summaryrefslogtreecommitdiff
path: root/libavcodec/fft.c
blob: 099ecbe282b2308697fcbbfa9b05232227c8c908 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
/*
 * FFT/IFFT transforms
 * Copyright (c) 2008 Loren Merritt
 * Copyright (c) 2002 Fabrice Bellard.
 * Partly based on libdjbfft by D. J. Bernstein
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file fft.c
 * FFT/IFFT transforms.
 */

#include "dsputil.h"

/* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
DECLARE_ALIGNED_16(FFTSample, ff_cos_16[8]);
DECLARE_ALIGNED_16(FFTSample, ff_cos_32[16]);
DECLARE_ALIGNED_16(FFTSample, ff_cos_64[32]);
DECLARE_ALIGNED_16(FFTSample, ff_cos_128[64]);
DECLARE_ALIGNED_16(FFTSample, ff_cos_256[128]);
DECLARE_ALIGNED_16(FFTSample, ff_cos_512[256]);
DECLARE_ALIGNED_16(FFTSample, ff_cos_1024[512]);
DECLARE_ALIGNED_16(FFTSample, ff_cos_2048[1024]);
DECLARE_ALIGNED_16(FFTSample, ff_cos_4096[2048]);
DECLARE_ALIGNED_16(FFTSample, ff_cos_8192[4096]);
DECLARE_ALIGNED_16(FFTSample, ff_cos_16384[8192]);
DECLARE_ALIGNED_16(FFTSample, ff_cos_32768[16384]);
DECLARE_ALIGNED_16(FFTSample, ff_cos_65536[32768]);
static FFTSample *ff_cos_tabs[] = {
    ff_cos_16, ff_cos_32, ff_cos_64, ff_cos_128, ff_cos_256, ff_cos_512, ff_cos_1024,
    ff_cos_2048, ff_cos_4096, ff_cos_8192, ff_cos_16384, ff_cos_32768, ff_cos_65536,
};

static int split_radix_permutation(int i, int n, int inverse)
{
    int m;
    if(n <= 2) return i&1;
    m = n >> 1;
    if(!(i&m))            return split_radix_permutation(i, m, inverse)*2;
    m >>= 1;
    if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
    else                  return split_radix_permutation(i, m, inverse)*4 - 1;
}

/**
 * The size of the FFT is 2^nbits. If inverse is TRUE, inverse FFT is
 * done
 */
int ff_fft_init(FFTContext *s, int nbits, int inverse)
{
    int i, j, m, n;
    float alpha, c1, s1, s2;
    int split_radix = 1;
    int av_unused has_vectors;

    if (nbits < 2 || nbits > 16)
        goto fail;
    s->nbits = nbits;
    n = 1 << nbits;

    s->tmp_buf = NULL;
    s->exptab = av_malloc((n / 2) * sizeof(FFTComplex));
    if (!s->exptab)
        goto fail;
    s->revtab = av_malloc(n * sizeof(uint16_t));
    if (!s->revtab)
        goto fail;
    s->inverse = inverse;

    s2 = inverse ? 1.0 : -1.0;

    s->fft_permute = ff_fft_permute_c;
    s->fft_calc = ff_fft_calc_c;
    s->imdct_calc = ff_imdct_calc_c;
    s->imdct_half = ff_imdct_half_c;
    s->exptab1 = NULL;

#if HAVE_MMX && HAVE_YASM
    has_vectors = mm_support();
    if (has_vectors & FF_MM_SSE) {
        /* SSE for P3/P4/K8 */
        s->imdct_calc = ff_imdct_calc_sse;
        s->imdct_half = ff_imdct_half_sse;
        s->fft_permute = ff_fft_permute_sse;
        s->fft_calc = ff_fft_calc_sse;
    } else if (has_vectors & FF_MM_3DNOWEXT) {
        /* 3DNowEx for K7 */
        s->imdct_calc = ff_imdct_calc_3dn2;
        s->imdct_half = ff_imdct_half_3dn2;
        s->fft_calc = ff_fft_calc_3dn2;
    } else if (has_vectors & FF_MM_3DNOW) {
        /* 3DNow! for K6-2/3 */
        s->imdct_calc = ff_imdct_calc_3dn;
        s->imdct_half = ff_imdct_half_3dn;
        s->fft_calc = ff_fft_calc_3dn;
    }
#elif HAVE_ALTIVEC && !defined ALTIVEC_USE_REFERENCE_C_CODE
    has_vectors = mm_support();
    if (has_vectors & FF_MM_ALTIVEC) {
        s->fft_calc = ff_fft_calc_altivec;
        split_radix = 0;
    }
#endif

