1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
|
/*
* AC-3 encoder float/fixed template
* Copyright (c) 2000 Fabrice Bellard
* Copyright (c) 2006-2011 Justin Ruggles <justin.ruggles@gmail.com>
* Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* AC-3 encoder float/fixed template
*/
#include <stdint.h>
/* prototypes for static functions in ac3enc_fixed.c and ac3enc_float.c */
static void scale_coefficients(AC3EncodeContext *s);
static void apply_window(void *dsp, SampleType *output,
const SampleType *input, const SampleType *window,
unsigned int len);
static int normalize_samples(AC3EncodeContext *s);
static void clip_coefficients(DSPContext *dsp, CoefType *coef, unsigned int len);
static CoefType calc_cpl_coord(CoefSumType energy_ch, CoefSumType energy_cpl);
int AC3_NAME(allocate_sample_buffers)(AC3EncodeContext *s)
{
int ch;
FF_ALLOC_OR_GOTO(s->avctx, s->windowed_samples, AC3_WINDOW_SIZE *
sizeof(*s->windowed_samples), alloc_fail);
FF_ALLOC_OR_GOTO(s->avctx, s->planar_samples, s->channels * sizeof(*s->planar_samples),
alloc_fail);
for (ch = 0; ch < s->channels; ch++) {
FF_ALLOCZ_OR_GOTO(s->avctx, s->planar_samples[ch],
(AC3_FRAME_SIZE+AC3_BLOCK_SIZE) * sizeof(**s->planar_samples),
alloc_fail);
}
return 0;
alloc_fail:
return AVERROR(ENOMEM);
}
/*
* Deinterleave input samples.
* Channels are reordered from Libav's default order to AC-3 order.
*/
static void deinterleave_input_samples(AC3EncodeContext *s,
const SampleType *samples)
{
int ch, i;
/* deinterleave and remap input samples */
for (ch = 0; ch < s->channels; ch++) {
const SampleType *sptr;
int sinc;
/* copy last 256 samples of previous frame to the start of the current frame */
memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_BLOCK_SIZE * s->num_blocks],
AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0]));
/* deinterleave */
sinc = s->channels;
sptr = samples + s->channel_map[ch];
for (i = AC3_BLOCK_SIZE; i < AC3_BLOCK_SIZE * (s->num_blocks + 1); i++) {
s->planar_samples[ch][i] = *sptr;
sptr += sinc;
}
}
}
/*
* Apply the MDCT to input samples to generate frequency coefficients.
* This applies the KBD window and normalizes the input to reduce precision
* loss due to fixed-point calculations.
*/
static void apply_mdct(AC3EncodeContext *s)
{
int blk, ch;
for (ch = 0; ch < s->channels; ch++) {
for (blk = 0; blk < s->num_blocks; blk++) {
AC3Block *block = &s->blocks[blk];
const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE];
#if CONFIG_AC3ENC_FLOAT
apply_window(&s->fdsp, s->windowed_samples, input_samples,
s->mdct_window, AC3_WINDOW_SIZE);
#else
apply_window(&s->dsp, s->windowed_samples, input_samples,
s->mdct_window, AC3_WINDOW_SIZE);
#endif
if (s->fixed_point)
block->coeff_shift[ch+1] = normalize_samples(s);
s->mdct.mdct_calcw(&s->mdct, block->mdct_coef[ch+1],
s->windowed_samples);
}
}
}
/*
* Calculate coupling channel and coupling coordinates.
*/
static void apply_channel_coupling(AC3EncodeContext *s)
{
LOCAL_ALIGNED_16(CoefType, cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
#if CONFIG_AC3ENC_FLOAT
LOCAL_ALIGNED_16(int32_t, fixed_cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
#else
int32_t (*fixed_cpl_coords)[AC3_MAX_CHANNELS][16] = cpl_coords;
#endif
int blk, ch, bnd, i, j;
CoefSumType energy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][16] = {{{0}}};
int cpl_start, num_cpl_coefs;
memset(cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
#if CONFIG_AC3ENC_FLOAT
memset(fixed_cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
#endif
/* align start to 16-byte boundary. align length to multiple of 32.
