/* * Copyright (c) 2015 Ronald S. Bultje * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with FFmpeg; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include "checkasm.h" #include "libavcodec/vp9data.h" #include "libavcodec/vp9.h" #include "libavutil/common.h" #include "libavutil/internal.h" #include "libavutil/intreadwrite.h" #include "libavutil/mathematics.h" #include "libavutil/mem_internal.h" static const uint32_t pixel_mask[3] = { 0xffffffff, 0x03ff03ff, 0x0fff0fff }; #define SIZEOF_PIXEL ((bit_depth + 7) / 8) #define randomize_buffers() \ do { \ uint32_t mask = pixel_mask[(bit_depth - 8) >> 1]; \ int k; \ for (k = -4; k < SIZEOF_PIXEL * FFMAX(8, size); k += 4) { \ uint32_t r = rnd() & mask; \ AV_WN32A(a + k, r); \ } \ for (k = 0; k < size * SIZEOF_PIXEL; k += 4) { \ uint32_t r = rnd() & mask; \ AV_WN32A(l + k, r); \ } \ } while (0) static void check_ipred(void) { LOCAL_ALIGNED_32(uint8_t, a_buf, [64 * 2]); uint8_t *a = &a_buf[32 * 2]; LOCAL_ALIGNED_32(uint8_t, l, [32 * 2]); LOCAL_ALIGNED_32(uint8_t, dst0, [32 * 32 * 2]); LOCAL_ALIGNED_32(uint8_t, dst1, [32 * 32 * 2]); VP9DSPContext dsp; int tx, mode, bit_depth; declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT, void, uint8_t *dst, ptrdiff_t stride, const uint8_t *left, const uint8_t *top); static const char *const mode_names[N_INTRA_PRED_MODES] = { [VERT_PRED] = "vert", [HOR_PRED] = "hor", [DC_PRED] = "dc", [DIAG_DOWN_LEFT_PRED] = "diag_downleft", [DIAG_DOWN_RIGHT_PRED] = "diag_downright", [VERT_RIGHT_PRED] = "vert_right", [HOR_DOWN_PRED] = "hor_down", [VERT_LEFT_PRED] = "vert_left", [HOR_UP_PRED] = "hor_up", [TM_VP8_PRED] = "tm", [LEFT_DC_PRED] = "dc_left", [TOP_DC_PRED] = "dc_top", [DC_128_PRED] = "dc_128", [DC_127_PRED] = "dc_127", [DC_129_PRED] = "dc_129", }; for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) { ff_vp9dsp_init(&dsp, bit_depth, 0); for (tx = 0; tx < 4; tx++) { int size = 4 << tx; for (mode = 0; mode < N_INTRA_PRED_MODES; mode++) { if (check_func(dsp.intra_pred[tx][mode], "vp9_%s_%dx%d_%dbpp", mode_names[mode], size, size, bit_depth)) { randomize_buffers(); call_ref(dst0, size * SIZEOF_PIXEL, l, a); call_new(dst1, size * SIZEOF_PIXEL, l, a); if (memcmp(dst0, dst1, size * size * SIZEOF_PIXEL)) fail(); bench_new(dst1, size * SIZEOF_PIXEL,l, a); } } } } report("ipred"); } #undef randomize_buffers #define randomize_buffers() \ do { \ uint32_t mask = pixel_mask[(bit_depth - 8) >> 1]; \ for (y = 0; y < sz; y++) { \ for (x = 0; x < sz * SIZEOF_PIXEL; x += 4) { \ uint32_t r = rnd() & mask; \ AV_WN32A(dst + y * sz * SIZEOF_PIXEL + x, r); \ AV_WN32A(src + y * sz * SIZEOF_PIXEL + x, rnd() & mask); \ } \ for (x = 0; x < sz; x++) { \ if (bit_depth == 8) { \ coef[y * sz + x] = src[y * sz + x] - dst[y * sz + x]; \ } else { \ ((int32_t *) coef)[y * sz + x] = \ ((uint16_t *) src)[y * sz + x] - \ ((uint16_t *) dst)[y * sz + x]; \ } \ } \ } \ } while(0) // wht function copied from libvpx static void fwht_1d(double *out, const double *in, int sz) { double t0 = in[0] + in[1]; double t3 = in[3] - in[2]; double t4 = trunc((t0 - t3) * 0.5); double t1 = t4 - in[1]; double t2 = t4 - in[2]; out[0] = t0 - t2; out[1] = t2; out[2] = t3 + t1; out[3] = t1; } // standard DCT-II static void fdct_1d(double *out, const double *in, int sz) { int k, n; for (k = 0; k < sz; k++) { out[k] = 0.0; for (n = 0; n < sz; n++) out[k] += in[n] * cos(M_PI * (2 * n + 1) * k / (sz * 2.0)); } out[0] *= M_SQRT1_2; } // see "Towards jointly optimal spatial prediction and adaptive transform in // video/image coding", by J. Han, A. Saxena, and K. Rose // IEEE Proc. ICASSP, pp. 726-729, Mar. 2010. static void fadst4_1d(double *out, const double *in, int sz) { int k, n; for (k = 0; k < sz; k++) { out[k] = 0.0; for (n = 0; n < sz; n++) out[k] += in[n] * sin(M_PI * (n + 1) * (2 * k + 1) / (sz * 2.0 + 1.0)); } } // see "A Butterfly Structured Design of The Hybrid Transform Coding Scheme", // by Jingning Han, Yaowu Xu, and Debargha Mukherjee // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41418.pdf static void fadst_1d(double *out, const double *in, int sz) { int k, n; for (k = 0; k < sz; k++) { out[k] = 0.0; for (n = 0; n < sz; n++) out[k] += in[n] * sin(M_PI * (2 * n + 1) * (2 * k + 1) / (sz * 4.0)); } } typedef void (*ftx1d_fn)(double *out, const double *in, int sz); static void ftx_2d(double *out, const double *in, enum TxfmMode tx, enum TxfmType txtp, int sz) { static const double scaling_factors[5][4] = { { 4.0, 16.0 * M_SQRT1_2 / 3.0, 16.0 * M_SQRT1_2 / 3.0, 32.0 / 9.0 }, { 2.0, 2.0, 2.0, 2.0 }, { 1.0, 1.0, 1.0, 1.0 }, { 0.25 }, { 4.0 } }; static const ftx1d_fn ftx1d_tbl[5][4][2] = { { { fdct_1d, fdct_1d }, { fadst4_1d, fdct_1d }, { fdct_1d, fadst4_1d }, { fadst4_1d, fadst4_1d }, }, { { fdct_1d, fdct_1d }, { fadst_1d, fdct_1d }, { fdct_1d, fadst_1d }, { fadst_1d, fadst_1d }, }, { { fdct_1d, fdct_1d }, { fadst_1d, fdct_1d }, { fdct_1d, fadst_1d }, { fadst_1d, fadst_1d }, }, { { fdct_1d, fdct_1d }, }, { { fwht_1d, fwht_1d }, }, }; double temp[1024]; double scaling_factor = scaling_factors[tx][txtp]; int i, j; // cols for (i = 0; i < sz; ++i) { double temp_out[32]; ftx1d_tbl[tx][txtp][0](temp_out, &in[i * sz], sz); // scale and transpose for (j = 0; j < sz; ++j) temp[j * sz + i] = temp_out[j] * scaling_factor; } // rows for (i = 0; i < sz; i++) ftx1d_tbl[tx][txtp][1](&out[i * sz], &temp[i * sz], sz); } static void ftx(int16_t *buf, enum TxfmMode tx, enum TxfmType txtp, int sz, int bit_depth) { double