    if (split_radix) {
        for(j=4; j<=nbits; j++) {
            int m = 1<<j;
            double freq = 2*M_PI/m;
            FFTSample *tab = ff_cos_tabs[j-4];
            for(i=0; i<=m/4; i++)
                tab[i] = cos(i*freq);
            for(i=1; i<m/4; i++)
                tab[m/2-i] = tab[i];
        }
        for(i=0; i<n; i++)
            s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = i;
        s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
    } else {
        int np, nblocks, np2, l;
        FFTComplex *q;

        for(i=0; i<(n/2); i++) {
            alpha = 2 * M_PI * (float)i / (float)n;
            c1 = cos(alpha);
            s1 = sin(alpha) * s2;
            s->exptab[i].re = c1;
            s->exptab[i].im = s1;
        }

        np = 1 << nbits;
        nblocks = np >> 3;
        np2 = np >> 1;
        s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex));
        if (!s->exptab1)
            goto fail;
        q = s->exptab1;
        do {
            for(l = 0; l < np2; l += 2 * nblocks) {
                *q++ = s->exptab[l];
                *q++ = s->exptab[l + nblocks];

                q->re = -s->exptab[l].im;
                q->im = s->exptab[l].re;
                q++;
                q->re = -s->exptab[l + nblocks].im;
                q->im = s->exptab[l + nblocks].re;
                q++;
            }
            nblocks = nblocks >> 1;
        } while (nblocks != 0);
        av_freep(&s->exptab);

        /* compute bit reverse table */
        for(i=0;i<n;i++) {
            m=0;
            for(j=0;j<nbits;j++) {
                m |= ((i >> j) & 1) << (nbits-j-1);
            }
            s->revtab[i]=m;
        }
    }

    return 0;
 fail:
    av_freep(&s->revtab);
    av_freep(&s->exptab);
    av_freep(&s->exptab1);
    av_freep(&s->tmp_buf);
    return -1;
}

/**
 * Do the permutation needed BEFORE calling ff_fft_calc()
 */
void ff_fft_permute_c(FFTContext *s, FFTComplex *z)
{
    int j, k, np;
    FFTComplex tmp;
    const uint16_t *revtab = s->revtab;
    np = 1 << s->nbits;

    if (s->tmp_buf) {
        /* TODO: handle split-radix permute in a more optimal way, probably in-place */
        for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
        memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
        return;
    }

    /* reverse */
    for(j=0;j<np;j++) {
        k = revtab[j];
        if (k < j) {
            tmp = z[k];
            z[k] = z[j];
            z[j] = tmp;
        }
    }
}

void ff_fft_end(FFTContext *s)
{
    av_freep(&s->revtab);
    av_freep(&s->exptab);
    av_freep(&s->exptab1);
    av_freep(&s->tmp_buf);
}

#define sqrthalf (float)M_SQRT1_2

#define BF(x,y,a,b) {\
    x = a - b;\
    y = a + b;\
}

#define BUTTERFLIES(a0,a1,a2,a3) {\
    BF(t3, t5, t5, t1);\
    BF(a2.re, a0.re, a0.re, t5);\
    BF(a3.im, a1.im, a1.im, t3);\
    BF(t4, t6, t2, t6);\
    BF(a3.re, a1.re, a1.re, t4);\
    BF(a2.im, a0.im, a0.im, t6);\
}

// force loading all the inputs before storing any.
// this is slightly slower for small data, but avoids store->load aliasing
// for addresses separated by large powers of 2.
#define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
    FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
    BF(t3, t5, t5, t1);\
    BF(a2.re, a0.re, r0, t5);\
    BF(a3.im, a1.im, i1, t3);\
    BF(t4, t6, t2, t6);\
    BF(a3.re, a1.re, r1, t4);\
    BF(a2.im, a0.im, i0, t6);\
}

