summaryrefslogtreecommitdiff
path: root/libavcodec/adpcm.c
blob: e7657945dddc15c9dddb57a7e4a53442e3337f2b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
/*
 * Copyright (c) 2001-2003 The ffmpeg Project
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */
#include "avcodec.h"
#include "get_bits.h"
#include "put_bits.h"
#include "bytestream.h"
#include "adpcm.h"
#include "adpcm_data.h"

/**
 * @file
 * ADPCM decoders
 * First version by Francois Revol (revol@free.fr)
 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
 *   by Mike Melanson (melanson@pcisys.net)
 * CD-ROM XA ADPCM codec by BERO
 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
 *
 * Features and limitations:
 *
 * Reference documents:
 * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
 * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
 * http://openquicktime.sourceforge.net/
 * XAnim sources (xa_codec.c) http://xanim.polter.net/
 * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
 * SoX source code http://sox.sourceforge.net/
 *
 * CD-ROM XA:
 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
 * readstr http://www.geocities.co.jp/Playtown/2004/
 */

/* These are for CD-ROM XA ADPCM */
static const int xa_adpcm_table[5][2] = {
    {   0,   0 },
    {  60,   0 },
    { 115, -52 },
    {  98, -55 },
    { 122, -60 }
};

static const int ea_adpcm_table[] = {
    0,  240,  460,  392,
    0,    0, -208, -220,
    0,    1,    3,    4,
    7,    8,   10,   11,
    0,   -1,   -3,   -4
};

// padded to zero where table size is less then 16
static const int swf_index_tables[4][16] = {
    /*2*/ { -1, 2 },
    /*3*/ { -1, -1, 2, 4 },
    /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
    /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
};

/* end of tables */

typedef struct ADPCMDecodeContext {
    AVFrame frame;
    ADPCMChannelStatus status[6];
} ADPCMDecodeContext;

static av_cold int adpcm_decode_init(AVCodecContext * avctx)
{
    ADPCMDecodeContext *c = avctx->priv_data;
    unsigned int max_channels = 2;

    switch(avctx->codec->id) {
    case CODEC_ID_ADPCM_EA_R1:
    case CODEC_ID_ADPCM_EA_R2:
    case CODEC_ID_ADPCM_EA_R3:
    case CODEC_ID_ADPCM_EA_XAS:
        max_channels = 6;
        break;
    }
    if (avctx->channels <= 0 || avctx->channels > max_channels) {
        av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
        return AVERROR(EINVAL);
    }

    switch(avctx->codec->id) {
    case CODEC_ID_ADPCM_CT:
        c->status[0].step = c->status[1].step = 511;
        break;
    case CODEC_ID_ADPCM_IMA_WAV:
        if (avctx->bits_per_coded_sample != 4) {
            av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n");
            return -1;
        }
        break;
    case CODEC_ID_ADPCM_IMA_WS:
        if (avctx->extradata && avctx->extradata_size == 2 * 4) {
            c->status[0].predictor = AV_RL32(avctx->extradata);
            c->status[1].predictor = AV_RL32(avctx->extradata + 4);
        }
        break;
    default:
        break;
    }
    avctx->sample_fmt = AV_SAMPLE_FMT_S16;

    avcodec_get_frame_defaults(&c->frame);
    avctx->coded_frame = &c->frame;

    return 0;
}

static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
{
    int step_index;
    int predictor;
    int sign, delta, diff, step;

    step = ff_adpcm_step_table[c->step_index];
    step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
    if (step_index < 0) step_index = 0;
    else if (step_index > 88) step_index = 88;

    sign = nibble & 8;
    delta = nibble & 7;
    /* perform direct multiplication instead of series of jumps proposed by
     * the reference ADPCM implementation since modern CPUs can do the mults
     * quickly enough */
    diff = ((2 * delta + 1) * step) >> shift;
    predictor = c->predictor;
    if (sign) predictor -= diff;
    else predictor += diff;

    c->predictor = av_clip_int16(predictor);
    c->step_index = step_index;

    return (short)c->predictor;
}

static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
{
    int step_index;
    int predictor;
    int diff, step;

    step = ff_adpcm_step_table[c->step_index];
    step_index = c->step_index + ff_adpcm_index_table[nibble];
    step_index = av_clip(step_index, 0, 88);

    diff = step >> 3;
    if (nibble & 4) diff += step;
    if (nibble & 2) diff += step >> 1;
    if (nibble & 1) diff += step >> 2;

    if (nibble & 8)
        predictor = c->predictor - diff;
    else
        predictor = c->predictor + diff;

    c->predictor = av_clip_int16(predictor);
    c->step_index = step_index;

    return c->predictor;
}

static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
{
    int predictor;