ind[1024], outd[1024]; int n; emms_c(); for (n = 0; n < sz * sz; n++) { if (bit_depth == 8) ind[n] = buf[n]; else ind[n] = ((int32_t *) buf)[n]; } ftx_2d(outd, ind, tx, txtp, sz); for (n = 0; n < sz * sz; n++) { if (bit_depth == 8) buf[n] = lrint(outd[n]); else ((int32_t *) buf)[n] = lrint(outd[n]); } } static int copy_subcoefs(int16_t *out, const int16_t *in, enum TxfmMode tx, enum TxfmType txtp, int sz, int sub, int bit_depth) { // copy the topleft coefficients such that the return value (being the // coefficient scantable index for the eob token) guarantees that only // the topleft $sub out of $sz (where $sz >= $sub) coefficients in both // dimensions are non-zero. This leads to braching to specific optimized // simd versions (e.g. dc-only) so that we get full asm coverage in this // test int n; const int16_t *scan = ff_vp9_scans[tx][txtp]; int eob; for (n = 0; n < sz * sz; n++) { int rc = scan[n], rcx = rc % sz, rcy = rc / sz; // find eob for this sub-idct if (rcx >= sub || rcy >= sub) break; // copy coef if (bit_depth == 8) { out[rc] = in[rc]; } else { AV_COPY32(&out[rc * 2], &in[rc * 2]); } } eob = n; for (; n < sz * sz; n++) { int rc = scan[n]; // zero if (bit_depth == 8) { out[rc] = 0; } else { AV_ZERO32(&out[rc * 2]); } } return eob; } static int is_zero(const int16_t *c, int sz) { int n; for (n = 0; n < sz / sizeof(int16_t); n += 2) if (AV_RN32A(&c[n])) return 0; return 1; } #define SIZEOF_COEF (2 * ((bit_depth + 7) / 8)) static void check_itxfm(void) { LOCAL_ALIGNED_32(uint8_t, src, [32 * 32 * 2]); LOCAL_ALIGNED_32(uint8_t, dst, [32 * 32 * 2]); LOCAL_ALIGNED_32(uint8_t, dst0, [32 * 32 * 2]); LOCAL_ALIGNED_32(uint8_t, dst1, [32 * 32 * 2]); LOCAL_ALIGNED_32(int16_t, coef, [32 * 32 * 2]); LOCAL_ALIGNED_32(int16_t, subcoef0, [32 * 32 * 2]); LOCAL_ALIGNED_32(int16_t, subcoef1, [32 * 32 * 2]); declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT, void, uint8_t *dst, ptrdiff_t stride, int16_t *block, int eob); VP9DSPContext dsp; int y, x, tx, txtp, bit_depth, sub; static const char *const txtp_types[N_TXFM_TYPES] = { [DCT_DCT] = "dct_dct", [DCT_ADST] = "adst_dct", [ADST_DCT] = "dct_adst", [ADST_ADST] = "adst_adst" }; for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) { ff_vp9dsp_init(&dsp, bit_depth, 0); for (tx = TX_4X4; tx <= N_TXFM_SIZES /* 4 = lossless */; tx++) { int sz = 4 << (tx & 3); int n_txtps = tx < TX_32X32 ? N_TXFM_TYPES : 1; for (txtp = 0; txtp < n_txtps; txtp++) { // skip testing sub-IDCTs for WHT or ADST since they don't // implement it in any of the SIMD functions. If they do, // consider changing this to ensure we have complete test // coverage. Test sub=1 for dc-only, then 2, 4, 8, 12, etc, // since the arm version can distinguish them at that level. for (sub = (txtp == 0 && tx < 4) ? 