/* * Copyright (c) 2003-2013 Loren Merritt * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110 USA */ /* * tiny_ssim.c * Computes the Structural Similarity Metric between two rawYV12 video files. * original algorithm: * Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, * "Image quality assessment: From error visibility to structural similarity," * IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004. * * To improve speed, this implementation uses the standard approximation of * overlapped 8x8 block sums, rather than the original gaussian weights. */ #include #include #include #include #include #define FFSWAP(type,a,b) do{type SWAP_tmp= b; b= a; a= SWAP_tmp;}while(0) #define FFMIN(a,b) ((a) > (b) ? (b) : (a)) #define BIT_DEPTH 8 #define PIXEL_MAX ((1 << BIT_DEPTH)-1) typedef uint8_t pixel; /**************************************************************************** * structural similarity metric ****************************************************************************/ static void ssim_4x4x2_core( const pixel *pix1, intptr_t stride1, const pixel *pix2, intptr_t stride2, int sums[2][4] ) { int x,y,z; for( z = 0; z < 2; z++ ) { uint32_t s1 = 0, s2 = 0, ss = 0, s12 = 0; for( y = 0; y < 4; y++ ) for( x = 0; x < 4; x++ ) { int a = pix1[x+y*stride1]; int b = pix2[x+y*stride2]; s1 += a; s2 += b; ss += a*a; ss += b*b; s12 += a*b; } sums[z][0] = s1; sums[z][1] = s2; sums[z][2] = ss; sums[z][3] = s12; pix1 += 4; pix2 += 4; } } static float ssim_end1( int s1, int s2, int ss, int s12 ) { /* Maximum value for 10-bit is: ss*64 = (2^10-1)^2*16*4*64 = 4286582784, which will overflow in some cases. * s1*s1, s2*s2, and s1*s2 also obtain this value for edge cases: ((2^10-1)*16*4)^2 = 4286582784. * Maximum value for 9-bit is: ss*64 = (2^9-1)^2*16*4*64 = 1069551616, which will not overflow. */ #if BIT_DEPTH > 9 typedef float type; static const float ssim_c1 = .01*.01*PIXEL_MAX*PIXEL_MAX*64; static const float ssim_c2 = .03*.03*PIXEL_MAX*PIXEL_MAX*64*63; #else typedef int type; static const int ssim_c1 = (int)(.01*.01*PIXEL_MAX*PIXEL_MAX*64 + .5); static const int ssim_c2 = (int)(.03*.03*PIXEL_MAX*PIXEL_MAX*64*63 + .5); #endif type fs1 = s1; type fs2 = s2; type fss = ss; type fs12 = s12; type vars = fss*64 - fs1*fs1 - fs2*fs2; type covar = fs12*64 - fs1*fs2; return (float)(2*fs1*fs2 + ssim_c1) * (float)(2*covar + ssim_c2) / ((float)(fs1*fs1 + fs2*fs2 + ssim_c1) * (float)(vars + ssim_c2)); } static float ssim_end4( int sum0[5][4], int sum1[5][4], int width ) { float ssim = 0.0; int i; for( i = 0; i < width; i++ ) ssim += ssim_end1( sum0[i][0] + sum0[i+1][0] + sum1[i][0] + sum1[i+1][0], sum0[i][1] + sum0[i+1][1] + sum1[i][1] + sum1[i+1][1], sum0[i][2] + sum0[i+1][2] + sum1[i][2] + sum1[i+1][2], sum0[i][3] + sum0[i+1][3] + sum1[i][3] + sum1[i+1][3] ); return ssim; } float ssim_plane( pixel *pix1, intptr_t stride1, pixel *pix2, intptr_t stride2, int width, int height, void *buf, int *cnt ) { int z = 0; int x, y; float ssim = 0.0; int (*sum0)[4] = buf; int (*sum1)[4] = sum0 + (width >> 2) + 3; width >>= 2; height >>= 2; for( y = 1; y < height; y++ ) { for( ; z <= y; z++ ) { FFSWAP( void*, sum0, sum1 ); for( x = 0; x < width; x+=2 ) ssim_4x4x2_core( &pix1[4*(x+z*stride1)], stride1, &pix2[4*(x+z*stride2)], stride2, &sum0[x] ); } for( x = 0; x < width-1; x += 4 ) ssim += ssim_end4( sum0+x, sum1+x, FFMIN(4,width-x-1) ); } // *cnt = (height-1) * (width-1); return ssim / ((height-1) * (width-1)); } uint64_t ssd_plane( const uint8_t *pix1, const uint8_t *pix2, int size ) { uint64_t ssd = 0; int i; for( i=0; i x []\n"); return -1; } f[0] = fopen(argv[1], "rb"); f[1] = fopen(argv[2], "rb"); sscanf(argv[3], "%dx%d", &w, &h); if (w<=0 || h<=0 || w*(int64_t)h >= INT_MAX/3 || 2LL*w+12 >= INT_MAX / sizeof(*temp)) { fprintf(stderr, "Dimensions are too large, or invalid\n"); return -2; } frame_size = w*h*3LL/2; for( i=0; i<2; i++ ) { buf[i] = malloc(frame_size); plane[i][0] = buf[i]; plane[i][1] = plane[i][0] + w*h; plane[i][2] = plane[i][1] + w*h/4; } temp = malloc((2*w+12)*sizeof(*temp)); seek = argc<5 ? 0 : atoi(argv[4]); fseek(f[seek<0], seek < 0 ? -seek : seek, SEEK_SET); for( frames=0;; frames++ ) { uint64_t ssd_one[3]; double ssim_one[3]; if( fread(buf[0], frame_size, 1, f[0]) != 1) break; if( fread(buf[1], frame_size, 1, f[1]) != 1) break; for( i=0; i<3; i++ ) { ssd_one[i] = ssd_plane ( plane[0][i], plane[1][i], w*h>>2*!!i ); ssim_one[i] = ssim_plane( plane[0][i], w>>!!i, plane[1][i], w>>!!i, w>>!!i, h>>!!i, temp, NULL ); ssd[i] += ssd_one[i]; ssim[i] += ssim_one[i]; } printf("Frame %d | ", frames); print_results(ssd_one, ssim_one, 1, w, h); printf(" \r"); fflush(stdout); } if( !frames ) return 0; printf("Total %d frames | ", frames); print_results(ssd, ssim, frames, w, h); printf("\n"); return 0; }