    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;

    c->sample2 = c->sample1;
    c->sample1 = av_clip_int16(predictor);
    c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
    if (c->idelta < 16) c->idelta = 16;

    return c->sample1;
}

static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
{
    int sign, delta, diff;
    int new_step;

    sign = nibble & 8;
    delta = nibble & 7;
    /* perform direct multiplication instead of series of jumps proposed by
     * the reference ADPCM implementation since modern CPUs can do the mults
     * quickly enough */
    diff = ((2 * delta + 1) * c->step) >> 3;
    /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
    c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
    c->predictor = av_clip_int16(c->predictor);
    /* calculate new step and clamp it to range 511..32767 */
    new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
    c->step = av_clip(new_step, 511, 32767);

    return (short)c->predictor;
}

static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
{
    int sign, delta, diff;

    sign = nibble & (1<<(size-1));
    delta = nibble & ((1<<(size-1))-1);
    diff = delta << (7 + c->step + shift);

    /* clamp result */
    c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);

    /* calculate new step */
    if (delta >= (2*size - 3) && c->step < 3)
        c->step++;
    else if (delta == 0 && c->step > 0)
        c->step--;

    return (short) c->predictor;
}

static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
{
    if(!c->step) {
        c->predictor = 0;
        c->step = 127;
    }

    c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
    c->predictor = av_clip_int16(c->predictor);
    c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
    c->step = av_clip(c->step, 127, 24567);
    return c->predictor;
}

static void xa_decode(short *out, const unsigned char *in,
    ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
{
    int i, j;
    int shift,filter,f0,f1;
    int s_1,s_2;
    int d,s,t;

    for(i=0;i<4;i++) {

        shift  = 12 - (in[4+i*2] & 15);
        filter = in[4+i*2] >> 4;
        f0 = xa_adpcm_table[filter][0];
        f1 = xa_adpcm_table[filter][1];

        s_1 = left->sample1;
        s_2 = left->sample2;

        for(j=0;j<28;j++) {
            d = in[16+i+j*4];

            t = (signed char)(d<<4)>>4;
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
            s_2 = s_1;
            s_1 = av_clip_int16(s);
            *out = s_1;
            out += inc;
        }

        if (inc==2) { /* stereo */
            left->sample1 = s_1;
            left->sample2 = s_2;
            s_1 = right->sample1;
            s_2 = right->sample2;
            out = out + 1 - 28*2;
        }

        shift  = 12 - (in[5+i*2] & 15);
        filter = in[5+i*2] >> 4;

        f0 = xa_adpcm_table[filter][0];
        f1 = xa_adpcm_table[filter][1];

        for(j=0;j<28;j++) {
            d = in[16+i+j*4];

            t = (signed char)d >> 4;
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
            s_2 = s_1;
            s_1 = av_clip_int16(s);
            *out = s_1;
            out += inc;
        }

        if (inc==2) { /* stereo */
            right->sample1 = s_1;
            right->sample2 = s_2;
            out -= 1;
        } else {
            left->sample1 = s_1;
            left->sample2 = s_2;
        }
    }
}

/**
 * Get the number of samples that will be decoded from the packet.
 * In one case, this is actually the maximum number of samples possible to
 * decode with the given buf_size.
 *
 * @param[out] coded_samples set to the number of samples as coded in the
 *                           packet, or 0 if the codec does not encode the
 *                           number of samples in each frame.
 */
static int get_nb_samples(AVCodecContext *avctx, const uint8_t *buf,
                          int buf_size, int *coded_samples)
{
    ADPCMDecodeContext *s = avctx->priv_data;
    int nb_samples        = 0;
    int ch                = avctx->channels;
    int has_coded_samples = 0;
    int header_size;

    *coded_samples = 0;

    if(ch <= 0)
        return 0;

    switch (avctx->codec->id) {
    /* constant, only check buf_size */
    case CODEC_ID_ADPCM_EA_XAS:
        if (buf_size < 76 * ch)
            return 0;
        nb_samples = 128;
        break;
    case CODEC_ID_ADPCM_IMA_QT:
        if (buf_size < 34 * ch)
            return 0;
        nb_samples = 64;
        break;
    /* simple 4-bit adpcm */
    case CODEC_ID_ADPCM_CT:
    case CODEC_ID_ADPCM_IMA_EA_SEAD:
    case CODEC_ID_ADPCM_IMA_WS:
    case CODEC_ID_ADPCM_YAMAHA:
        nb_samples = buf_size * 2 / ch;
        break;
    }
    if (nb_samples)
        return nb_samples;