1 : sz; sub <= sz; sub < 4 ? (sub <<= 1) : (sub += 4)) { if (check_func(dsp.itxfm_add[tx][txtp], "vp9_inv_%s_%dx%d_sub%d_add_%d", tx == 4 ? "wht_wht" : txtp_types[txtp], sz, sz, sub, bit_depth)) { int eob; randomize_buffers(); ftx(coef, tx, txtp, sz, bit_depth); if (sub < sz) { eob = copy_subcoefs(subcoef0, coef, tx, txtp, sz, sub, bit_depth); } else { eob = sz * sz; memcpy(subcoef0, coef, sz * sz * SIZEOF_COEF); } memcpy(dst0, dst, sz * sz * SIZEOF_PIXEL); memcpy(dst1, dst, sz * sz * SIZEOF_PIXEL); memcpy(subcoef1, subcoef0, sz * sz * SIZEOF_COEF); call_ref(dst0, sz * SIZEOF_PIXEL, subcoef0, eob); call_new(dst1, sz * SIZEOF_PIXEL, subcoef1, eob); if (memcmp(dst0, dst1, sz * sz * SIZEOF_PIXEL) || !is_zero(subcoef0, sz * sz * SIZEOF_COEF) || !is_zero(subcoef1, sz * sz * SIZEOF_COEF)) fail(); bench_new(dst, sz * SIZEOF_PIXEL, coef, eob); } } } } } report("itxfm"); } #undef randomize_buffers #define setpx(a,b,c) \ do { \ if (SIZEOF_PIXEL == 1) { \ buf0[(a) + (b) * jstride] = av_clip_uint8(c); \ } else { \ ((uint16_t *)buf0)[(a) + (b) * jstride] = av_clip_uintp2(c, bit_depth); \ } \ } while (0) // c can be an assignment and must not be put under () #define setdx(a,b,c,d) setpx(a,b,c-(d)+(rnd()%((d)*2+1))) #define setsx(a,b,c,d) setdx(a,b,c,(d) << (bit_depth - 8)) static void randomize_loopfilter_buffers(int bidx, int lineoff, int str, int bit_depth, int dir, const int *E, const int *F, const int *H, const int *I, uint8_t *buf0, uint8_t *buf1) { uint32_t mask = (1 << bit_depth) - 1; int off = dir ? lineoff : lineoff * 16; int istride = dir ? 1 : 16; int jstride = dir ? str : 1; int i, j; for (i = 0; i < 2; i++) /* flat16 */ { int idx = off + i * istride, p0, q0; setpx(idx, 0, q0 = rnd() & mask); setsx(idx, -1, p0 = q0, E[bidx] >> 2); for (j = 1; j < 8; j++) { setsx(idx, -1 - j, p0, F[bidx]); setsx(idx, j, q0, F[bidx]); } } for (i = 2; i < 4; i++) /* flat8 */ { int idx = off + i * istride, p0, q0; setpx(idx, 0, q0 = rnd() & mask); setsx(idx, -1, p0 = q0, E[bidx] >> 2); for (j = 1; j < 4; j++) { setsx(idx, -1 - j, p0, F[bidx]); setsx(idx, j, q0, F[bidx]); } for (j = 4; j < 8; j++) { setpx(idx, -1 - j, rnd() & mask); setpx(idx, j, rnd() & mask); } } for (i = 4; i < 6; i++) /* regular */ { int idx = off + i * istride, p2, p1, p0, q0, q1, q2; setpx(idx, 0, q0 = rnd() & mask); setsx(idx, 1, q1 = q0, I[bidx]); setsx(idx, 2, q2 = q1, I[bidx]); setsx(idx, 3, q2, I[bidx]); setsx(idx, -1, p0 = q0, E[bidx] >> 2); setsx(idx, -2, p1 = p0, I[bidx]); setsx(idx, -3, p2 = p1, I[bidx]); setsx(idx, -4, p2, I[bidx]); for (j = 4; j < 8; j++) { setpx(idx, -1 - j, rnd() & mask); setpx(idx, j, rnd() & mask); } } for (i = 6; i < 8; i++) /* off */ { int idx = off + i * istride; for (j = 0; j < 8; j++) { setpx(idx, -1 - j, rnd() & mask); setpx(idx, j, rnd() & mask); } } } #define randomize_buffers(bidx, lineoff, str) \ randomize_loopfilter_buffers(bidx, lineoff, str, bit_depth, dir, \ E, F, H, I, buf0, buf1) static void check_loopfilter(void) { LOCAL_ALIGNED_32(uint8_t, base0, [32 + 16 * 16 * 2]); LOCAL_ALIGNED_32(uint8_t, base1, [32 + 16 * 16 * 2]); VP9DSPContext dsp; int dir, wd, wd2, bit_depth; static const char *const dir_name[2] = { "h", "v" }; static const int E[2] = { 20, 28 }, I[2] = { 10, 16 }; static const int H[2] = { 7, 11 }, F[2] = { 1, 1 }; declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT, void, uint8_t *dst, ptrdiff_t stride, int E, int I, int H); for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) { ff_vp9dsp_init(&dsp, bit_depth, 0); for (dir = 0; dir < 2; dir++) { int midoff = (dir ? 8 * 8 : 8) * SIZEOF_PIXEL; int midoff_aligned = (dir ? 8 * 8 : 16) * SIZEOF_PIXEL; uint8_t *buf0 = base0 + midoff_aligned; uint8_t *buf1 = base1 + midoff_aligned; for (wd = 0; wd < 3; wd++) { // 4/8/16wd_8px if (check_func(dsp.loop_filter_8[wd][dir], "vp9_loop_filter_%s_%d_8_%dbpp", dir_name[dir], 4 << wd, bit_depth)) { randomize_buffers(0, 0, 8); memcpy(buf1 - midoff, buf0 - midoff, 16 * 8 * SIZEOF_PIXEL); call_ref(buf0, 16 * SIZEOF_PIXEL >> dir, E[0], I[0], H[0]); call_new(buf1, 16 * SIZEOF_PIXEL >> dir, E[0], I[0], H[0]); if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 8 * SIZEOF_PIXEL)) fail(); bench_new(buf1, 16 * SIZEOF_PIXEL >> dir, E[0], I[0], H[0]); } } midoff = (dir ? 16 * 8 : 8) * SIZEOF_PIXEL; midoff_aligned = (dir ? 16 * 8 : 16) * SIZEOF_PIXEL; buf0 = base0 + midoff_aligned; buf1 = base1 + midoff_aligned; // 16wd_16px loopfilter if (check_func(dsp.loop_filter_16[dir], "vp9_loop_filter_%s_16_16_%dbpp", dir_name[dir], bit_depth)) { randomize_buffers(0, 0, 16); randomize_buffers(0, 8, 16); memcpy(buf1 - midoff, buf0 - midoff, 16 * 16 * SIZEOF_PIXEL); call_ref(buf0, 16 * SIZEOF_PIXEL, E[0], I[0], H[0]); call_new(buf1, 16 * SIZEOF_PIXEL, E[0], I[0], H[0]); if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 16 * SIZEOF_PIXEL)) fail(); bench_new(buf1, 16 * SIZEOF_PIXEL, E[0], I[0], H[0]); } for (wd = 0; wd < 2; wd++) { for (wd2 = 0; wd2 < 2; wd2++) { // mix2 loopfilter if (check_func(dsp.loop_filter_mix2[wd][wd2][dir], "vp9_loop_filter_mix2_%s_%d%d_16_%dbpp", dir_name[dir], 4 << wd, 4 << wd2, bit_depth)) { randomize_buffers(0, 0, 16); randomize_buffers(1, 8, 16); memcpy(buf1 - midoff, buf0 - midoff, 16 * 16 * SIZEOF_PIXEL); #define M(a) (((a)[1] << 8) | (a)[0]) call_ref(buf0, 16 * SIZEOF_PIXEL, M(E), M(I), M(H)); call_new(buf1, 16 * SIZEOF_PIXEL, M(E), M(I), M(H)); if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 