note: coupling start bin % 4 will always be 1 */
cpl_start = s->start_freq[CPL_CH] - 1;
num_cpl_coefs = FFALIGN(s->num_cpl_subbands * 12 + 1, 32);
cpl_start = FFMIN(256, cpl_start + num_cpl_coefs) - num_cpl_coefs;
/* calculate coupling channel from fbw channels */
for (blk = 0; blk < s->num_blocks; blk++) {
AC3Block *block = &s->blocks[blk];
CoefType *cpl_coef = &block->mdct_coef[CPL_CH][cpl_start];
if (!block->cpl_in_use)
continue;
memset(cpl_coef, 0, num_cpl_coefs * sizeof(*cpl_coef));
for (ch = 1; ch <= s->fbw_channels; ch++) {
CoefType *ch_coef = &block->mdct_coef[ch][cpl_start];
if (!block->channel_in_cpl[ch])
continue;
for (i = 0; i < num_cpl_coefs; i++)
cpl_coef[i] += ch_coef[i];
}
/* coefficients must be clipped in order to be encoded */
clip_coefficients(&s->dsp, cpl_coef, num_cpl_coefs);
}
/* calculate energy in each band in coupling channel and each fbw channel */
/* TODO: possibly use SIMD to speed up energy calculation */
bnd = 0;
i = s->start_freq[CPL_CH];
while (i < s->cpl_end_freq) {
int band_size = s->cpl_band_sizes[bnd];
for (ch = CPL_CH; ch <= s->fbw_channels; ch++) {
for (blk = 0; blk < s->num_blocks; blk++) {
AC3Block *block = &s->blocks[blk];
if (!block->cpl_in_use || (ch > CPL_CH && !block->channel_in_cpl[ch]))
continue;
for (j = 0; j < band_size; j++) {
CoefType v = block->mdct_coef[ch][i+j];
MAC_COEF(energy[blk][ch][bnd], v, v);
}
}
}
i += band_size;
bnd++;
}
/* calculate coupling coordinates for all blocks for all channels */
for (blk = 0; blk < s->num_blocks; blk++) {
AC3Block *block = &s->blocks[blk];
if (!block->cpl_in_use)
continue;
for (ch = 1; ch <= s->fbw_channels; ch++) {
if (!block->channel_in_cpl[ch])
continue;
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy[blk][ch][bnd],
energy[blk][CPL_CH][bnd]);
}
}
}
/* determine which blocks to send new coupling coordinates for */
for (blk = 0; blk < s->num_blocks; blk++) {
AC3Block *block = &s->blocks[blk];
AC3Block *block0 = blk ? &s->blocks[blk-1] : NULL;
memset(block->new_cpl_coords, 0, sizeof(block->new_cpl_coords));
if (block->cpl_in_use) {
/* send new coordinates if this is the first block, if previous
* block did not use coupling but this block does, the channels
* using coupling has changed from the previous block, or the
* coordinate difference from the last block for any channel is
* greater than a threshold value. */
if (blk == 0 || !block0->cpl_in_use) {
for (ch = 1; ch <= s->fbw_channels; ch++)
block->new_cpl_coords[ch] = 1;
} else {
for (ch = 1; ch <= s->fbw_channels; ch++) {
if (!block->channel_in_cpl[ch])
continue;
if (!block0->channel_in_cpl[ch]) {
block->new_cpl_coords[ch] = 1;
} else {
CoefSumType coord_diff = 0;
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
coord_diff += FFABS(cpl_coords[blk-1][ch][bnd] -
cpl_coords[blk ][ch][bnd]);
}
coord_diff /= s->num_cpl_bands;
if (coord_diff > NEW_CPL_COORD_THRESHOLD)
block->new_cpl_coords[ch] = 1;
}
}
}
}
}
/* calculate final coupling coordinates, taking into account reusing of
coordinates in successive blocks */
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
blk = 0;
while (blk < s->num_blocks) {
int av_uninit(blk1);
AC3Block *block = &s->blocks[blk];
if (!block->cpl_in_use) {
blk++;
continue;
}
for (ch = 1; ch <= s->fbw_channels; ch++) {
CoefSumType energy_ch, energy_cpl;
if (!block->channel_in_cpl[ch])
continue;
energy_cpl = energy[blk][CPL_CH][bnd];
energy_ch = energy[blk][ch][bnd];
blk1 = blk+1;
while (!s->blocks[blk1].new_cpl_coords[ch] && blk1 < s->num_blocks) {
if (s->blocks[blk1].cpl_in_use) {
energy_cpl += energy[blk1][CPL_CH][bnd];
energy_ch += energy[blk1][ch][bnd];
}
blk1++;
}
cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy_ch, energy_cpl);
}
blk = blk1;
}
}
/* calculate exponents/mantissas for coupling coordinates */
for (blk = 0; blk < s->num_blocks; blk++) {
AC3Block *block = &s->blocks[blk];
if (!block->cpl_in_use)
continue;
#if CONFIG_AC3ENC_FLOAT
s->ac3dsp.float_to_fixed24(fixed_cpl_coords[blk][1],
cpl_coords[blk][1],
s->fbw_channels * 16);
#endif
s->ac3dsp.extract_exponents(block->cpl_coord_exp[1],
fixed_cpl_coords[blk][1],
s->fbw_channels * 16);
for (ch = 1; ch <= s->fbw_channels; ch++) {
int bnd, min_exp, max_exp, master_exp;
if (!block->new_cpl_coords[ch])
continue;
/* determine master exponent */
min_exp = max_exp = block->cpl_coord_exp[ch][0];
for (bnd = 1; bnd < s->num_cpl_bands; bnd++) {
int exp = block->cpl_coord_exp[ch][bnd];
min_exp = FFMIN(exp, min_exp);
max_exp = FFMAX(exp, max_exp);
}
master_exp = ((max_exp - 15) + 2) / 3;
master_exp = FFMAX(master_exp, 0);
while (min_exp < master_exp * 3)
master_exp--;
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
block->cpl_coord_exp[ch][bnd] = av_clip(block->cpl_coord_exp[ch][bnd] -
master_exp * 3, 0, 15);
}
block->cpl_master_exp[ch] = master_exp;
/* quantize mantissas */
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
int cpl_exp = block->cpl_coord_exp[ch][bnd];
int cpl_mant = (fixed_cpl_coords[blk][ch][bnd] << (5 + cpl_exp + master_exp * 3)) >> 24;
if (cpl_exp == 15)
cpl_mant >>= 1;
else
cpl_mant -= 16;
block->cpl_coord_mant[ch][bnd] = cpl_mant;
}
}
}
if (CONFIG_EAC3_ENCODER && s->eac3)
ff_eac3_set_cpl_states(s);
}
/*
* Determine rematrixing flags for each block and band.