    /* simple 4-bit adpcm, with header */
    header_size = 0;
    switch (avctx->codec->id) {
        case CODEC_ID_ADPCM_4XM:
        case CODEC_ID_ADPCM_IMA_ISS:     header_size = 4 * ch;      break;
        case CODEC_ID_ADPCM_IMA_AMV:     header_size = 8;           break;
        case CODEC_ID_ADPCM_IMA_SMJPEG:  header_size = 4;           break;
    }
    if (header_size > 0)
        return (buf_size - header_size) * 2 / ch;

    /* more complex formats */
    switch (avctx->codec->id) {
    case CODEC_ID_ADPCM_EA:
        has_coded_samples = 1;
        if (buf_size < 4)
            return 0;
        *coded_samples  = AV_RL32(buf);
        *coded_samples -= *coded_samples % 28;
        nb_samples      = (buf_size - 12) / 30 * 28;
        break;
    case CODEC_ID_ADPCM_IMA_EA_EACS:
        has_coded_samples = 1;
        if (buf_size < 4)
            return 0;
        *coded_samples = AV_RL32(buf);
        nb_samples     = (buf_size - (4 + 8 * ch)) * 2 / ch;
        break;
    case CODEC_ID_ADPCM_EA_MAXIS_XA:
        nb_samples = ((buf_size - ch) / (2 * ch)) * 2 * ch;
        break;
    case CODEC_ID_ADPCM_EA_R1:
    case CODEC_ID_ADPCM_EA_R2:
    case CODEC_ID_ADPCM_EA_R3:
        /* maximum number of samples */
        /* has internal offsets and a per-frame switch to signal raw 16-bit */
        has_coded_samples = 1;
        if (buf_size < 4)
            return 0;
        switch (avctx->codec->id) {
        case CODEC_ID_ADPCM_EA_R1:
            header_size    = 4 + 9 * ch;
            *coded_samples = AV_RL32(buf);
            break;
        case CODEC_ID_ADPCM_EA_R2:
            header_size    = 4 + 5 * ch;
            *coded_samples = AV_RL32(buf);
            break;
        case CODEC_ID_ADPCM_EA_R3:
            header_size    = 4 + 5 * ch;
            *coded_samples = AV_RB32(buf);
            break;
        }
        *coded_samples -= *coded_samples % 28;
        nb_samples      = (buf_size - header_size) * 2 / ch;
        nb_samples     -= nb_samples % 28;
        break;
    case CODEC_ID_ADPCM_IMA_DK3:
        if (avctx->block_align > 0)
            buf_size = FFMIN(buf_size, avctx->block_align);
        nb_samples = ((buf_size - 16) * 8 / 3) / ch;
        break;
    case CODEC_ID_ADPCM_IMA_DK4:
        nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
        break;
    case CODEC_ID_ADPCM_IMA_WAV:
        if (avctx->block_align > 0)
            buf_size = FFMIN(buf_size, avctx->block_align);
        nb_samples = 1 + (buf_size - 4 * ch) / (4 * ch) * 8;
        break;
    case CODEC_ID_ADPCM_MS:
        if (avctx->block_align > 0)
            buf_size = FFMIN(buf_size, avctx->block_align);
        nb_samples = 2 + (buf_size - 7 * ch) * 2 / ch;
        break;
    case CODEC_ID_ADPCM_SBPRO_2:
    case CODEC_ID_ADPCM_SBPRO_3:
    case CODEC_ID_ADPCM_SBPRO_4:
    {
        int samples_per_byte;
        switch (avctx->codec->id) {
        case CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
        case CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
        case CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
        }
        if (!s->status[0].step_index) {
            nb_samples++;
            buf_size -= ch;
        }
        nb_samples += buf_size * samples_per_byte / ch;
        break;
    }
    case CODEC_ID_ADPCM_SWF:
    {
        int buf_bits       = buf_size * 8 - 2;
        int nbits          = (buf[0] >> 6) + 2;
        int block_hdr_size = 22 * ch;
        int block_size     = block_hdr_size + nbits * ch * 4095;
        int nblocks        = buf_bits / block_size;
        int bits_left      = buf_bits - nblocks * block_size;
        nb_samples         = nblocks * 4096;
        if (bits_left >= block_hdr_size)
            nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
        break;
    }
    case CODEC_ID_ADPCM_THP:
        has_coded_samples = 1;
        if (buf_size < 8)
            return 0;
        *coded_samples  = AV_RB32(&buf[4]);
        *coded_samples -= *coded_samples % 14;
        nb_samples      = (buf_size - 80) / (8 * ch) * 14;
        break;
    case CODEC_ID_ADPCM_XA:
        nb_samples = (buf_size / 128) * 224 / ch;
        break;
    }

