1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
|
/*
* fdct BlackFin
*
* Copyright (C) 2007 Marc Hoffman <marc.hoffman@analog.com>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
void ff_bfin_fdct (int16_t *buf);
This implementation works only for 8x8 input. The range of input
must be -256 to 255 i.e. 8bit input represented in a 16bit data
word. The original data must be sign extended into the 16bit data
words.
Chen factorization of
8
X(m) = sum (x(n) * cos ((2n+1)*m*pi/16))
n=0
C4
0 --*-------------*0+7---*-----*0+3-------*-*-------------------> 0
\ / \ / X S4,S4
1 --*-\---------/-*1+6---*-\-/-*1+2-------*-*-------------------> 4
\ / \ -C4 C3
2 --*---\-----/---*2+5---*-/-\-*1-2---------------*-*-----------> 2
\ / / \ X S3,-S3
3 --*-----\-/-----*3+4---*-----*0-3---------------*-*-----------> 6
/ C7 C3
4 --*-----/-\-----*3-4------------*-*4+5--*-----*---------------> 1
/ \ -C4 X \ /S7 C3
5 --*---/-----\---*2-5---*-*------*=*4-5----\-/------*-*--------> 5
/ \ X S4,S4 / X S3,-S3
6 --*-/---------\-*1-6---*-*------*=*7-6----/-\------*-*--------> 3
/ \ C4 X / \-S7 C3
--*-------------*0-7------------*-*7+6--*-----*---------------> 7
C7
Notation
Cn = cos(n*pi/8) used throughout the code.
Registers used:
R0, R1, R2, R3, R4, R5, R6,R7, P0, P1, P2, P3, P4, P5, A0, A1.
Other registers used:
I0, I1, I2, I3, B0, B2, B3, M0, M1, L3 registers and LC0.
Input - r0 - pointer to start of int16_t *block
Output - The DCT output coefficients in the int16_t *block
Register constraint:
This code is called from jpeg_encode.
R6, R5, R4 if modified should be stored and restored.
Performance: (Timer version 0.6.33)
Code Size : 240 Bytes.
Memory Required :
Input Matrix : 8 * 8 * 2 Bytes.
Coefficients : 16 Bytes
Temporary matrix: 8 * 8 * 2 Bytes.
Cycle Count :26+{18+8*(14+2S)}*2 where S -> Stalls
(7.45 c/pel)
-----------------------------------------
| Size | Forward DCT | Inverse DCT |
-----------------------------------------
| 8x8 | 284 Cycles | 311 Cycles |
-----------------------------------------
Ck = int16(cos(k/16*pi)*32767+.5)/2
#define C4 23170
#define C3 13623
#define C6 6270
#define C7 3196
Sk = int16(sin(k/16*pi)*32767+.5)/2
#define S4 11585
#define S3 9102
#define S6 15137
#define S7 16069
the coefficients are ordered as follows:
short dct_coef[]
C4,S4,
C6,S6,
C7,S7,
S3,C3,
-----------------------------------------------------------
Libav conformance testing results
-----------------------------------------------------------
dct-test: modified with the following
dct_error("BFINfdct", 0, ff_bfin_fdct, fdct, test);
produces the following output:
libavcodec> ./dct-test
Libav DCT/IDCT test
2 -131 -6 -48 -36 33 -83 24
34 52 -24 -15 5 92 57 143
-67 -43 -1 74 -16 5 -71 32
-78 106 92 -34 -38 81 20 -18
7 -62 40 2 -15 90 -62 -83
-83 1 -104 -13 43 -19 7 11
-63 31 12 -29 83 72 21 10
-17 -63 -15 73 50 -91 159 -14
DCT BFINfdct: err_inf=2 err2=0.16425938 syserr=0.00795000 maxout=2098 blockSumErr=27
DCT BFINfdct: 92.1 kdct/s
*/
#include "config.h"
#include "config_bfin.h"
#if defined(__FDPIC__) && CONFIG_SRAM
.section .l1.data.B,"aw",@progbits
#else
.data
#endif
.align 4;
dct_coeff:
.short 0x5a82, 0x2d41, 0x187e, 0x3b21, 0x0c7c, 0x3ec5, 0x238e, 0x3537;
#if defined(__FDPIC__) && CONFIG_SRAM
.section .l1.data.A,"aw",@progbits
#endif
.align 4
vtmp: .space 128
.text
DEFUN(fdct,mL1,
(int16_t *block)):
[--SP] = (R7:4, P5:3); // Push the registers onto the stack.
b0 = r0;
RELOC(r0, P3, dct_coeff);
b3 = r0;
RELOC(r0, P3, vtmp);
b2 = r0;
L3 = 16; // L3 is set to 16 to make the coefficient
// array Circular.
//----------------------------------------------------------------------------
/*
* I0, I1, and I2 registers are used to read the input data. I3 register is used
* to read the coefficients. P0 and P1 registers are used for writing the output
* data.
*/
M0 = 12 (X); // All these initializations are used in the
M1 = 16 (X); // modification of address offsets.
M2 = 128 (X);
P2 = 16;
P3 = 32 (X);
P4 = -110 (X);
P5 = -62 (X);
P0 = 2(X);
// Prescale the input to get the correct precision.
i0=b0;
i1=b0;
lsetup (.0, .1) LC0 = P3;
r0=[i0++];
.0: r1=r0<<3 (v) || r0=[i0++] ;
.1: [i1++]=r1;
/*
* B0 points to the "in" buffer.
* B2 points to "temp" buffer in the first iteration.
*/
lsetup (.2, .3) LC0 = P0;
.2:
I0 = B0; // I0 points to Input Element (0, 0).
I1 = B0; // Element 1 and 0 is read in R0.
