1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
|
/*
* This file is part of the Independent JPEG Group's software.
*
* The authors make NO WARRANTY or representation, either express or implied,
* with respect to this software, its quality, accuracy, merchantability, or
* fitness for a particular purpose. This software is provided "AS IS", and
* you, its user, assume the entire risk as to its quality and accuracy.
*
* This software is copyright (C) 1991, 1992, Thomas G. Lane.
* All Rights Reserved except as specified below.
*
* Permission is hereby granted to use, copy, modify, and distribute this
* software (or portions thereof) for any purpose, without fee, subject to
* these conditions:
* (1) If any part of the source code for this software is distributed, then
* this README file must be included, with this copyright and no-warranty
* notice unaltered; and any additions, deletions, or changes to the original
* files must be clearly indicated in accompanying documentation.
* (2) If only executable code is distributed, then the accompanying
* documentation must state that "this software is based in part on the work
* of the Independent JPEG Group".
* (3) Permission for use of this software is granted only if the user accepts
* full responsibility for any undesirable consequences; the authors accept
* NO LIABILITY for damages of any kind.
*
* These conditions apply to any software derived from or based on the IJG
* code, not just to the unmodified library. If you use our work, you ought
* to acknowledge us.
*
* Permission is NOT granted for the use of any IJG author's name or company
* name in advertising or publicity relating to this software or products
* derived from it. This software may be referred to only as "the Independent
* JPEG Group's software".
*
* We specifically permit and encourage the use of this software as the basis
* of commercial products, provided that all warranty or liability claims are
* assumed by the product vendor.
*
* This file contains the basic inverse-DCT transformation subroutine.
*
* This implementation is based on an algorithm described in
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
* The primary algorithm described there uses 11 multiplies and 29 adds.
* We use their alternate method with 12 multiplies and 32 adds.
* The advantage of this method is that no data path contains more than one
* multiplication; this allows a very simple and accurate implementation in
* scaled fixed-point arithmetic, with a minimal number of shifts.
*
* I've made lots of modifications to attempt to take advantage of the
* sparse nature of the DCT matrices we're getting. Although the logic
* is cumbersome, it's straightforward and the resulting code is much
* faster.
*
* A better way to do this would be to pass in the DCT block as a sparse
* matrix, perhaps with the difference cases encoded.
*/
/**
* @file
* Independent JPEG Group's LLM idct.
*/
#include "libavutil/common.h"
#include "dsputil.h"
#define EIGHT_BIT_SAMPLES
#define DCTSIZE 8
#define DCTSIZE2 64
#define GLOBAL
#define RIGHT_SHIFT(x, n) ((x) >> (n))
typedef DCTELEM DCTBLOCK[DCTSIZE2];
#define CONST_BITS 13
/*
* This routine is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif
/*
* A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT
* on each column. Direct algorithms are also available, but they are
* much more complex and seem not to be any faster when reduced to code.
*
* The poop on this scaling stuff is as follows:
*
* Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
* larger than the true IDCT outputs. The final outputs are therefore
* a factor of N larger than desired; since N=8 this can be cured by
* a simple right shift at the end of the algorithm. The advantage of
* this arrangement is that we save two multiplications per 1-D IDCT,
* because the y0 and y4 inputs need not be divided by sqrt(N).
*
* We have to do addition and subtraction of the integer inputs, which
* is no problem, and multiplication by fractional constants, which is
* a problem to do in integer arithmetic. We multiply all the constants
* by CONST_SCALE and convert them to integer constants (thus retaining
* CONST_BITS bits of precision in the constants). After doing a
* multiplication we have to divide the product by CONST_SCALE, with proper
* rounding, to produce the correct output. This division can be done
* cheaply as a right shift of CONST_BITS bits. We postpone shifting
* as long as possible so that partial sums can be added together with
* full fractional precision.
*
* The outputs of the first pass are scaled up by PASS1_BITS bits so that
* they are represented to better-than-integral precision. These outputs
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
* with the recommended scaling. (To scale up 12-bit sample data further, an
* intermediate int32 array would be needed.)
*
* To avoid overflow of the 32-bit intermediate results in pass 2, we must
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
* shows that the values given below are the most effective.
*/
#ifdef EIGHT_BIT_SAMPLES
#define PASS1_BITS 2
#else
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
#endif
#define ONE ((int32_t) 1)
#define CONST_SCALE (ONE << CONST_BITS)
/* Convert a positive real constant to an integer scaled by CONST_SCALE.
* IMPORTANT: if your compiler doesn't do this arithmetic at compile time,
* you will pay a significant penalty in run time. In that case, figure
* the correct integer constant values and insert them by hand.
*/
/* Actually FIX is no longer used, we precomputed them all */
#define FIX(x) ((int32_t) ((x) * CONST_SCALE + 0.5))
/* Descale and correctly round an int32_t value that's scaled by N bits.
* We assume RIGHT_SHIFT rounds towards minus infinity, so adding
* the fudge factor is correct for either sign of X.