    /* validate coded sample count */
    if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
        return AVERROR_INVALIDDATA;

    return nb_samples;
}

/* DK3 ADPCM support macro */
#define DK3_GET_NEXT_NIBBLE() \
    if (decode_top_nibble_next) \
    { \
        nibble = last_byte >> 4; \
        decode_top_nibble_next = 0; \
    } \
    else \
    { \
        if (end_of_packet) \
            break; \
        last_byte = *src++; \
        if (src >= buf + buf_size) \
            end_of_packet = 1; \
        nibble = last_byte & 0x0F; \
        decode_top_nibble_next = 1; \
    }

static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
                              int *got_frame_ptr, AVPacket *avpkt)
{
    const uint8_t *buf = avpkt->data;
    int buf_size = avpkt->size;
    ADPCMDecodeContext *c = avctx->priv_data;
    ADPCMChannelStatus *cs;
    int n, m, channel, i;
    short *samples;
    const uint8_t *src;
    int st; /* stereo */
    int count1, count2;
    int nb_samples, coded_samples, ret;

    nb_samples = get_nb_samples(avctx, buf, buf_size, &coded_samples);
    if (nb_samples <= 0) {
        av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
        return AVERROR_INVALIDDATA;
    }

    /* get output buffer */
    c->frame.nb_samples = nb_samples;
    if ((ret = avctx->get_buffer(avctx, &c->frame)) < 0) {
        av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
        return ret;
    }
    samples = (short *)c->frame.data[0];

    /* use coded_samples when applicable */
    /* it is always <= nb_samples, so the output buffer will be large enough */
    if (coded_samples) {
        if (coded_samples != nb_samples)
            av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
        c->frame.nb_samples = nb_samples = coded_samples;
    }

    src = buf;

    st = avctx->channels == 2 ? 1 : 0;

    switch(avctx->codec->id) {
    case CODEC_ID_ADPCM_IMA_QT:
        /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
           Channel data is interleaved per-chunk. */
        for (channel = 0; channel < avctx->channels; channel++) {
            int16_t predictor;
            int step_index;
            cs = &(c->status[channel]);
            /* (pppppp) (piiiiiii) */

            /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
            predictor = AV_RB16(src);
            step_index = predictor & 0x7F;
            predictor &= 0xFF80;

            src += 2;

            if (cs->step_index == step_index) {
                int diff = (int)predictor - cs->predictor;
                if (diff < 0)
                    diff = - diff;
                if (diff > 0x7f)
                    goto update;
            } else {
            update:
                cs->step_index = step_index;
                cs->predictor = predictor;
            }

            if (cs->step_index > 88){
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
                cs->step_index = 88;
            }

            samples = (short *)c->frame.data[0] + channel;

            for (m = 0; m < 32; m++) {
                *samples = adpcm_ima_qt_expand_nibble(cs, src[0] & 0x0F, 3);
                samples += avctx->channels;
                *samples = adpcm_ima_qt_expand_nibble(cs, src[0] >> 4  , 3);
                samples += avctx->channels;
                src ++;
            }
        }
        break;
    case CODEC_ID_ADPCM_IMA_WAV:
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
            buf_size = avctx->block_align;

        for(i=0; i<avctx->channels; i++){
            cs = &(c->status[i]);
            cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);

            cs->step_index = *src++;
            if (cs->step_index > 88){
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
                cs->step_index = 88;
            }
            if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
        }

        for (n = (nb_samples - 1) / 8; n > 0; n--) {
            for (i = 0; i < avctx->channels; i++) {
                cs = &c->status[i];
                for (m = 0; m < 4; m++) {
                    uint8_t v = *src++;
                    *samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
                    samples += avctx->channels;
                    *samples = adpcm_ima_expand_nibble(cs, v >> 4  , 3);
                    samples += avctx->channels;
                }
                samples -= 8 * avctx->channels - 1;
            }
            samples += 7 * avctx->channels;
        }
        break;
    case CODEC_ID_ADPCM_4XM:
        for (i = 0; i < avctx->channels; i++)
            c->status[i].predictor= (int16_t)bytestream_get_le16(&src);