16 * SIZEOF_PIXEL)) fail(); bench_new(buf1, 16 * SIZEOF_PIXEL, M(E), M(I), M(H)); #undef M } } } } } report("loopfilter"); } #undef setsx #undef setpx #undef setdx #undef randomize_buffers #define DST_BUF_SIZE (size * size * SIZEOF_PIXEL) #define SRC_BUF_STRIDE 72 #define SRC_BUF_SIZE ((size + 7) * SRC_BUF_STRIDE * SIZEOF_PIXEL) #define src (buf + 3 * SIZEOF_PIXEL * (SRC_BUF_STRIDE + 1)) #define randomize_buffers() \ do { \ uint32_t mask = pixel_mask[(bit_depth - 8) >> 1]; \ int k; \ for (k = 0; k < SRC_BUF_SIZE; k += 4) { \ uint32_t r = rnd() & mask; \ AV_WN32A(buf + k, r); \ } \ if (op == 1) { \ for (k = 0; k < DST_BUF_SIZE; k += 4) { \ uint32_t r = rnd() & mask; \ AV_WN32A(dst0 + k, r); \ AV_WN32A(dst1 + k, r); \ } \ } \ } while (0) static void check_mc(void) { LOCAL_ALIGNED_32(uint8_t, buf, [72 * 72 * 2]); LOCAL_ALIGNED_32(uint8_t, dst0, [64 * 64 * 2]); LOCAL_ALIGNED_32(uint8_t, dst1, [64 * 64 * 2]); VP9DSPContext dsp; int op, hsize, bit_depth, filter, dx, dy; declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT, void, uint8_t *dst, ptrdiff_t dst_stride, const uint8_t *ref, ptrdiff_t ref_stride, int h, int mx, int my); static const char *const filter_names[4] = { "8tap_smooth", "8tap_regular", "8tap_sharp", "bilin" }; static const char *const subpel_names[2][2] = { { "", "h" }, { "v", "hv" } }; static const char *const op_names[2] = { "put", "avg" }; char str[256]; for (op = 0; op < 2; op++) { for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) { ff_vp9dsp_init(&dsp, bit_depth, 0); for (hsize = 0; hsize < 5; hsize++) { int size = 64 >> hsize; for (filter = 0; filter < 4; filter++) { for (dx = 0; dx < 2; dx++) { for (dy = 0; dy < 2; dy++) { if (dx || dy) { snprintf(str, sizeof(str), "%s_%s_%d%s", op_names[op], filter_names[filter], size, subpel_names[dy][dx]); } else { snprintf(str, sizeof(str), "%s%d", op_names[op], size); } if (check_func(dsp.mc[hsize][filter][op][dx][dy], "vp9_%s_%dbpp", str, bit_depth)) { int mx = dx ? 1 + (rnd() % 14) : 0; int my = dy ? 1 + (rnd() % 14) : 0; randomize_buffers(); call_ref(dst0, size * SIZEOF_PIXEL, src, SRC_BUF_STRIDE * SIZEOF_PIXEL, size, mx, my); call_new(dst1, size * SIZEOF_PIXEL, src, SRC_BUF_STRIDE * SIZEOF_PIXEL, size, mx, my); if (memcmp(dst0, dst1, DST_BUF_SIZE)) fail(); // simd implementations for each filter of subpel // functions are identical if (filter >= 1 && filter <= 2) continue; // 10/12 bpp for bilin are identical if (bit_depth == 12 && filter == 3) continue; bench_new(dst1, size * SIZEOF_PIXEL, src, SRC_BUF_STRIDE * SIZEOF_PIXEL, size, mx, my); } } } } } } } report("mc"); } void checkasm_check_vp9dsp(void) { check_ipred(); check_itxfm(); check_loopfilter(); check_mc(); }