summaryrefslogtreecommitdiff
path: root/libavcodec/fdctref.c
blob: 0e76175cb889af402ae487bd9ca044e925959f01 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/**
 * @file fdctref.c
 * forward discrete cosine transform, double precision.
 */

/* Copyright (C) 1996, MPEG Software Simulation Group. All Rights Reserved. */

/*
 * Disclaimer of Warranty
 *
 * These software programs are available to the user without any license fee or
 * royalty on an "as is" basis.  The MPEG Software Simulation Group disclaims
 * any and all warranties, whether express, implied, or statuary, including any
 * implied warranties or merchantability or of fitness for a particular
 * purpose.  In no event shall the copyright-holder be liable for any
 * incidental, punitive, or consequential damages of any kind whatsoever
 * arising from the use of these programs.
 *
 * This disclaimer of warranty extends to the user of these programs and user's
 * customers, employees, agents, transferees, successors, and assigns.
 *
 * The MPEG Software Simulation Group does not represent or warrant that the
 * programs furnished hereunder are free of infringement of any third-party
 * patents.
 *
 * Commercial implementations of MPEG-1 and MPEG-2 video, including shareware,
 * are subject to royalty fees to patent holders.  Many of these patents are
 * general enough such that they are unavoidable regardless of implementation
 * design.
 *
 */

#include <math.h>

#ifndef PI
# ifdef M_PI
#  define PI M_PI
# else
#  define PI 3.14159265358979323846
# endif
#endif

/* global declarations */
void init_fdct (void);
void fdct (short *block);

/* private data */
static double c[8][8]; /* transform coefficients */

void init_fdct()
{
  int i, j;
  double s;

  for (i=0; i<8; i++)
  {
    s = (i==0) ? sqrt(0.125) : 0.5;

    for (j=0; j<8; j++)
      c[i][j] = s * cos((PI/8.0)*i*(j+0.5));
  }
}

void fdct(block)
short *block;
{
	register int i, j;
	double s;
	double tmp[64];

	for(i = 0; i < 8; i++)
    	for(j = 0; j < 8; j++)
    	{
    		s = 0.0;

/*
 *     		for(k = 0; k < 8; k++)
 *         		s += c[j][k] * block[8 * i + k];
 */
        	s += c[j][0] * block[8 * i + 0];
        	s += c[j][1] * block[8 * i + 1];
        	s += c[j][2] * block[8 * i + 2];
        	s += c[j][3] * block[8 * i + 3];
        	s += c[j][4] * block[8 * i + 4];
        	s += c[j][5] * block[8 * i + 5];
        	s += c[j][6] * block[8 * i + 6];
        	s += c[j][7] * block[8 * i + 7];

    		tmp[8 * i + j] = s;
    	}

	for(j = 0; j < 8; j++)
    	for(i = 0; i < 8; i++)
    	{
    		s = 0.0;

/*
 *     	  	for(k = 0; k < 8; k++)
 *        	    s += c[i][k] * tmp[8 * k + j];
 */
        	s += c[i][0] * tmp[8 * 0 + j];
        	s += c[i][1] * tmp[8 * 1 + j];
        	s += c[i][2] * tmp[8 * 2 + j];
        	s += c[i][3] * tmp[8 * 3 + j];
        	s += c[i][4] * tmp[8 * 4 + j];
        	s += c[i][5] * tmp[8 * 5 + j];
        	s += c[i][6] * tmp[8 * 6 + j];
        	s += c[i][7] * tmp[8 * 7 + j];
		s*=8.0;

    		block[8 * i + j] = (short)floor(s + 0.499999);
/*
 * reason for adding 0.499999 instead of 0.5:
 * s is quite often x.5 (at least for i and/or j = 0 or 4)
 * and setting the rounding threshold exactly to 0.5 leads to an
 * extremely high arithmetic implementation dependency of the result;
 * s being between x.5 and x.500001 (which is now incorrectly rounded
 * downwards instead of upwards) is assumed to occur less often
 * (if at all)
 */
      }
}

/* perform IDCT matrix multiply for 8x8 coefficient block */

void idct(block)
short *block;
{
  int i, j, k, v;
  double partial_product;
  double tmp[64];

  for (i=0; i<8; i++)
    for (j=0; j<8; j++)
    {
      partial_product = 0.0;

      for (k=0; k<8; k++)
        partial_product+= c[k][j]*block[8*i+k];

      tmp[8*i+j] = partial_product;
    }

  /* Transpose operation is integrated into address mapping by switching
     loop order of i and j */

  for (j=0; j<8; j++)
    for (i=0; i<8; i++)
    {
      partial_product = 0.0;

      for (k=0; k<8; k++)
        partial_product+= c[k][i]*tmp[8*k+j];

      v = (int) floor(partial_product+0.5);
      block[8*i+j] = v;
    }
}