        for (i = 0; i < avctx->channels; i++) {
            c->status[i].step_index= (int16_t)bytestream_get_le16(&src);
            c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
        }

        for (i = 0; i < avctx->channels; i++) {
            samples = (short *)c->frame.data[0] + i;
            cs = &c->status[i];
            for (n = nb_samples >> 1; n > 0; n--, src++) {
                uint8_t v = *src;
                *samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
                samples += avctx->channels;
                *samples = adpcm_ima_expand_nibble(cs, v >> 4  , 4);
                samples += avctx->channels;
            }
        }
        break;
    case CODEC_ID_ADPCM_MS:
    {
        int block_predictor;

        if (avctx->block_align != 0 && buf_size > avctx->block_align)
            buf_size = avctx->block_align;

        block_predictor = av_clip(*src++, 0, 6);
        c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
        c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
        if (st) {
            block_predictor = av_clip(*src++, 0, 6);
            c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
            c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
        }
        c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
        if (st){
            c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
        }

        c->status[0].sample1 = bytestream_get_le16(&src);
        if (st) c->status[1].sample1 = bytestream_get_le16(&src);
        c->status[0].sample2 = bytestream_get_le16(&src);
        if (st) c->status[1].sample2 = bytestream_get_le16(&src);

        *samples++ = c->status[0].sample2;
        if (st) *samples++ = c->status[1].sample2;
        *samples++ = c->status[0].sample1;
        if (st) *samples++ = c->status[1].sample1;
        for(n = (nb_samples - 2) >> (1 - st); n > 0; n--, src++) {
            *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4  );
            *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
        }
        break;
    }
    case CODEC_ID_ADPCM_IMA_DK4:
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
            buf_size = avctx->block_align;

        for (channel = 0; channel < avctx->channels; channel++) {
            cs = &c->status[channel];
            cs->predictor  = (int16_t)bytestream_get_le16(&src);
            cs->step_index = *src++;
            src++;
            *samples++ = cs->predictor;
        }
        for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
            uint8_t v = *src;
            *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4  , 3);
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
        }
        break;
    case CODEC_ID_ADPCM_IMA_DK3:
    {
        unsigned char last_byte = 0;
        unsigned char nibble;
        int decode_top_nibble_next = 0;
        int end_of_packet = 0;
        int diff_channel;

        if (avctx->block_align != 0 && buf_size > avctx->block_align)
            buf_size = avctx->block_align;

        c->status[0].predictor  = (int16_t)AV_RL16(src + 10);
        c->status[1].predictor  = (int16_t)AV_RL16(src + 12);
        c->status[0].step_index = src[14];
        c->status[1].step_index = src[15];
        /* sign extend the predictors */
        src += 16;
        diff_channel = c->status[1].predictor;

        /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
         * the buffer is consumed */
        while (1) {

            /* for this algorithm, c->status[0] is the sum channel and
             * c->status[1] is the diff channel */

            /* process the first predictor of the sum channel */
            DK3_GET_NEXT_NIBBLE();
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);

            /* process the diff channel predictor */
            DK3_GET_NEXT_NIBBLE();
            adpcm_ima_expand_nibble(&c->status[1], nibble, 3);

            /* process the first pair of stereo PCM samples */
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
            *samples++ = c->status[0].predictor + c->status[1].predictor;
            *samples++ = c->status[0].predictor - c->status[1].predictor;

            /* process the second predictor of the sum channel */
            DK3_GET_NEXT_NIBBLE();
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);

            /* process the second pair of stereo PCM samples */
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
            *samples++ = c->status[0].predictor + c->status[1].predictor;
            *samples++ = c->status[0].predictor - c->status[1].predictor;
        }
        break;
    }
    case CODEC_ID_ADPCM_IMA_ISS:
        for (channel = 0; channel < avctx->channels; channel++) {
            cs = &c->status[channel];
            cs->predictor  = (int16_t)bytestream_get_le16(&src);
            cs->step_index = *src++;
            src++;
        }

        for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
            uint8_t v1, v2;
            uint8_t v = *src;
            /* nibbles are swapped for mono */
            if (st) {
                v1 = v >> 4;
                v2 = v & 0x0F;
            } else {
                v2 = v >> 4;
                v1 = v & 0x0F;
            }
            *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
        }
        break;
    case CODEC_ID_ADPCM_IMA_WS:
        while (src < buf + buf_size) {
            uint8_t v = *src++;
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],  v >> 4  , 3);
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
        }
        break;
    case CODEC_ID_ADPCM_XA:
        while (buf_size >= 128) {
            xa_decode(samples, src, &c->status[0], &c->status[1],
                avctx->channels);
            src += 128;
            samples += 28 * 8;
            buf_size -= 128;
        }
        break;
    case CODEC_ID_ADPCM_IMA_EA_EACS:
        src += 4; // skip sample count (already read)

