */ #define LSX_TRANSPOSE8x4_B(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \ _out0, _out1, _out2, _out3) \ { \ __m128i _tmp0_m, _tmp1_m, _tmp2_m, _tmp3_m; \ \ _tmp0_m = __lsx_vpackev_w(_in4, _in0); \ _tmp1_m = __lsx_vpackev_w(_in5, _in1); \ _tmp2_m = __lsx_vilvl_b(_tmp1_m, _tmp0_m); \ _tmp0_m = __lsx_vpackev_w(_in6, _in2); \ _tmp1_m = __lsx_vpackev_w(_in7, _in3); \ \ _tmp3_m = __lsx_vilvl_b(_tmp1_m, _tmp0_m); \ _tmp0_m = __lsx_vilvl_h(_tmp3_m, _tmp2_m); \ _tmp1_m = __lsx_vilvh_h(_tmp3_m, _tmp2_m); \ \ _out0 = __lsx_vilvl_w(_tmp1_m, _tmp0_m); \ _out2 = __lsx_vilvh_w(_tmp1_m, _tmp0_m); \ _out1 = __lsx_vilvh_d(_out2, _out0); \ _out3 = __lsx_vilvh_d(_out0, _out2); \ } /* * ============================================================================= * Description : Transpose 16x8 block with byte elements in vectors * Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7, in8 * in9, in10, in11, in12, in13, in14, in15 * Outputs - out0, out1, out2, out3, out4, out5, out6, out7 * Details : * Example : * 000,001,002,003,004,005,006,007 * 008,009,010,011,012,013,014,015 * 016,017,018,019,020,021,022,023 * 024,025,026,027,028,029,030,031 * 032,033,034,035,036,037,038,039 * 040,041,042,043,044,045,046,047 000,008,...,112,120 * 048,049,050,051,052,053,054,055 001,009,...,113,121 * 056,057,058,059,060,061,062,063 to 002,010,...,114,122 * 064,068,066,067,068,069,070,071 =====> 003,011,...,115,123 * 072,073,074,075,076,077,078,079 004,012,...,116,124 * 080,081,082,083,084,085,086,087 005,013,...,117,125 * 088,089,090,091,092,093,094,095 006,014,...,118,126 * 096,097,098,099,100,101,102,103 007,015,...,119,127 * 104,105,106,107,108,109,110,111 * 112,113,114,115,116,117,118,119 * 120,121,122,123,124,125,126,127 * ============================================================================= */ #define LSX_TRANSPOSE16x8_B(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \ _in8, _in9, _in10, _in11, _in12, _in13, _in14, \ _in15, _out0, _out1, _out2, _out3, _out4, _out5, \ _out6, _out7) \ { \ __m128i _tmp0, _tmp1, _tmp2, _tmp3, _tmp4, _tmp5, _tmp6, _tmp7; \ __m128i _t0, _t1, _t2, _t3, _t4, _t5, _t6, _t7; \ DUP4_ARG2(__lsx_vilvl_b, _in2, _in0, _in3, _in1, _in6, _in4, _in7, _in5, \ _tmp0, _tmp1, _tmp2, _tmp3); \ DUP4_ARG2(__lsx_vilvl_b, _in10, _in8, _in11, _in9, _in14, _in12, _in15, \ _in13, _tmp4, _tmp5, _tmp6, _tmp7); \ DUP2_ARG2(__lsx_vilvl_b, _tmp1, _tmp0, _tmp3, _tmp2, _t0, _t2); \ DUP2_ARG2(__lsx_vilvh_b, _tmp1, _tmp0, _tmp3, _tmp2, _t1, _t3); \ DUP2_ARG2(__lsx_vilvl_b, _tmp5, _tmp4, _tmp7, _tmp6, _t4, _t6); \ DUP2_ARG2(__lsx_vilvh_b, _tmp5, _tmp4, _tmp7, _tmp6, _t5, _t7); \ DUP2_ARG2(__lsx_vilvl_w, _t2, _t0, _t3, _t1, _tmp0, _tmp4); \ DUP2_ARG2(__lsx_vilvh_w, _t2, _t0, _t3, _t1, _tmp2, _tmp6); \ DUP2_ARG2(__lsx_vilvl_w, _t6, _t4, _t7, _t5, _tmp1, _tmp5); \ DUP2_ARG2(__lsx_vilvh_w, _t6, _t4, _t7, _t5, _tmp3, _tmp7); \ DUP2_ARG2(__lsx_vilvl_d, _tmp1, _tmp0, _tmp3, _tmp2, _out0, _out2); \ DUP2_ARG2(__lsx_vilvh_d, _tmp1, _tmp0, _tmp3, _tmp2, _out1, _out3); \ DUP2_ARG2(__lsx_vilvl_d, _tmp5, _tmp4, _tmp7, _tmp6, _out4, _out6); \ DUP2_ARG2(__lsx_vilvh_d, _tmp5, _tmp4, _tmp7, _tmp6, _out5, _out7); \ } /* * ============================================================================= * Description : Butterfly of 4 input vectors * Arguments : Inputs - in0, in1, in2, in3 * Outputs - out0, out1, out2, out3 * Details : Butterfly operation * Example : * out0 = in0 + in3; * out1 = in1 + in2; * out2 = in1 - in2; * out3 = in0 - in3; * ============================================================================= */ #define LSX_BUTTERFLY_4_B(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \ { \ _out0 = __lsx_vadd_b(_in0, _in3); \ _out1 = __lsx_vadd_b(_in1, _in2); \ _out2 = __lsx_vsub_b(_in1, _in2); \ _out3 = __lsx_vsub_b(_in0, _in3); \ } #define LSX_BUTTERFLY_4_H(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \ { \ _out0 = __lsx_vadd_h(_in0, _in3); \ _out1 = __lsx_vadd_h(_in1, _in2); \ _out2 = __lsx_vsub_h(_in1, _in2); \ _out3 = __lsx_vsub_h(_in0, _in3); \ } #define LSX_BUTTERFLY_4_W(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \ { \ _out0 = __lsx_vadd_w(_in0, _in3); \ _out1 = __lsx_vadd_w(_in1, _in2); \ _out2 = __lsx_vsub_w(_in1, _in2); \ _out3 = __lsx_vsub_w(_in0, _in3); \ } #define LSX_BUTTERFLY_4_D(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \ { \ _out0 = __lsx_vadd_d(_in0, _in3); \ _out1 = __lsx_vadd_d(_in1, _in2); \ _out2 = __lsx_vsub_d(_in1, _in2); \ _out3 = __lsx_vsub_d(_in0, _in3); \ } /* * ============================================================================= * Description : Butterfly of 8 input vectors * Arguments : Inputs - _in0, _in1, _in2, _in3, ~ * Outputs - _out0, _out1, _out2, _out3, ~ * Details : Butterfly operation * Example : * _out0 = _in0 + _in7; * _out1 = _in1 + _in6; * _out2 = _in2 + _in5; * _out3 = _in3 + _in4; * _out4 = _in3 - _in4; * _out5 = _in2 - _in5; * _out6 = _in1 - _in6; * _out7 = _in0 - _in7; * ============================================================================= */ #define LSX_BUTTERFLY_8_B(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \ _out0, _out1, _out2, _out3, _out4, _out5, _out6, \ _out7) \ { \ _out0 = __lsx_vadd_b(_in0, _in7); \ _out1 = __lsx_vadd_b(_in1, _in6); \ _out2 = __lsx_vadd_b(_in2, _in5); \ _out3 = __lsx_vadd_b(_in3, _in4); \ _out4 = __lsx_vsub_b(_in3, _in4); \ _out5 = __lsx_vsub_b(_in2, _in5); \ _out6 = __lsx_vsub_b(_in1, _in6); \ _out7 = __lsx_vsub_b(_in0, _in7); \ } #define LSX_BUTTERFLY_8_H(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \ _out0, _out1, _out2, _out3, _out4, _out5, _out6, \ _out7) \ { \ _out0 = __lsx_vadd_h(_in0, _in7); \ _out1 = __lsx_vadd_h(_in1, _in6); \ _out2 = __lsx_vadd_h(_in2, _in5); \ _out3 = __lsx_vadd_h(_in3, _in4); \ _out4 = __lsx_vsub_h(_in3, _in4); \ _out5 = __lsx_vsub_h(_in2, _in5); \ _out6 = __lsx_vsub_h(_in1, _in6); \ _out7 = __lsx_vsub_h(_in0, _in7); \ } #define LSX_BUTTERFLY_8_W(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \ _out0, _out1, _out2, _out3, _out4, _out5, _out6, \ _out7) \ { \ _out0 = __lsx_vadd_w(_in0, _in7); \ _out1 = __lsx_vadd_w(_in1, _in6); \ _out2 = __lsx_vadd_w(_in2, _in5); \ _out3 = __lsx_vadd_w(_in3, _in4); \ _out4 = __lsx_vsub_w(_in3, _in4); \ _out5 = __lsx_vsub_w(_in2, _in5); \ _out6 = __lsx_vsub_w(_in1, _in6); \ _out7 = __lsx_vsub_w(_in0, _in7); \ } #define LSX_BUTTERFLY_8_D(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \ _out0, _out1, _out2, _out3, _out4, _out5, _out6, \ _out7) \ { \ _out0 = __lsx_vadd_d(_in0, _in7); \ _out1 = __lsx_vadd_d(_in1, _in6); \ _out2 = __lsx_vadd_d(_in2, _in5); \ _out3 = __lsx_vadd_d(_in3, _in4); \ _out4 = __lsx_vsub_d(_in3, _in4); \ _out5 = __lsx_vsub_d(_in2, _in5); \ _out6 = __lsx_vsub_d(_in1, _in6); \ _out7 = __lsx_vsub_d(_in0, _in7); \ } #endif // LSX #ifdef __loongarch_asx #include /* * ============================================================================= * Description : Dot product of byte vector elements * Arguments : Inputs - in_h, in_l * Output - out * Return Type - signed halfword * Details : Unsigned byte elements from in_h are multiplied with * unsigned byte elements from in_l producing a result * twice the size of input i.e. signed halfword. * Then this multiplied results of adjacent odd-even elements * are added to the out vector * Example : See out = __lasx_xvdp2_w_h(in_h, in_l) * ============================================================================= */ static inline __m256i __lasx_xvdp2_h_bu(__m256i in_h, __m256i in_l) { __m256i out; out = __lasx_xvmulwev_h_bu(in_h, in_l); out = __lasx_xvmaddwod_h_bu(out, in_h, in_l); return out; } /* * ============================================================================= * Description : Dot product of byte vector elements * Arguments : Inputs - in_h, in_l * Output - out * Return Type - signed halfword * Details : Signed byte elements from in_h are multiplied with * signed byte elements from in_l producing a result * twice the size of input i.e. signed halfword. * Then this multiplication results of adjacent odd-even elements * are added to the out vector * Example : See out = __lasx_xvdp2_w_h(in_h, in_l) * ============================================================================= */ static inline __m256i __lasx_xvdp2_h_b(__m256i in_h, __m256i in_l) { __m256i out; out = __lasx_xvmulwev_h_b(in_h, in_l); out = __lasx_xvmaddwod_h_b(out, in_h, in_l); return out; } /* * ============================================================================= * Description : Dot product of halfword vector elements * Arguments : Inputs - in_h, in_l * Output - out * Return Type - signed word * Details : Signed halfword elements from in_h are multiplied with * signed halfword elements from in_l producing a result * twice the size of input i.e. signed word. * Then this multiplied results of adjacent odd-even elements * are added to the out vector. * Example : out = __lasx_xvdp2_w_h(in_h, in_l) * in_h : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8 * in_l : 8,7,6,5, 4,3,2,1, 8,7,6,5, 4,3,2,1 * out : 22,38,38,22, 22,38,38,22 * ============================================================================= */ static inline __m256i __lasx_xvdp2_w_h(__m256i in_h, __m256i in_l) { __m256i out; out = __lasx_xvmulwev_w_h(in_h, in_l); out = __lasx_xvmaddwod_w_h(out, in_h, in_l); return out; } /* * ============================================================================= * Description : Dot product of word vector elements * Arguments : Inputs - in_h, in_l * Output - out * Return Type - signed double * Details : Signed word elements from in_h are multiplied with * signed word elements from in_l producing a result * twice the size of input i.e. signed double-word. * Then this multiplied results of adjacent odd-even elements * are added to the out vector. * Example : See out = __lasx_xvdp2_w_h(in_h, in_l) * ============================================================================= */ static inline __m256i __lasx_xvdp2_d_w(__m256i in_h, __m256i in_l) { __m256i out; out = __lasx_xvmulwev_d_w(in_h, in_l); out = __lasx_xvmaddwod_d_w(out, in_h, in_l); return out; } /* * ============================================================================= * Description : Dot product of halfword vector elements * Arguments : Inputs - in_h, in_l * Output - out * Return Type - signed word * Details : Unsigned halfword elements from in_h are multiplied with * signed halfword elements from in_l producing a result * twice the size of input i.e. unsigned word. * Multiplication result of adjacent odd-even elements * are added to the out vector * Example : See out = __lasx_xvdp2_w_h(in_h, in_l) * ============================================================================= */ static inline __m256i __lasx_xvdp2_w_hu_h(__m256i in_h, __m256i in_l) { __m256i out; out = __lasx_xvmulwev_w_hu_h(in_h, in_l); out = __lasx_xvmaddwod_w_hu_h(out, in_h, in_l); return out; } /* * ============================================================================= * Description : Dot product & addition of byte vector elements * Arguments : Inputs - in_h, in_l * Output - out * Return Type - halfword * Details : Signed byte elements from in_h are multiplied with * signed byte elements from in_l producing a result * twice the size of input i.e. signed halfword. * Then this multiplied results of adjacent odd-even elements * are added to the in_c vector. * Example : See out = __lasx_xvdp2add_w_h(in_c, in_h, in_l) * ============================================================================= */ static inline __m256i __lasx_xvdp2add_h_b(__m256i in_c, __m256i in_h, __m256i in_l) { __m256i out; out = __lasx_xvmaddwev_h_b(in_c, in_h, in_l); out = __lasx_xvmaddwod_h_b(out, in_h, in_l); return out; } /* * ============================================================================= * Description : Dot product & addition of byte vector elements * Arguments : Inputs - in_h, in_l * Output - out * Return Type - halfword * Details : Unsigned byte elements from in_h are multiplied with * unsigned byte elements from in_l producing a result * twice the size of input i.e. signed halfword. * Then this multiplied results of adjacent odd-even elements * are added to the in_c vector. * Example : See out = __lasx_xvdp2add_w_h(in_c, in_h, in_l) * ============================================================================= */ static inline __m256i __lasx_xvdp2add_h_bu(__m256i in_c, __m256i in_h, __m256i in_l) { __m256i out; out = __lasx_xvmaddwev_h_bu(in_c, in_h, in_l); out = __lasx_xvmaddwod_h_bu(out, in_h, in_l); return out; } /* * ============================================================================= * Description : Dot product & addition of byte vector elements * Arguments : Inputs - in_h, in_l * Output - out * Return Type - halfword * Details : Unsigned byte elements from in_h are multiplied with * signed byte elements from in_l producing a result * twice the size of input i.e. signed halfword. * Then this multiplied results of adjacent odd-even elements * are added to the in_c vector. * Example : See out = __lasx_xvdp2add_w_h(in_c, in_h, in_l) * ============================================================================= */ static inline __m256i __lasx_xvdp2add_h_bu_b(__m256i in_c, __m256i in_h, __m256i in_l) { __m256i out; out = __lasx_xvmaddwev_h_bu_b(in_c, in_h, in_l); out = __lasx_xvmaddwod_h_bu_b(out, in_h, in_l); return out; } /* * ============================================================================= * Description : Dot product of halfword vector elements * Arguments : Inputs - in_c, in_h, in_l * Output - out * Return Type - per RTYPE * Details : Signed halfword elements from in_h are multiplied with * signed halfword elements from in_l producing a result * twice the size of input i.e. signed word. * Multiplication result of adjacent odd-even elements * are added to the in_c vector. * Example : out = __lasx_xvdp2add_w_h(in_c, in_h, in_l) * in_c : 1,2,3,4, 1,2,3,4 * in_h : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8, * in_l : 8,7,6,5, 4,3,2,1, 8,7,6,5, 4,3,2,1, * out : 23,40,41,26, 23,40,41,26 * ============================================================================= */ static inline __m256i __lasx_xvdp2add_w_h(__m256i in_c, __m256i in_h, __m256i in_l) { __m256i out; out = __lasx_xvmaddwev_w_h(in_c, in_h, in_l); out = __lasx_xvmaddwod_w_h(out, in_h, in_l); return out; } /* * ============================================================================= * Description : Dot product of halfword vector elements * Arguments : Inputs - in_c, in_h, in_l * Output - out * Return Type - signed word * Details : Unsigned halfword elements from in_h are multiplied with * unsigned halfword elements from in_l producing a result * twice the size of input i.e. signed word. * Multiplication result of adjacent odd-even elements * are added to the in_c vector. * Example : See out = __lasx_xvdp2add_w_h(in_c, in_h, in_l) * ============================================================================= */ static inline __m256i __lasx_xvdp2add_w_hu(__m256i in_c, __m256i in_h, __m256i in_l) { __m256i out; out = __lasx_xvmaddwev_w_hu(in_c, in_h, in_l); out = __lasx_xvmaddwod_w_hu(out, in_h, in_l); return out; } /* * ============================================================================= * Description : Dot product of halfword vector elements * Arguments : Inputs - in_c, in_h, in_l * Output - out * Return Type - signed word * Details : Unsigned halfword elements from in_h are multiplied with * signed halfword elements from in_l producing a result * twice the size of input i.e. signed word. * Multiplication result of adjacent odd-even elements * are added to the in_c vector * Example : See out = __lasx_xvdp2add_w_h(in_c, in_h, in_l) * ============================================================================= */ static inline __m256i __lasx_xvdp2add_w_hu_h(__m256i in_c, __m256i in_h, __m256i in_l) { __m256i out; out = __lasx_xvmaddwev_w_hu_h(in_c, in_h, in_l); out = __lasx_xvmaddwod_w_hu_h(out, in_h, in_l); return out; } /* * ============================================================================= * Description : Vector Unsigned Dot Product and Subtract * Arguments : Inputs - in_c, in_h, in_l * Output - out * Return Type - signed halfword * Details : Unsigned byte elements from in_h are multiplied with * unsigned byte elements from in_l producing a result * twice the size of input i.e. signed halfword. * Multiplication result of adjacent odd-even elements * are added together and subtracted from double width elements * in_c vector. * Example : See out = __lasx_xvdp2sub_w_h(in_c, in_h, in_l) * ============================================================================= */ static inline __m256i __lasx_xvdp2sub_h_bu(__m256i in_c, __m256i in_h, __m256i in_l) { __m256i out; out = __lasx_xvmulwev_h_bu(in_h, in_l); out = __lasx_xvmaddwod_h_bu(out, in_h, in_l); out = __lasx_xvsub_h(in_c, out); return out; } /* * ============================================================================= * Description : Vector Signed Dot Product and Subtract * Arguments : Inputs - in_c, in_h, in_l * Output - out * Return Type - signed word * Details : Signed halfword elements from in_h are multiplied with * Signed halfword elements from in_l producing a result * twice the size of input i.e. signed word. * Multiplication result of adjacent odd-even elements * are added together and subtracted from double width elements * in_c vector. * Example : out = __lasx_xvdp2sub_w_h(in_c, in_h, in_l) * in_c : 0,0,0,0, 0,0,0,0 * in_h : 3,1,3,0, 0,0,0,1, 0,0,1,1, 0,0,0,1 * in_l : 2,1,1,0, 1,0,0,0, 0,0,1,0, 1,0,0,1 * out : -7,-3,0,0, 0,-1,0,-1 * ============================================================================= */ static inline __m256i __lasx_xvdp2sub_w_h(__m256i in_c, __m256i in_h, __m256i in_l) { __m256i out; out = __lasx_xvmulwev_w_h(in_h, in_l); out = __lasx_xvmaddwod_w_h(out, in_h, in_l); out = __lasx_xvsub_w(in_c, out); return out; } /* * ============================================================================= * Description : Dot product of halfword vector elements * Arguments : Inputs - in_h, in_l * Output - out * Return Type - signed word * Details : Signed halfword elements from in_h are multiplied with * signed halfword elements from in_l producing a result * four times the size of input i.e. signed doubleword. * Then this multiplication results of four adjacent elements * are added together and stored to the out vector. * Example : out = __lasx_xvdp4_d_h(in_h, in_l) * in_h : 3,1,3,0, 0,0,0,1, 0,0,1,-1, 0,0,0,1 * in_l : -2,1,1,0, 1,0,0,0, 0,0,1, 0, 1,0,0,1 * out : -2,0,1,1 * ============================================================================= */ static inline __m256i __lasx_xvdp4_d_h(__m256i in_h, __m256i in_l) { __m256i out; out = __lasx_xvmulwev_w_h(in_h, in_l); out = __lasx_xvmaddwod_w_h(out, in_h, in_l); out = __lasx_xvhaddw_d_w(out, out); return out; } /* * ============================================================================= * Description : The high half of the vector elements are expanded and * added after being doubled. * Arguments : Inputs - in_h, in_l * Output - out * Details : The in_h vector and the in_l vector are added after the * higher half of the two-fold sign extension (signed byte * to signed halfword) and stored to the out vector. * Example : See out = __lasx_xvaddwh_w_h(in_h, in_l) * ============================================================================= */ static inline __m256i __lasx_xvaddwh_h_b(__m256i in_h, __m256i in_l) { __m256i out; out = __lasx_xvilvh_b(in_h, in_l); out = __lasx_xvhaddw_h_b(out, out); return out; } /* * ============================================================================= * Description : The high half of the vector elements are expanded and * added after being doubled. * Arguments : Inputs - in_h, in_l * Output - out * Details : The in_h vector and the in_l vector are added after the * higher half of the two-fold sign extension (signed halfword * to signed word) and stored to the out vector. * Example : out = __lasx_xvaddwh_w_h(in_h, in_l) * in_h : 3, 0,3,0, 0,0,0,-1, 0,0,1,-1, 0,0,0,1 * in_l : 2,-1,1,2, 1,0,0, 0, 1,0,1, 0, 1,0,0,1 * out : 1,0,0,-1, 1,0,0, 2 * ============================================================================= */ static inline __m256i __lasx_xvaddwh_w_h(__m256i in_h, __m256i in_l) { __m256i out; out = __lasx_xvilvh_h(in_h, in_l); out = __lasx_xvhaddw_w_h(out, out); return out; } /* * ============================================================================= * Description : The low half of the vector elements are expanded and * added after being doubled. * Arguments : Inputs - in_h, in_l * Output - out * Details : The in_h vector and the in_l vector are added after the * lower half of the two-fold sign extension (signed byte * to signed halfword) and stored to the out vector. * Example : See out = __lasx_xvaddwl_w_h(in_h, in_l) * ============================================================================= */ static inline __m256i __lasx_xvaddwl_h_b(__m256i in_h, __m256i in_l) { __m256i out; out = __lasx_xvilvl_b(in_h, in_l); out = __lasx_xvhaddw_h_b(out, out); return out; } /* * ============================================================================= * Description : The low half of the vector elements are expanded and * added after being doubled. * Arguments : Inputs - in_h, in_l * Output - out * Details : The in_h vector and the in_l vector are added after the * lower half of the two-fold sign extension (signed halfword * to signed word) and stored to the out vector. * Example : out = __lasx_xvaddwl_w_h(in_h, in_l) * in_h : 3, 0,3,0, 0,0,0,-1, 0,0,1,-1, 0,0,0,1 * in_l : 2,-1,1,2, 1,0,0, 0, 1,0,1, 0, 1,0,0,1 * out : 5,-1,4,2, 1,0,2,-1 * ============================================================================= */ static inline __m256i __lasx_xvaddwl_w_h(__m256i in_h, __m256i in_l) { __m256i out; out = __lasx_xvilvl_h(in_h, in_l); out = __lasx_xvhaddw_w_h(out, out); return out; } /* * ============================================================================= * Description : The low half of the vector elements are expanded and * added after being doubled. * Arguments : Inputs - in_h, in_l * Output - out * Details : The out vector and the out vector are added after the * lower half of the two-fold zero extension (unsigned byte * to unsigned halfword) and stored to the out vector. * Example : See out = __lasx_xvaddwl_w_h(in_h, in_l) * ============================================================================= */ static inline __m256i __lasx_xvaddwl_h_bu(__m256i in_h, __m256i in_l) { __m256i out; out = __lasx_xvilvl_b(in_h, in_l); out = __lasx_xvhaddw_hu_bu(out, out); return out; } /* * ============================================================================= * Description : The low half of the vector elements are expanded and * added after being doubled. * Arguments : Inputs - in_h, in_l * Output - out * Details : The in_l vector after double zero extension (unsigned byte to * signed halfword),added to the in_h vector. * Example : See out = __lasx_xvaddw_w_w_h(in_h, in_l) * ============================================================================= */ static inline __m256i __lasx_xvaddw_h_h_bu(__m256i in_h, __m256i in_l) { __m256i out; out = __lasx_xvsllwil_hu_bu(in_l, 0); out = __lasx_xvadd_h(in_h, out); return out; } /* * ============================================================================= * Description : The low half of the vector elements are expanded and * added after being doubled. * Arguments : Inputs - in_h, in_l * Output - out * Details : The in_l vector after double sign extension (signed halfword to * signed word), added to the in_h vector. * Example : out = __lasx_xvaddw_w_w_h(in_h, in_l) * in_h : 0, 1,0,0, -1,0,0,1, * in_l : 2,-1,1,2, 1,0,0,0, 0,0,1,0, 1,0,0,1, * out : 2, 0,1,2, -1,0,1,1, * ============================================================================= */ static inline __m256i __lasx_xvaddw_w_w_h(__m256i in_h, __m256i in_l) { __m256i out; out = __lasx_xvsllwil_w_h(in_l, 0); out = __lasx_xvadd_w(in_h, out); return out; } /* * ============================================================================= * Description : Multiplication and addition calculation after expansion * of the lower half of the vector. * Arguments : Inputs - in_c, in_h, in_l * Output - out * Details : The in_h vector and the in_l vector are multiplied after * the lower half of the two-fold sign extension (signed halfword * to signed word), and the result is added to the vector in_c, * then stored to the out vector. * Example : out = __lasx_xvmaddwl_w_h(in_c, in_h, in_l) * in_c : 1,2,3,4, 5,6,7,8 * in_h : 1,2,3,4, 1,2,3,4, 5,6,7,8, 5,6,7,8 * in_l : 200, 300, 400, 500, 2000, 3000, 4000, 5000, * -200,-300,-400,-500, -2000,-3000,-4000,-5000 * out : 201, 602,1203,2004, -995, -1794,-2793,-3992 * ============================================================================= */ static inline __m256i __lasx_xvmaddwl_w_h(__m256i in_c, __m256i in_h, __m256i in_l) { __m256i tmp0, tmp1, out; tmp0 = __lasx_xvsllwil_w_h(in_h, 0); tmp1 = __lasx_xvsllwil_w_h(in_l, 0); tmp0 = __lasx_xvmul_w(tmp0, tmp1); out = __lasx_xvadd_w(tmp0, in_c); return out; } /* * ============================================================================= * Description : Multiplication and addition calculation after expansion * of the higher half of the vector. * Arguments : Inputs - in_c, in_h, in_l * Output - out * Details : The in_h vector and the in_l vector are multiplied after * the higher half of the two-fold sign extension (signed * halfword to signed word), and the result is added to * the vector in_c, then stored to the out vector. * Example : See out = __lasx_xvmaddwl_w_h(in_c, in_h, in_l) * ============================================================================= */ static inline __m256i __lasx_xvmaddwh_w_h(__m256i in_c, __m256i in_h, __m256i in_l) { __m256i tmp0, tmp1, out; tmp0 = __lasx_xvilvh_h(in_h, in_h); tmp1 = __lasx_xvilvh_h(in_l, in_l); tmp0 = __lasx_xvmulwev_w_h(tmp0, tmp1); out = __lasx_xvadd_w(tmp0, in_c); return