*/
static void compute_rematrixing_strategy(AC3EncodeContext *s)
{
int nb_coefs;
int blk, bnd, i;
AC3Block *block, *block0;
if (s->channel_mode != AC3_CHMODE_STEREO)
return;
for (blk = 0; blk < s->num_blocks; blk++) {
block = &s->blocks[blk];
block->new_rematrixing_strategy = !blk;
block->num_rematrixing_bands = 4;
if (block->cpl_in_use) {
block->num_rematrixing_bands -= (s->start_freq[CPL_CH] <= 61);
block->num_rematrixing_bands -= (s->start_freq[CPL_CH] == 37);
if (blk && block->num_rematrixing_bands != block0->num_rematrixing_bands)
block->new_rematrixing_strategy = 1;
}
nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);
if (!s->rematrixing_enabled) {
block0 = block;
continue;
}
for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
/* calculate calculate sum of squared coeffs for one band in one block */
int start = ff_ac3_rematrix_band_tab[bnd];
int end = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
CoefSumType sum[4] = {0,};
for (i = start; i < end; i++) {
CoefType lt = block->mdct_coef[1][i];
CoefType rt = block->mdct_coef[2][i];
CoefType md = lt + rt;
CoefType sd = lt - rt;
MAC_COEF(sum[0], lt, lt);
MAC_COEF(sum[1], rt, rt);
MAC_COEF(sum[2], md, md);
MAC_COEF(sum[3], sd, sd);
}
/* compare sums to determine if rematrixing will be used for this band */
if (FFMIN(sum[2], sum[3]) < FFMIN(sum[0], sum[1]))
block->rematrixing_flags[bnd] = 1;
else
block->rematrixing_flags[bnd] = 0;
/* determine if new rematrixing flags will be sent */
if (blk &&
block->rematrixing_flags[bnd] != block0->rematrixing_flags[bnd]) {
block->new_rematrixing_strategy = 1;
}
}
block0 = block;
}
}
int AC3_NAME(encode_frame)(AVCodecContext *avctx, AVPacket *avpkt,
const AVFrame *frame, int *got_packet_ptr)
{
AC3EncodeContext *s = avctx->priv_data;
const SampleType *samples = (const SampleType *)frame->data[0];
int ret;
if (s->options.allow_per_frame_metadata) {
ret = ff_ac3_validate_metadata(s);
if (ret)
return ret;
}
if (s->bit_alloc.sr_code == 1 || s->eac3)
ff_ac3_adjust_frame_size(s);
deinterleave_input_samples(s, samples);
apply_mdct(s);
if (s->fixed_point)
scale_coefficients(s);
clip_coefficients(&s->dsp, s->blocks[0].mdct_coef[1],
AC3_MAX_COEFS * s->num_blocks * s->channels);
s->cpl_on = s->cpl_enabled;
ff_ac3_compute_coupling_strategy(s);
if (s->cpl_on)
apply_channel_coupling(s);
compute_rematrixing_strategy(s);
if (!s->fixed_point)
scale_coefficients(s);
ff_ac3_apply_rematrixing(s);
ff_ac3_process_exponents(s);
ret = ff_ac3_compute_bit_allocation(s);
if (ret) {
av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
return ret;
}
ff_ac3_group_exponents(s);
ff_ac3_quantize_mantissas(s);
if ((ret = ff_alloc_packet(avpkt, s->frame_size))) {
av_log(avctx, AV_LOG_ERROR, "Error getting output packet\n");
return ret;
}
ff_ac3_output_frame(s, avpkt->data);
if (frame->pts != AV_NOPTS_VALUE)
avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->delay);
*got_packet_ptr = 1;
return 0;
}
|