        for (i=0; i<=st; i++)
            c->status[i].step_index = bytestream_get_le32(&src);
        for (i=0; i<=st; i++)
            c->status[i].predictor  = bytestream_get_le32(&src);

        for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],  *src>>4,   3);
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
        }
        break;
    case CODEC_ID_ADPCM_IMA_EA_SEAD:
        for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
            *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
        }
        break;
    case CODEC_ID_ADPCM_EA:
    {
        int32_t previous_left_sample, previous_right_sample;
        int32_t current_left_sample, current_right_sample;
        int32_t next_left_sample, next_right_sample;
        int32_t coeff1l, coeff2l, coeff1r, coeff2r;
        uint8_t shift_left, shift_right;

        /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
           each coding 28 stereo samples. */

        if(avctx->channels != 2)
            return AVERROR_INVALIDDATA;

        src += 4; // skip sample count (already read)

        current_left_sample   = (int16_t)bytestream_get_le16(&src);
        previous_left_sample  = (int16_t)bytestream_get_le16(&src);
        current_right_sample  = (int16_t)bytestream_get_le16(&src);
        previous_right_sample = (int16_t)bytestream_get_le16(&src);

        for (count1 = 0; count1 < nb_samples / 28; count1++) {
            coeff1l = ea_adpcm_table[ *src >> 4       ];
            coeff2l = ea_adpcm_table[(*src >> 4  ) + 4];
            coeff1r = ea_adpcm_table[*src & 0x0F];
            coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
            src++;

            shift_left  = 20 - (*src >> 4);
            shift_right = 20 - (*src & 0x0F);
            src++;

            for (count2 = 0; count2 < 28; count2++) {
                next_left_sample  = sign_extend(*src >> 4, 4) << shift_left;
                next_right_sample = sign_extend(*src,      4) << shift_right;
                src++;

                next_left_sample = (next_left_sample +
                    (current_left_sample * coeff1l) +
                    (previous_left_sample * coeff2l) + 0x80) >> 8;
                next_right_sample = (next_right_sample +
                    (current_right_sample * coeff1r) +
                    (previous_right_sample * coeff2r) + 0x80) >> 8;

                previous_left_sample = current_left_sample;
                current_left_sample = av_clip_int16(next_left_sample);
                previous_right_sample = current_right_sample;
                current_right_sample = av_clip_int16(next_right_sample);
                *samples++ = (unsigned short)current_left_sample;
                *samples++ = (unsigned short)current_right_sample;
            }
        }

        if (src - buf == buf_size - 2)
            src += 2; // Skip terminating 0x0000

        break;
    }
    case CODEC_ID_ADPCM_EA_MAXIS_XA:
    {
        int coeff[2][2], shift[2];

        for(channel = 0; channel < avctx->channels; channel++) {
            for (i=0; i<2; i++)
                coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
            shift[channel] = 20 - (*src & 0x0F);
            src++;
        }
        for (count1 = 0; count1 < nb_samples / 2; count1++) {
            for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
                for(channel = 0; channel < avctx->channels; channel++) {
                    int32_t sample = sign_extend(src[channel] >> i, 4) << shift[channel];
                    sample = (sample +
                             c->status[channel].sample1 * coeff[channel][0] +
                             c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
                    c->status[channel].sample2 = c->status[channel].sample1;
                    c->status[channel].sample1 = av_clip_int16(sample);
                    *samples++ = c->status[channel].sample1;
                }
            }
            src+=avctx->channels;
        }
        /* consume whole packet */
        src = buf + buf_size;
        break;
    }
    case CODEC_ID_ADPCM_EA_R1:
    case CODEC_ID_ADPCM_EA_R2:
    case CODEC_ID_ADPCM_EA_R3: {
        /* channel numbering
           2chan: 0=fl, 1=fr
           4chan: 0=fl, 1=rl, 2=fr, 3=rr
           6chan: 0=fl, 1=c,  2=fr, 3=rl,  4=rr, 5=sub */
        const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
        int32_t previous_sample, current_sample, next_sample;
        int32_t coeff1, coeff2;
        uint8_t shift;
        unsigned int channel;
        uint16_t *samplesC;
        const uint8_t *srcC;
        const uint8_t *src_end = buf + buf_size;
        int count = 0;

        src += 4; // skip sample count (already read)