out; } /* * ============================================================================= * Description : Multiplication calculation after expansion of the lower * half of the vector. * Arguments : Inputs - in_h, in_l * Output - out * Details : The in_h vector and the in_l vector are multiplied after * the lower half of the two-fold sign extension (signed * halfword to signed word), then stored to the out vector. * Example : out = __lasx_xvmulwl_w_h(in_h, in_l) * in_h : 3,-1,3,0, 0,0,0,-1, 0,0,1,-1, 0,0,0,1 * in_l : 2,-1,1,2, 1,0,0, 0, 0,0,1, 0, 1,0,0,1 * out : 6,1,3,0, 0,0,1,0 * ============================================================================= */ static inline __m256i __lasx_xvmulwl_w_h(__m256i in_h, __m256i in_l) { __m256i tmp0, tmp1, out; tmp0 = __lasx_xvsllwil_w_h(in_h, 0); tmp1 = __lasx_xvsllwil_w_h(in_l, 0); out = __lasx_xvmul_w(tmp0, tmp1); return out; } /* * ============================================================================= * Description : Multiplication calculation after expansion of the lower * half of the vector. * Arguments : Inputs - in_h, in_l * Output - out * Details : The in_h vector and the in_l vector are multiplied after * the lower half of the two-fold sign extension (signed * halfword to signed word), then stored to the out vector. * Example : out = __lasx_xvmulwh_w_h(in_h, in_l) * in_h : 3,-1,3,0, 0,0,0,-1, 0,0,1,-1, 0,0,0,1 * in_l : 2,-1,1,2, 1,0,0, 0, 0,0,1, 0, 1,0,0,1 * out : 0,0,0,0, 0,0,0,1 * ============================================================================= */ static inline __m256i __lasx_xvmulwh_w_h(__m256i in_h, __m256i in_l) { __m256i tmp0, tmp1, out; tmp0 = __lasx_xvilvh_h(in_h, in_h); tmp1 = __lasx_xvilvh_h(in_l, in_l); out = __lasx_xvmulwev_w_h(tmp0, tmp1); return out; } /* * ============================================================================= * Description : The low half of the vector elements are added to the high half * after being doubled, then saturated. * Arguments : Inputs - in_h, in_l * Output - out * Details : The in_h vector adds the in_l vector after the lower half of * the two-fold zero extension (unsigned byte to unsigned * halfword) and then saturated. The results are stored to the out * vector. * Example : out = __lasx_xvsaddw_hu_hu_bu(in_h, in_l) * in_h : 2,65532,1,2, 1,0,0,0, 0,0,1,0, 1,0,0,1 * in_l : 3,6,3,0, 0,0,0,1, 0,0,1,1, 0,0,0,1, 3,18,3,0, 0,0,0,1, 0,0,1,1, * 0,0,0,1 * out : 5,65535,4,2, 1,0,0,1, 3,18,4,0, 1,0,0,2, * ============================================================================= */ static inline __m256i __lasx_xvsaddw_hu_hu_bu(__m256i in_h, __m256i in_l) { __m256i tmp1, out; __m256i zero = { 0 }; tmp1 = __lasx_xvilvl_b(zero, in_l); out = __lasx_xvsadd_hu(in_h, tmp1); return out; } /* * ============================================================================= * Description : Clip all halfword elements of input vector between min & max * out = ((in) < (min)) ? (min) : (((in) > (max)) ? (max) : (in)) * Arguments : Inputs - in (input vector) * - min (min threshold) * - max (max threshold) * Outputs - in (output vector with clipped elements) * Return Type - signed halfword * Example : out = __lasx_xvclip_h(in, min, max) * in : -8,2,280,249, -8,255,280,249, 4,4,4,4, 5,5,5,5 * min : 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1 * max : 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9 * out : 1,2,9,9, 1,9,9,9, 4,4,4,4, 5,5,5,5 * ============================================================================= */ static inline __m256i __lasx_xvclip_h(__m256i in, __m256i min, __m256i max) { __m256i out; out = __lasx_xvmax_h(min, in); out = __lasx_xvmin_h(max, out); return out; } /* * ============================================================================= * Description : Clip all signed halfword elements of input vector * between 0 & 255 * Arguments : Inputs - in (input vector) * Outputs - out (output vector with clipped elements) * Return Type - signed halfword * Example : See out = __lasx_xvclip255_w(in) * ============================================================================= */ static inline __m256i __lasx_xvclip255_h(__m256i in) { __m256i out; out = __lasx_xvmaxi_h(in, 0); out = __lasx_xvsat_hu(out, 7); return out; } /* * ============================================================================= * Description : Clip all signed word elements of input vector * between 0 & 255 * Arguments : Inputs - in (input vector) * Output - out (output vector with clipped elements) * Return Type - signed word * Example : out = __lasx_xvclip255_w(in) * in : -8,255,280,249, -8,255,280,249 * out : 0,255,255,249, 0,255,255,249 * ============================================================================= */ static inline __m256i __lasx_xvclip255_w(__m256i in) { __m256i out; out = __lasx_xvmaxi_w(in, 0); out = __lasx_xvsat_wu(out, 7); return out; } /* * ============================================================================= * Description : Indexed halfword element values are replicated to all * elements in output vector. If 'idx < 8' use xvsplati_l_*, * if 'idx >= 8' use xvsplati_h_*. * Arguments : Inputs - in, idx * Output - out * Details : Idx element value from in vector is replicated to all * elements in out vector. * Valid index range for halfword operation is 0-7 * Example : out = __lasx_xvsplati_l_h(in, idx) * in : 20,10,11,12, 13,14,15,16, 0,0,2,0, 0,0,0,0 * idx : 0x02 * out : 11,11,11,11, 11,11,11,11, 11,11,11,11, 11,11,11,11 * ============================================================================= */ static inline __m256i __lasx_xvsplati_l_h(__m256i in, int idx) { __m256i out; out = __lasx_xvpermi_q(in, in, 0x02); out = __lasx_xvreplve_h(out, idx); return out; } /* * ============================================================================= * Description : Indexed halfword element values are replicated to all * elements in output vector. If 'idx < 8' use xvsplati_l_*, * if 'idx >= 8' use xvsplati_h_*. * Arguments : Inputs - in, idx * Output - out * Details : Idx element value from in vector is replicated to all * elements in out vector. * Valid index range for halfword operation is 0-7 * Example : out = __lasx_xvsplati_h_h(in, idx) * in : 20,10,11,12, 13,14,15,16, 0,2,0,0, 0,0,0,0 * idx : 0x09 * out : 2,2,2,2, 2,2,2,2, 2,2,2,2, 2,2,2,2 * ============================================================================= */ static inline __m256i __lasx_xvsplati_h_h(__m256i in, int idx) { __m256i out; out = __lasx_xvpermi_q(in, in, 0x13); out = __lasx_xvreplve_h(out, idx); return