#define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
    t1 = a2.re * wre + a2.im * wim;\
    t2 = a2.im * wre - a2.re * wim;\
    t5 = a3.re * wre - a3.im * wim;\
    t6 = a3.im * wre + a3.re * wim;\
    BUTTERFLIES(a0,a1,a2,a3)\
}

#define TRANSFORM_ZERO(a0,a1,a2,a3) {\
    t1 = a2.re;\
    t2 = a2.im;\
    t5 = a3.re;\
    t6 = a3.im;\
    BUTTERFLIES(a0,a1,a2,a3)\
}

/* z[0...8n-1], w[1...2n-1] */
#define PASS(name)\
static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
{\
    FFTSample t1, t2, t3, t4, t5, t6;\
    int o1 = 2*n;\
    int o2 = 4*n;\
    int o3 = 6*n;\
    const FFTSample *wim = wre+o1;\
    n--;\
\
    TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
    TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
    do {\
        z += 2;\
        wre += 2;\
        wim -= 2;\
        TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
        TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
    } while(--n);\
}

PASS(pass)
#undef BUTTERFLIES
#define BUTTERFLIES BUTTERFLIES_BIG
PASS(pass_big)

#define DECL_FFT(n,n2,n4)\
static void fft##n(FFTComplex *z)\
{\
    fft##n2(z);\
    fft##n4(z+n4*2);\
    fft##n4(z+n4*3);\
    pass(z,ff_cos_##n,n4/2);\
}

static void fft4(FFTComplex *z)
{
    FFTSample t1, t2, t3, t4, t5, t6, t7, t8;

    BF(t3, t1, z[0].re, z[1].re);
    BF(t8, t6, z[3].re, z[2].re);
    BF(z[2].re, z[0].re, t1, t6);
    BF(t4, t2, z[0].im, z[1].im);
    BF(t7, t5, z[2].im, z[3].im);
    BF(z[3].im, z[1].im, t4, t8);
    BF(z[3].re, z[1].re, t3, t7);
    BF(z[2].im, z[0].im, t2, t5);
}

static void fft8(FFTComplex *z)
{
    FFTSample t1, t2, t3, t4, t5, t6, t7, t8;

    fft4(z);

    BF(t1, z[5].re, z[4].re, -z[5].re);
    BF(t2, z[5].im, z[4].im, -z[5].im);
    BF(t3, z[7].re, z[6].re, -z[7].re);
    BF(t4, z[7].im, z[6].im, -z[7].im);
    BF(t8, t1, t3, t1);
    BF(t7, t2, t2, t4);
    BF(z[4].re, z[0].re, z[0].re, t1);
    BF(z[4].im, z[0].im, z[0].im, t2);
    BF(z[6].re, z[2].re, z[2].re, t7);
    BF(z[6].im, z[2].im, z[2].im, t8);

    TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
}

#if !CONFIG_SMALL
static void fft16(FFTComplex *z)
{
    FFTSample t1, t2, t3, t4, t5, t6;

    fft8(z);
    fft4(z+8);
    fft4(z+12);

    TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
    TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
    TRANSFORM(z[1],z[5],z[9],z[13],ff_cos_16[1],ff_cos_16[3]);
    TRANSFORM(z[3],z[7],z[11],z[15],ff_cos_16[3],ff_cos_16[1]);
}
#else
DECL_FFT(16,8,4)
#endif
DECL_FFT(32,16,8)
DECL_FFT(64,32,16)
DECL_FFT(128,64,32)
DECL_FFT(256,128,64)
DECL_FFT(512,256,128)
#if !CONFIG_SMALL
#define pass pass_big
#endif
DECL_FFT(1024,512,256)
DECL_FFT(2048,1024,512)
DECL_FFT(4096,2048,1024)
DECL_FFT(8192,4096,2048)
DECL_FFT(16384,8192,4096)
DECL_FFT(32768,16384,8192)
DECL_FFT(65536,32768,16384)

static void (*fft_dispatch[])(FFTComplex*) = {
    fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
    fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
};

/**
 * Do a complex FFT with the parameters defined in ff_fft_init(). The
 * input data must be permuted before with s->revtab table. No
 * 1.0/sqrt(n) normalization is done.
 */
void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
{
    fft_dispatch[s->nbits-2](z);
}