        for (channel=0; channel<avctx->channels; channel++) {
            int32_t offset = (big_endian ? bytestream_get_be32(&src)
                                         : bytestream_get_le32(&src))
                           + (avctx->channels-channel-1) * 4;

            if ((offset < 0) || (offset >= src_end - src - 4)) break;
            srcC  = src + offset;
            samplesC = samples + channel;

            if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
                current_sample  = (int16_t)bytestream_get_le16(&srcC);
                previous_sample = (int16_t)bytestream_get_le16(&srcC);
            } else {
                current_sample  = c->status[channel].predictor;
                previous_sample = c->status[channel].prev_sample;
            }

            for (count1 = 0; count1 < nb_samples / 28; count1++) {
                if (*srcC == 0xEE) {  /* only seen in R2 and R3 */
                    srcC++;
                    if (srcC > src_end - 30*2) break;
                    current_sample  = (int16_t)bytestream_get_be16(&srcC);
                    previous_sample = (int16_t)bytestream_get_be16(&srcC);

                    for (count2=0; count2<28; count2++) {
                        *samplesC = (int16_t)bytestream_get_be16(&srcC);
                        samplesC += avctx->channels;
                    }
                } else {
                    coeff1 = ea_adpcm_table[ *srcC>>4     ];
                    coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
                    shift = 20 - (*srcC++ & 0x0F);

                    if (srcC > src_end - 14) break;
                    for (count2=0; count2<28; count2++) {
                        if (count2 & 1)
                            next_sample = sign_extend(*srcC++,    4) << shift;
                        else
                            next_sample = sign_extend(*srcC >> 4, 4) << shift;

                        next_sample += (current_sample  * coeff1) +
                                       (previous_sample * coeff2);
                        next_sample = av_clip_int16(next_sample >> 8);

                        previous_sample = current_sample;
                        current_sample  = next_sample;
                        *samplesC = current_sample;
                        samplesC += avctx->channels;
                    }
                }
            }
            if (!count) {
                count = count1;
            } else if (count != count1) {
                av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
                count = FFMAX(count, count1);
            }

            if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
                c->status[channel].predictor   = current_sample;
                c->status[channel].prev_sample = previous_sample;
            }
        }

        c->frame.nb_samples = count * 28;
        src = src_end;
        break;
    }
    case CODEC_ID_ADPCM_EA_XAS:
        for (channel=0; channel<avctx->channels; channel++) {
            int coeff[2][4], shift[4];
            short *s2, *s = &samples[channel];
            for (n=0; n<4; n++, s+=32*avctx->channels) {
                for (i=0; i<2; i++)
                    coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
                shift[n] = 20 - (src[2] & 0x0F);
                for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
                    s2[0] = (src[0]&0xF0) + (src[1]<<8);
            }

            for (m=2; m<32; m+=2) {
                s = &samples[m*avctx->channels + channel];
                for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
                    for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
                        int level = sign_extend(*src >> (4 - i), 4) << shift[n];
                        int pred  = s2[-1*avctx->channels] * coeff[0][n]
                                  + s2[-2*avctx->channels] * coeff[1][n];
                        s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
                    }
                }
            }
        }
        break;
    case CODEC_ID_ADPCM_IMA_AMV:
    case CODEC_ID_ADPCM_IMA_SMJPEG:
        c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
        c->status[0].step_index = bytestream_get_le16(&src);

        if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
            src+=4;

        for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
            char hi, lo;
            lo = *src & 0x0F;
            hi = *src >> 4;

            if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
                FFSWAP(char, hi, lo);

            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
                lo, 3);
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
                hi, 3);
        }
        break;
    case CODEC_ID_ADPCM_CT:
        for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
            uint8_t v = *src;
            *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4  );
            *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
        }
        break;
    case CODEC_ID_ADPCM_SBPRO_4:
    case CODEC_ID_ADPCM_SBPRO_3:
    case CODEC_ID_ADPCM_SBPRO_2:
        if (!c->status[0].step_index) {
            /* the first byte is a raw sample */
            *samples++ = 128 * (*src++ - 0x80);
            if (st)
              *samples++ = 128 * (*src++ - 0x80);
            c->status[0].step_index = 1;
            nb_samples--;
        }
        if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
            for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
                    src[0] >> 4, 4, 0);
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
                    src[0] & 0x0F, 4, 0);
            }
        } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
            for (n = nb_samples / 3; n > 0; n--, src++) {
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
                     src[0] >> 5        , 3, 0);
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
                    (src[0] >> 2) & 0x07, 3, 0);
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
                    src[0] & 0x03, 2, 0);
            }
        } else {
            for (n = nb_samples >> (2 - st); n > 0; n--, src++) {
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
                     src[0] >> 6        , 2, 2);
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
                    (src[0] >> 4) & 0x03, 2, 2);
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
                    (src[0] >> 2) & 0x03, 2, 2);
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
                    src[0] & 0x03, 2, 2);
            }
        }
        break;
    case CODEC_ID_ADPCM_SWF:
    {
        GetBitContext gb;
        const int *table;
        int k0, signmask, nb_bits, count;
        int size = buf_size*8;

        init_get_bits(&gb, buf, size);