out; } /* * ============================================================================= * Description : Transpose 4x4 block with double-word elements in vectors * Arguments : Inputs - _in0, _in1, _in2, _in3 * Outputs - _out0, _out1, _out2, _out3 * Example : LASX_TRANSPOSE4x4_D * _in0 : 1,2,3,4 * _in1 : 1,2,3,4 * _in2 : 1,2,3,4 * _in3 : 1,2,3,4 * * _out0 : 1,1,1,1 * _out1 : 2,2,2,2 * _out2 : 3,3,3,3 * _out3 : 4,4,4,4 * ============================================================================= */ #define LASX_TRANSPOSE4x4_D(_in0, _in1, _in2, _in3, _out0, _out1, _out2, \ _out3) \ { \ __m256i _tmp0, _tmp1, _tmp2, _tmp3; \ _tmp0 = __lasx_xvilvl_d(_in1, _in0); \ _tmp1 = __lasx_xvilvh_d(_in1, _in0); \ _tmp2 = __lasx_xvilvl_d(_in3, _in2); \ _tmp3 = __lasx_xvilvh_d(_in3, _in2); \ _out0 = __lasx_xvpermi_q(_tmp2, _tmp0, 0x20); \ _out2 = __lasx_xvpermi_q(_tmp2, _tmp0, 0x31); \ _out1 = __lasx_xvpermi_q(_tmp3, _tmp1, 0x20); \ _out3 = __lasx_xvpermi_q(_tmp3, _tmp1, 0x31); \ } /* * ============================================================================= * Description : Transpose 8x8 block with word elements in vectors * Arguments : Inputs - _in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7 * Outputs - _out0, _out1, _out2, _out3, _out4, _out5, _out6, * _out7 * Example : LASX_TRANSPOSE8x8_W * _in0 : 1,2,3,4,5,6,7,8 * _in1 : 2,2,3,4,5,6,7,8 * _in2 : 3,2,3,4,5,6,7,8 * _in3 : 4,2,3,4,5,6,7,8 * _in4 : 5,2,3,4,5,6,7,8 * _in5 : 6,2,3,4,5,6,7,8 * _in6 : 7,2,3,4,5,6,7,8 * _in7 : 8,2,3,4,5,6,7,8 * * _out0 : 1,2,3,4,5,6,7,8 * _out1 : 2,2,2,2,2,2,2,2 * _out2 : 3,3,3,3,3,3,3,3 * _out3 : 4,4,4,4,4,4,4,4 * _out4 : 5,5,5,5,5,5,5,5 * _out5 : 6,6,6,6,6,6,6,6 * _out6 : 7,7,7,7,7,7,7,7 * _out7 : 8,8,8,8,8,8,8,8 * ============================================================================= */ #define LASX_TRANSPOSE8x8_W(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \ _out0, _out1, _out2, _out3, _out4, _out5, _out6, \ _out7) \ { \ __m256i _s0_m, _s1_m; \ __m256i _tmp0_m, _tmp1_m, _tmp2_m, _tmp3_m; \ __m256i _tmp4_m, _tmp5_m, _tmp6_m, _tmp7_m; \ \ _s0_m = __lasx_xvilvl_w(_in2, _in0); \ _s1_m = __lasx_xvilvl_w(_in3, _in1); \ _tmp0_m = __lasx_xvilvl_w(_s1_m, _s0_m); \ _tmp1_m = __lasx_xvilvh_w(_s1_m, _s0_m); \ _s0_m = __lasx_xvilvh_w(_in2, _in0); \ _s1_m = __lasx_xvilvh_w(_in3, _in1); \ _tmp2_m = __lasx_xvilvl_w(_s1_m, _s0_m); \ _tmp3_m = __lasx_xvilvh_w(_s1_m, _s0_m); \ _s0_m = __lasx_xvilvl_w(_in6, _in4); \ _s1_m = __lasx_xvilvl_w(_in7, _in5); \ _tmp4_m = __lasx_xvilvl_w(_s1_m, _s0_m); \ _tmp5_m = __lasx_xvilvh_w(_s1_m, _s0_m); \ _s0_m = __lasx_xvilvh_w(_in6, _in4); \ _s1_m = __lasx_xvilvh_w(_in7, _in5); \ _tmp6_m = __lasx_xvilvl_w(_s1_m, _s0_m); \ _tmp7_m = __lasx_xvilvh_w(_s1_m, _s0_m); \ _out0 = __lasx_xvpermi_q(_tmp4_m, _tmp0_m, 0x20); \ _out1 = __lasx_xvpermi_q(_tmp5_m, _tmp1_m, 0x20); \ _out2 = __lasx_xvpermi_q(_tmp6_m, _tmp2_m, 0x20); \ _out3 = __lasx_xvpermi_q(_tmp7_m, _tmp3_m, 0x20); \ _out4 = __lasx_xvpermi_q(_tmp4_m, _tmp0_m, 0x31); \ _out5 = __lasx_xvpermi_q(_tmp5_m, _tmp1_m, 0x31); \ _out6 = __lasx_xvpermi_q(_tmp6_m, _tmp2_m, 0x31); \ _out7 = __lasx_xvpermi_q(_tmp7_m, _tmp3_m, 0x31); \ } /* * ============================================================================= * Description : Transpose input 16x8 byte block * Arguments : Inputs - _in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, * _in8, _in9, _in10, _in11, _in12, _in13, _in14, _in15 * (input 16x8 byte block) * Outputs - _out0, _out1, _out2, _out3, _out4, _out5, _out6, * _out7 (output 8x16 byte block) * Details : The rows of the matrix become columns, and the columns become * rows. * Example : See LASX_TRANSPOSE16x8_H * ============================================================================= */ #define LASX_TRANSPOSE16x8_B(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \ _in8, _in9, _in10, _in11, _in12, _in13, _in14, \ _in15, _out0, _out1, _out2, _out3, _out4, _out5, \ _out6, _out7) \ { \ __m256i _tmp0_m, _tmp1_m, _tmp2_m, _tmp3_m; \ __m256i _tmp4_m, _tmp5_m, _tmp6_m, _tmp7_m; \ \ _tmp0_m = __lasx_xvilvl_b(_in2, _in0); \ _tmp1_m = __lasx_xvilvl_b(_in3, _in1); \ _tmp2_m = __lasx_xvilvl_b(_in6, _in4); \ _tmp3_m = __lasx_xvilvl_b(_in7, _in5); \ _tmp4_m = __lasx_xvilvl_b(_in10, _in8); \ _tmp5_m = __lasx_xvilvl_b(_in11, _in9); \ _tmp6_m = __lasx_xvilvl_b(_in14, _in12); \ _tmp7_m = __lasx_xvilvl_b(_in15, _in13); \ _out0 = __lasx_xvilvl_b(_tmp1_m, _tmp0_m); \ _out1 = __lasx_xvilvh_b(_tmp1_m, _tmp0_m); \ _out2 = __lasx_xvilvl_b(_tmp3_m, _tmp2_m); \ _out3 = __lasx_xvilvh_b(_tmp3_m, _tmp2_m); \ _out4 = __lasx_xvilvl_b(_tmp5_m, _tmp4_m); \ _out5 = __lasx_xvilvh_b(_tmp5_m, _tmp4_m); \ _out6 = __lasx_xvilvl_b(_tmp7_m, _tmp6_m); \ _out7 = __lasx_xvilvh_b(_tmp7_m, _tmp6_m); \ _tmp0_m = __lasx_xvilvl_w(_out2, _out0); \ _tmp2_m = __lasx_xvilvh_w(_out2, _out0); \ _tmp4_m = __lasx_xvilvl_w(_out3, _out1); \ _tmp6_m = __lasx_xvilvh_w(_out3, _out1); \ _tmp1_m = __lasx_xvilvl_w(_out6, _out4); \ _tmp3_m = __lasx_xvilvh_w(_out6, _out4); \ _tmp5_m = __lasx_xvilvl_w(_out7, _out5); \ _tmp7_m = __lasx_xvilvh_w(_out7, _out5); \ _out0 = __lasx_xvilvl_d(_tmp1_m, _tmp0_m); \ _out1 = __lasx_xvilvh_d(_tmp1_m, _tmp0_m); \ _out2 = __lasx_xvilvl_d(_tmp3_m, _tmp2_m); \ _out3 = __lasx_xvilvh_d(_tmp3_m, _tmp2_m); \ _out4 = __lasx_xvilvl_d(_tmp5_m, _tmp4_m); \ _out5 = __lasx_xvilvh_d(_tmp5_m, _tmp4_m); \ _out6 = __lasx_xvilvl_d(_tmp7_m, _tmp6_m); \ _out7 = __lasx_xvilvh_d(_tmp7_m, _tmp6_m); \ } /* * ============================================================================= * Description : Transpose input 16x8 byte block * Arguments : Inputs - _in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, * _in8, _in9, _in10, _in11, _in12, _in13, _in14, _in15 * (input 16x8 byte block) * Outputs - _out0, _out1, _out2, _out3, _out4, _out5, _out6, * _out7 (output 8x16 byte block) * Details : The rows of the matrix become columns, and the columns become * rows. * Example : LASX_TRANSPOSE16x8_H * _in0 : 1,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0 * _in1 : 2,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0 * _in2 : 3,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0 * _in3 : 4,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0 * _in4 : 5,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0 * _in5 : 6,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0 * _in6 : 7,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0 * _in7 : 8,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0 * _in8 : 9,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0 * _in9 : 1,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0 * _in10 : 0,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0 * _in11 : 2,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0 * _in12 : 3,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0 * _in13 : 7,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0 * _in14 : 5,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0 * _in15 : 6,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0 * * _out0 : 1,2,3,4,5,6,7,8,9,1,0,2,3,7,5,6 * _out1 : 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 * _out2 : 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 * _out3 : 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 * _out4 : 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5 * _out5 : 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6 * _out6 : 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7 * _out7 : 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8 * ============================================================================= */ #define LASX_TRANSPOSE16x8_H(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \ _in8, _in9, _in10, _in11, _in12, _in13, _in14, \ _in15, _out0, _out1, _out2, _out3, _out4, _out5, \ _out6, _out7) \ { \ __m256i _tmp0_m, _tmp1_m, _tmp2_m, _tmp3_m; \ __m256i _tmp4_m, _tmp5_m, _tmp6_m, _tmp7_m; \ __m256i _t0, _t1, _t2, _t3, _t4, _t5, _t6, _t7; \ \ _tmp0_m = __lasx_xvilvl_h(_in2, _in0); \ _tmp1_m = __lasx_xvilvl_h(_in3, _in1); \ _tmp2_m = __lasx_xvilvl_h(_in6, _in4); \ _tmp3_m = __lasx_xvilvl_h(_in7, _in5); \ _tmp4_m = __lasx_xvilvl_h(_in10, _in8); \ _tmp5_m = __lasx_xvilvl_h(_in11, _in9); \ _tmp6_m = __lasx_xvilvl_h(_in14, _in12); \ _tmp7_m = __lasx_xvilvl_h(_in15, _in13); \ _t0 = __lasx_xvilvl_h(_tmp1_m, _tmp0_m); \ _t1 = __lasx_xvilvh_h(_tmp1_m, _tmp0_m); \ _t2 = __lasx_xvilvl_h(_tmp3_m, _tmp2_m); \ _t3 = __lasx_xvilvh_h(_tmp3_m, _tmp2_m); \ _t4 = __lasx_xvilvl_h(_tmp5_m, _tmp4_m); \ _t5 = __lasx_xvilvh_h(_tmp5_m, _tmp4_m); \ _t6 = __lasx_xvilvl_h(_tmp7_m, _tmp6_m); \ _t7 = __lasx_xvilvh_h(_tmp7_m, _tmp6_m); \ _tmp0_m = __lasx_xvilvl_d(_t2, _t0); \ _tmp2_m = __lasx_xvilvh_d(_t2, _t0); \ _tmp4_m = __lasx_xvilvl_d(_t3, _t1); \ _tmp6_m = __lasx_xvilvh_d(_t3, _t1); \ _tmp1_m = __lasx_xvilvl_d(_t6, _t4); \ _tmp3_m = __lasx_xvilvh_d(_t6, _t4); \ _tmp5_m = __lasx_xvilvl_d(_t7, _t5); \ _tmp7_m = __lasx_xvilvh_d(_t7, _t5); \ _out0 = __lasx_xvpermi_q(_tmp1_m, _tmp0_m, 0x20); \ _out1 = __lasx_xvpermi_q(_tmp3_m, _tmp2_m, 0x20); \ _out2 = __lasx_xvpermi_q(_tmp5_m, _tmp4_m, 0x20); \ _out3 = __lasx_xvpermi_q(_tmp7_m, _tmp6_m, 0x20); \ \ _tmp0_m = __lasx_xvilvh_h(_in2, _in0); \ _tmp1_m = __lasx_xvilvh_h(_in3, _in1); \ _tmp2_m = __lasx_xvilvh_h(_in6, _in4); \ _tmp3_m = __lasx_xvilvh_h(_in7, _in5); \ _tmp4_m = __lasx_xvilvh_h(_in10, _in8); \ _tmp5_m = __lasx_xvilvh_h(_in11, _in9); \ _tmp6_m = __lasx_xvilvh_h(_in14, _in12); \ _tmp7_m = __lasx_xvilvh_h(_in15, _in13); \ _t0 = __lasx_xvilvl_h(_tmp1_m, _tmp0_m); \ _t1 = __lasx_xvilvh_h(_tmp1_m, _tmp0_m); \ _t2 = __lasx_xvilvl_h(_tmp3_m, _tmp2_m); \ _t3 = __lasx_xvilvh_h(_tmp3_m, _tmp2_m); \ _t4 = __lasx_xvilvl_h(_tmp5_m, _tmp4_m); \ _t5 = __lasx_xvilvh_h(_tmp5_m, _tmp4_m); \ _t6 = __lasx_xvilvl_h(_tmp7_m, _tmp6_m); \ _t7 = __lasx_xvilvh_h(_tmp7_m, _tmp6_m); \ _tmp0_m = __lasx_xvilvl_d(_t2, _t0); \ _tmp2_m = __lasx_xvilvh_d(_t2, _t0); \ _tmp4_m = __lasx_xvilvl_d(_t3, _t1); \ _tmp6_m = __lasx_xvilvh_d(_t3, _t1); \ _tmp1_m = __lasx_xvilvl_d(_t6, _t4); \ _tmp3_m = __lasx_xvilvh_d(_t6, _t4); \ _tmp5_m = __lasx_xvilvl_d(_t7, _t5); \ _tmp7_m = __lasx_xvilvh_d(_t7, _t5); \ _out4 = __lasx_xvpermi_q(_tmp1_m, _tmp0_m, 0x20); \ _out5 = __lasx_xvpermi_q(_tmp3_m, _tmp2_m, 0x20); \ _out6 = __lasx_xvpermi_q(_tmp5_m, _tmp4_m, 0x20); \ _out7 = __lasx_xvpermi_q(_tmp7_m, _tmp6_m, 0x20); \ } /* * ============================================================================= * Description : Transpose 4x4 block with halfword elements in vectors * Arguments : Inputs - _in0, _in1, _in2, _in3 * Outputs - _out0, _out1, _out2, _out3 * Return Type - signed halfword * Details : The rows of the matrix become columns, and the columns become * rows. * Example : See LASX_TRANSPOSE8x8_H * ============================================================================= */ #define LASX_TRANSPOSE4x4_H(_in0, _in1, _in2, _in3, _out0, _out1, _out2, \ _out3) \ { \ __m256i _s0_m, _s1_m; \ \ _s0_m = __lasx_xvilvl_h(_in1, _in0); \ _s1_m = __lasx_xvilvl_h(_in3, _in2); \ _out0 = __lasx_xvilvl_w(_s1_m, _s0_m); \ _out2 = __lasx_xvilvh_w(_s1_m, _s0_m); \ _out1 = __lasx_xvilvh_d(_out0, _out0); \ _out3 = __lasx_xvilvh_d(_out2, _out2); \ } /* * ============================================================================= * Description : Transpose input 8x8 byte block * Arguments : Inputs - _in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7 * (input 8x8 byte block) * Outputs - _out0, _out1, _out2, _out3, _out4, _out5, _out6, * _out7 (output 8x8 byte block) * Example : See LASX_TRANSPOSE8x8_H * ============================================================================= */ #define LASX_TRANSPOSE8x8_B(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \ _out0, _out1, _out2, _out3, _out4, _out5, _out6, \ _out7) \ { \ __m256i _tmp0_m, _tmp1_m, _tmp2_m, _tmp3_m; \ __m256i _tmp4_m, _tmp5_m, _tmp6_m, _tmp7_m; \ _tmp0_m = __lasx_xvilvl_b(_in2, _in0); \ _tmp1_m = __lasx_xvilvl_b(_in3, _in1); \ _tmp2_m = __lasx_xvilvl_b(_in6, _in4); \ _tmp3_m = __lasx_xvilvl_b(_in7, _in5); \ _tmp4_m = __lasx_xvilvl_b(_tmp1_m, _tmp0_m); \ _tmp5_m = __lasx_xvilvh_b(_tmp1_m, _tmp0_m); \ _tmp6_m = __lasx_xvilvl_b(_tmp3_m, _tmp2_m); \ _tmp7_m = __lasx_xvilvh_b(_tmp3_m, _tmp2_m); \ _out0 = __lasx_xvilvl_w(_tmp6_m, _tmp4_m); \ _out2 = __lasx_xvilvh_w(_tmp6_m, _tmp4_m); \ _out4 = __lasx_xvilvl_w(_tmp7_m, _tmp5_m); \ _out6 = __lasx_xvilvh_w(_tmp7_m, _tmp5_m); \ _out1 = __lasx_xvbsrl_v(_out0, 8); \ _out3 = __lasx_xvbsrl_v(_out2, 8); \ _out5 = __lasx_xvbsrl_v(_out4, 8); \ _out7 = __lasx_xvbsrl_v(_out6, 8); \ } /* * ============================================================================= * Description : Transpose 8x8 block with halfword elements in vectors. * Arguments : Inputs - _in0, _in1, ~ * Outputs - _out0, _out1, ~ * Details : The rows of the matrix become columns, and the columns become * rows. * Example : LASX_TRANSPOSE8x8_H * _in0 : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8 * _in1 : 8,2,3,4, 5,6,7,8, 8,2,3,4, 5,6,7,8 * _in2 : 8,2,3,4, 5,6,7,8, 8,2,3,4, 5,6,7,8 * _in3 : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8 * _in4 : 9,2,3,4, 5,6,7,8, 9,2,3,4, 5,6,7,8 * _in5 : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8 * _in6 : 1,2,3,4, 5,6,7,8, 1,2,3,4, 5,6,7,8 * _in7 : 9,2,3,4, 5,6,7,8, 9,2,3,4, 5,6,7,8 * * _out0 : 1,8,8,1, 9,1,1,9, 1,8,8,1, 9,1,1,9 * _out1 : 2,2,2,2, 2,2,2,2, 2,2,2,2, 2,2,2,2 * _out2 : 3,3,3,3, 3,3,3,3, 3,3,3,3, 3,3,3,3 * _out3 : 4,4,4,4, 4,4,4,4, 4,4,4,4, 4,4,4,4 * _out4 : 5,5,5,5, 5,5,5,5, 5,5,5,5, 5,5,5,5 * _out5 : 6,6,6,6, 6,6,6,6, 6,6,6,6, 6,6,6,6 * _out6 : 7,7,7,7, 7,7,7,7, 7,7,7,7, 7,7,7,7 * _out7 : 8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8 * ============================================================================= */ #define LASX_TRANSPOSE8x8_H(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \ _out0, _out1, _out2, _out3, _out4, _out5, _out6, \ _out7) \ { \ __m256i _s0_m, _s1_m; \ __m256i _tmp0_m, _tmp1_m, _tmp2_m, _tmp3_m; \ __m256i _tmp4_m, _tmp5_m, _tmp6_m, _tmp7_m; \ \ _s0_m = __lasx_xvilvl_h(_in6, _in4); \ _s1_m = __lasx_xvilvl_h(_in7, _in5); \ _tmp0_m = __lasx_xvilvl_h(_s1_m, _s0_m); \ _tmp1_m = __lasx_xvilvh_h(_s1_m, _s0_m); \ _s0_m = __lasx_xvilvh_h(_in6, _in4); \ _s1_m = __lasx_xvilvh_h(_in7, _in5); \ _tmp2_m = __lasx_xvilvl_h(_s1_m, _s0_m); \ _tmp3_m = __lasx_xvilvh_h(_s1_m, _s0_m); \ \ _s0_m = __lasx_xvilvl_h(_in2, _in0); \ _s1_m = __lasx_xvilvl_h(_in3, _in1); \ _tmp4_m = __lasx_xvilvl_h(_s1_m, _s0_m); \ _tmp5_m = __lasx_xvilvh_h(_s1_m, _s0_m); \ _s0_m = __lasx_xvilvh_h(_in2, _in0); \ _s1_m = __lasx_xvilvh_h(_in3, _in1); \ _tmp6_m = __lasx_xvilvl_h(_s1_m, _s0_m); \ _tmp7_m = __lasx_xvilvh_h(_s1_m, _s0_m); \ \ _out0 = __lasx_xvpickev_d(_tmp0_m, _tmp4_m); \ _out2 = __lasx_xvpickev_d(_tmp1_m, _tmp5_m); \ _out4 = __lasx_xvpickev_d(_tmp2_m, _tmp6_m); \ _out6 = __lasx_xvpickev_d(_tmp3_m, _tmp7_m); \ _out1 = __lasx_xvpickod_d(_tmp0_m, _tmp4_m); \ _out3 = __lasx_xvpickod_d(_tmp1_m, _tmp5_m); \ _out5 = __lasx_xvpickod_d(_tmp2_m, _tmp6_m); \ _out7 = __lasx_xvpickod_d(_tmp3_m, _tmp7_m); \ } /* * ============================================================================= * Description : Butterfly of 4 input vectors * Arguments : Inputs - _in0, _in1, _in2, _in3 * Outputs - _out0, _out1, _out2, _out3 * Details : Butterfly operation * Example : LASX_BUTTERFLY_4 * _out0 = _in0 + _in3; * _out1 = _in1 + _in2; * _out2 = _in1 - _in2; * _out3 = _in0 - _in3; * ============================================================================= */ #define LASX_BUTTERFLY_4_B(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \ { \ _out0 = __lasx_xvadd_b(_in0, _in3); \ _out1 = __lasx_xvadd_b(_in1, _in2); \ _out2 = __lasx_xvsub_b(_in1, _in2); \ _out3 = __lasx_xvsub_b(_in0, _in3); \ } #define LASX_BUTTERFLY_4_H(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \ { \ _out0 = __lasx_xvadd_h(_in0, _in3); \ _out1 = __lasx_xvadd_h(_in1, _in2); \ _out2 = __lasx_xvsub_h(_in1, _in2); \ _out3 = __lasx_xvsub_h(_in0, _in3); \ } #define LASX_BUTTERFLY_4_W(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \ { \ _out0 = __lasx_xvadd_w(_in0, _in3); \ _out1 = __lasx_xvadd_w(_in1, _in2); \ _out2 = __lasx_xvsub_w(_in1, _in2); \ _out3 = __lasx_xvsub_w(_in0, _in3); \ } #define LASX_BUTTERFLY_4_D(_in0, _in1, _in2, _in3, _out0, _out1, _out2, _out3) \ { \ _out0 = __lasx_xvadd_d(_in0, _in3); \ _out1 = __lasx_xvadd_d(_in1, _in2); \ _out2 = __lasx_xvsub_d(_in1, _in2); \ _out3 = __lasx_xvsub_d(_in0, _in3); \ } /* * ============================================================================= * Description : Butterfly of 8 input vectors * Arguments : Inputs - _in0, _in1, _in2, _in3, ~ * Outputs - _out0, _out1, _out2, _out3, ~ * Details : Butterfly operation * Example : LASX_BUTTERFLY_8 * _out0 = _in0 + _in7; * _out1 = _in1 + _in6; * _out2 = _in2 + _in5; * _out3 = _in3 + _in4; * _out4 = _in3 - _in4; * _out5 = _in2 - _in5; * _out6 = _in1 - _in6; * _out7 = _in0 - _in7; * ============================================================================= */ #define LASX_BUTTERFLY_8_B(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \ _out0, _out1, _out2, _out3, _out4, _out5, _out6, \ _out7) \ { \ _out0 = __lasx_xvadd_b(_in0, _in7); \ _out1 = __lasx_xvadd_b(_in1, _in6); \ _out2 = __lasx_xvadd_b(_in2, _in5); \ _out3 = __lasx_xvadd_b(_in3, _in4); \ _out4 = __lasx_xvsub_b(_in3, _in4); \ _out5 = __lasx_xvsub_b(_in2, _in5); \ _out6 = __lasx_xvsub_b(_in1, _in6); \ _out7 = __lasx_xvsub_b(_in0, _in7); \ } #define LASX_BUTTERFLY_8_H(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \ _out0, _out1, _out2, _out3, _out4, _out5, _out6, \ _out7) \ { \ _out0 = __lasx_xvadd_h(_in0, _in7); \ _out1 = __lasx_xvadd_h(_in1, _in6); \ _out2 = __lasx_xvadd_h(_in2, _in5); \ _out3 = __lasx_xvadd_h(_in3, _in4); \ _out4 = __lasx_xvsub_h(_in3, _in4); \ _out5 = __lasx_xvsub_h(_in2, _in5); \ _out6 = __lasx_xvsub_h(_in1, _in6); \ _out7 = __lasx_xvsub_h(_in0, _in7); \ } #define LASX_BUTTERFLY_8_W(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \ _out0, _out1, _out2, _out3, _out4, _out5, _out6, \ _out7) \ { \ _out0 = __lasx_xvadd_w(_in0, _in7); \ _out1 = __lasx_xvadd_w(_in1, _in6); \ _out2 = __lasx_xvadd_w(_in2, _in5); \ _out3 = __lasx_xvadd_w(_in3, _in4); \ _out4 = __lasx_xvsub_w(_in3, _in4); \ _out5 = __lasx_xvsub_w(_in2, _in5); \ _out6 = __lasx_xvsub_w(_in1, _in6); \ _out7 = __lasx_xvsub_w(_in0, _in7); \ } #define LASX_BUTTERFLY_8_D(_in0, _in1, _in2, _in3, _in4, _in5, _in6, _in7, \ _out0, _out1, _out2, _out3, _out4, _out5, _out6, \ _out7) \ { \ _out0 = __lasx_xvadd_d(_in0, _in7); \ _out1 = __lasx_xvadd_d(_in1, _in6); \ _out2 = __lasx_xvadd_d(_in2, _in5); \ _out3 = __lasx_xvadd_d(_in3, _in4); \ _out4 = __lasx_xvsub_d(_in3, _in4); \ _out5 = __lasx_xvsub_d(_in2, _in5); \ _out6 = __lasx_xvsub_d(_in1, _in6); \ _out7 = __lasx_xvsub_d(_in0, _in7); \ } #endif // LASX /* * ============================================================================= * Description : Print out elements in vector. * Arguments : Inputs - RTYPE, _element_num, _in0, _enter * Outputs - * Details : Print out '_element_num' elements in 'RTYPE' vector '_in0', if * '_enter' is TRUE, prefix "\nVP:" will be added first. * Example : VECT_PRINT(v4i32,4,in0,1); // in0: 1,2,3,4 * VP:1,2,3,4, * ============================================================================= */ #define VECT_PRINT(RTYPE, element_num, in0, enter) \ { \ RTYPE _tmp0 = (RTYPE)in0; \ int _i = 0; \ if (enter) printf("\nVP:"); \ for (_i = 0; _i < element_num; _i++) printf("%d,", _tmp0[_i]); \ } #endif /* LOONGSON_INTRINSICS_H */ #endif /* AVUTIL_LOONGARCH_LOONGSON_INTRINSICS_H */