I1 += M0 || R0 = [I0++]; // I1 points to Input Element (0, 6).
I2 = I1; // Element 6 is read into R3.H.
I2 -= 4 || R3.H = W[I1++]; // I2 points to Input Element (0, 4).
I3 = B3; // I3 points to Coefficients.
P0 = B2; // P0 points to temporary array Element
// (0, 0).
P1 = B2; // P1 points to temporary array.
R7 = [P1++P2] || R2 = [I2++]; // P1 points to temporary array
// Element (1, 0).
// R7 is a dummy read. X4,X5
// are read into R2.
R3.L = W[I1--]; // X7 is read into R3.L.
R1.H = W[I0++]; // X2 is read into R1.H.
/*
* X0 = (X0 + X7) / 2.
* X1 = (X1 + X6) / 2.
* X6 = (X1 - X6) / 2.
* X7 = (X0 - X7) / 2.
* It reads the data 3 in R1.L.
*/
R0 = R0 +|+ R3, R3 = R0 -|- R3 || R1.L = W[I0++] || NOP;
/*
* X2 = (X2 + X5) / 2.
* X3 = (X3 + X4) / 2.
* X4 = (X3 - X4) / 2.
* X5 = (X2 - X5) / 2.
* R7 = C4 = cos(4*pi/16)
*/
R1 = R1 +|+ R2, R2 = R1 -|- R2 (CO) || NOP || R7 = [I3++];
/*
* At the end of stage 1 R0 has (1,0), R1 has (2,3), R2 has (4, 5) and
* R3 has (6,7).
* Where the notation (x, y) represents uper/lower half pairs.
*/
/*
* X0 = X0 + X3.
* X1 = X1 + X2.
* X2 = X1 - X2.
* X3 = X0 - X3.
*/
R0 = R0 +|+ R1, R1 = R0 -|- R1;
lsetup (.row0, .row1) LC1 = P2 >> 1; // 1d dct, loops 8x
.row0:
/*
* This is part 2 computation continued.....
* A1 = X6 * cos(pi/4)
* A0 = X6 * cos(pi/4)
* A1 = A1 - X5 * cos(pi/4)
* A0 = A0 + X5 * cos(pi/4).
* The instruction W[I0] = R3.L is used for packing it to R2.L.
*/
A1=R3.H*R7.l, A0=R3.H*R7.l || I1+=M1 || W[I0] = R3.L;
R4.H=(A1-=R2.L*R7.l), R4.L=(A0+=R2.L*R7.l) || I2+=M0 || NOP;
/* R0 = (X1,X0) R1 = (X2,X3) R4 = (X5, X6). */
/*
* A1 = X0 * cos(pi/4)
* A0 = X0 * cos(pi/4)
* A1 = A1 - X1 * cos(pi/4)
* A0 = A0 + X1 * cos(pi/4)
* R7 = (C2,C6)
*/
A1=R0.L*R7.h, A0=R0.L*R7.h || NOP || R3.H=W[I1++];
R5.H=(A1-=R0.H*R7.h),R5.L=(A0+=R0.H*R7.h) || R7=[I3++] || NOP;
/*
* A1 = X2 * cos(3pi/8)
* A0 = X3 * cos(3pi/8)
* A1 = A1 + X3 * cos(pi/8)
* A0 = A0 - X2 * cos(pi/8)
* R3 = cos(pi/4)
* R7 = (cos(7pi/8),cos(pi/8))
* X4 = X4 + X5.
* X5 = X4 - X5.
* X6 = X7 - X6.
* X7 = X7 + X6.
*/
A1=R1.H*R7.L, A0=R1.L*R7.L || W[P0++P3]=R5.L || R2.L=W[I0];
R2=R2+|+R4, R4=R2-|-R4 || I0+=4 || R3.L=W[I1--];
R6.H=(A1+=R1.L*R7.H),R6.L=(A0 -= R1.H * R7.H) || I0+=4 || R7=[I3++];
/* R2 = (X4, X7) R4 = (X5,X6) R5 = (X1, X0) R6 = (X2,X3). */
/*
* A1 = X4 * cos(7pi/16)
* A0 = X7 * cos(7pi/16)
* A1 = A1 + X7 * cos(pi/16)
* A0 = A0 - X4 * cos(pi/16)
*/
A1=R2.H*R7.L, A0=R2.L*R7.L || W[P0++P3]=R6.H || R0=[I0++];
R2.H=(A1+=R2.L*R7.H),R2.L=(A0-=R2.H*R7.H) || W[P0++P3]=R5.H || R7=[I3++];
/*
* A1 = X5 * cos(3pi/16)
* A0 = X6 * cos(3pi/16)
* A1 = A1 + X6 * cos(5pi/16)
* A0 = A0 - X5 * cos(5pi/16)
* The output values are written.
*/
A1=R4.H*R7.H, A0=R4.L*R7.H || W[P0++P2]=R6.L || R1.H=W[I0++];
R4.H=(A1+=R4.L*R7.L),R4.L=(A0-=R4.H*R7.L) || W[P0++P4]=R2.L || R1.L=W[I0++];
/* Beginning of next stage, **pipelined** + drain and store the
rest of the column store. */
R0=R0+|+R3,R3=R0-|-R3 || W[P1++P3]=R2.H || R2=[I2++];
R1=R1+|+R2,R2=R1-|-R2 (CO) || W[P1++P3]=R4.L || R7=[I3++];
.row1: R0=R0+|+R1,R1=R0-|-R1 || W[P1++P5]=R4.H || NOP;
// Exchange input with output.
B1 = B0;
B0 = B2;
.3: B2 = B1;
L3=0;
(r7:4,p5:3) = [sp++];
RTS;
DEFUN_END(fdct)
|