        //read bits & initial values
        nb_bits = get_bits(&gb, 2)+2;
        //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
        table = swf_index_tables[nb_bits-2];
        k0 = 1 << (nb_bits-2);
        signmask = 1 << (nb_bits-1);

        while (get_bits_count(&gb) <= size - 22*avctx->channels) {
            for (i = 0; i < avctx->channels; i++) {
                *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
                c->status[i].step_index = get_bits(&gb, 6);
            }

            for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
                int i;

                for (i = 0; i < avctx->channels; i++) {
                    // similar to IMA adpcm
                    int delta = get_bits(&gb, nb_bits);
                    int step = ff_adpcm_step_table[c->status[i].step_index];
                    long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
                    int k = k0;

                    do {
                        if (delta & k)
                            vpdiff += step;
                        step >>= 1;
                        k >>= 1;
                    } while(k);
                    vpdiff += step;

                    if (delta & signmask)
                        c->status[i].predictor -= vpdiff;
                    else
                        c->status[i].predictor += vpdiff;

                    c->status[i].step_index += table[delta & (~signmask)];

                    c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
                    c->status[i].predictor = av_clip_int16(c->status[i].predictor);

                    *samples++ = c->status[i].predictor;
                }
            }
        }
        src += buf_size;
        break;
    }
    case CODEC_ID_ADPCM_YAMAHA:
        for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
            uint8_t v = *src;
            *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
            *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4  );
        }
        break;
    case CODEC_ID_ADPCM_THP:
    {
        int table[2][16];
        int prev[2][2];
        int ch;

        src += 4; // skip channel size
        src += 4; // skip number of samples (already read)

        for (i = 0; i < 32; i++)
            table[0][i] = (int16_t)bytestream_get_be16(&src);

        /* Initialize the previous sample.  */
        for (i = 0; i < 4; i++)
            prev[0][i] = (int16_t)bytestream_get_be16(&src);

        for (ch = 0; ch <= st; ch++) {
            samples = (short *)c->frame.data[0] + ch;

            /* Read in every sample for this channel.  */
            for (i = 0; i < nb_samples / 14; i++) {
                int index = (*src >> 4) & 7;
                unsigned int exp = *src++ & 15;
                int factor1 = table[ch][index * 2];
                int factor2 = table[ch][index * 2 + 1];

                /* Decode 14 samples.  */
                for (n = 0; n < 14; n++) {
                    int32_t sampledat;
                    if(n&1) sampledat = sign_extend(*src++, 4);
                    else    sampledat = sign_extend(*src >> 4, 4);

                    sampledat = ((prev[ch][0]*factor1
                                + prev[ch][1]*factor2) >> 11) + (sampledat << exp);
                    *samples = av_clip_int16(sampledat);
                    prev[ch][1] = prev[ch][0];
                    prev[ch][0] = *samples++;

                    /* In case of stereo, skip one sample, this sample
                       is for the other channel.  */
                    samples += st;
                }
            }
        }
        break;
    }

    default:
        return -1;
    }

    *got_frame_ptr   = 1;
    *(AVFrame *)data = c->frame;

    return src - buf;
}


#define ADPCM_DECODER(id_, name_, long_name_)               \
AVCodec ff_ ## name_ ## _decoder = {                        \
    .name           = #name_,                               \
    .type           = AVMEDIA_TYPE_AUDIO,                   \
    .id             = id_,                                  \
    .priv_data_size = sizeof(ADPCMDecodeContext),           \
    .init           = adpcm_decode_init,                    \
    .decode         = adpcm_decode_frame,                   \
    .capabilities   = CODEC_CAP_DR1,                        \
    .long_name      = NULL_IF_CONFIG_SMALL(long_name_),     \
}

/* Note: Do not forget to add new entries to the Makefile as well. */
ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
ADPCM_DECODER(CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
ADPCM_DECODER(CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
ADPCM_DECODER(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");