*/
#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
/* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
* For 8-bit samples with the recommended scaling, all the variable
* and constant values involved are no more than 16 bits wide, so a
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply;
* this provides a useful speedup on many machines.
* There is no way to specify a 16x16->32 multiply in portable C, but
* some C compilers will do the right thing if you provide the correct
* combination of casts.
* NB: for 12-bit samples, a full 32-bit multiplication will be needed.
*/
#ifdef EIGHT_BIT_SAMPLES
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
#define MULTIPLY(var,const) (((int16_t) (var)) * ((int16_t) (const)))
#endif
#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
#define MULTIPLY(var,const) (((int16_t) (var)) * ((int32_t) (const)))
#endif
#endif
#ifndef MULTIPLY /* default definition */
#define MULTIPLY(var,const) ((var) * (const))
#endif
/*
Unlike our decoder where we approximate the FIXes, we need to use exact
ones here or successive P-frames will drift too much with Reference frame coding
*/
#define FIX_0_211164243 1730
#define FIX_0_275899380 2260
#define FIX_0_298631336 2446
#define FIX_0_390180644 3196
#define FIX_0_509795579 4176
#define FIX_0_541196100 4433
#define FIX_0_601344887 4926
#define FIX_0_765366865 6270
#define FIX_0_785694958 6436
#define FIX_0_899976223 7373
#define FIX_1_061594337 8697
#define FIX_1_111140466 9102
#define FIX_1_175875602 9633
#define FIX_1_306562965 10703
#define FIX_1_387039845 11363
#define FIX_1_451774981 11893
#define FIX_1_501321110 12299
#define FIX_1_662939225 13623
#define FIX_1_847759065 15137
#define FIX_1_961570560 16069
#define FIX_2_053119869 16819
#define FIX_2_172734803 17799
#define FIX_2_562915447 20995
#define FIX_3_072711026 25172
/*
* Perform the inverse DCT on one block of coefficients.
*/
void ff_j_rev_dct(DCTBLOCK data)
{
int32_t tmp0, tmp1, tmp2, tmp3;
int32_t tmp10, tmp11, tmp12, tmp13;
int32_t z1, z2, z3, z4, z5;
int32_t d0, d1, d2, d3, d4, d5, d6, d7;
register DCTELEM *dataptr;
int rowctr;
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true IDCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
dataptr = data;
for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
/* Due to quantization, we will usually find that many of the input
* coefficients are zero, especially the AC terms. We can exploit this
* by short-circuiting the IDCT calculation for any row in which all
* the AC terms are zero. In that case each output is equal to the
* DC coefficient (with scale factor as needed).
* With typical images and quantization tables, half or more of the
* row DCT calculations can be simplified this way.
*/
register int *idataptr = (int*)dataptr;
/* WARNING: we do the same permutation as MMX idct to simplify the
video core */
d0 = dataptr[0];
d2 = dataptr[1];
d4 = dataptr[2];
d6 = dataptr[3];
d1 = dataptr[4];
d3 = dataptr[5];
d5 = dataptr[6];
d7 = dataptr[7];
if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) {
/* AC terms all zero */
if (d0) {
/* Compute a 32 bit value to assign. */
DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS);
register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000);
idataptr[0] = v;
idataptr[1] = v;
idataptr[2] = v;
idataptr[3] = v;
}
dataptr += DCTSIZE; /* advance pointer to next row */
continue;
}
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
{
if (d6) {
if (d2) {
/* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
tmp0 = (d0 + d4) << CONST_BITS;
tmp1 = (d0 - d4) << CONST_BITS;
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
} else {
/* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
tmp2 = MULTIPLY(-d6, FIX_1_306562965);
tmp3 = MULTIPLY(d6, FIX_0_541196100);
tmp0 = (d0 + d4) << CONST_BITS;
tmp1 = (d0 - d4) << CONST_BITS;
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
}
} else {
if (d2) {
/* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
tmp2 = MULTIPLY(d2, FIX_0_541196100);
tmp3 = MULTIPLY(d2, FIX_1_306562965);
tmp0 = (d0 + d4) << CONST_BITS;
tmp1 = (d0 - d4) << CONST_BITS;
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
} else {
/* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
}
}
/* Odd part per figure 8; the matrix is unitary and hence its
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
*/
if (d7) {
if (d5) {
if (d3) {
if (d1) {
/* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
z1 = d7 + d1;
z2 = d5 + d3;
z3 = d7 + d3;
z4 = d5 + d1;
z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
tmp0 = MULTIPLY(d7, FIX_0_298631336);
tmp1 = MULTIPLY(d5, FIX_2_053119869);
tmp2 = MULTIPLY(d3, FIX_3_072711026);
tmp3 = MULTIPLY(d1, FIX_1_501321110);
z1 = MULTIPLY(-z1, FIX_0_899976223);
z2 = MULTIPLY(-z2, FIX_2_562915447);
z3 = MULTIPLY(-z3, FIX_1_961570560);
z4 = MULTIPLY(-z4, FIX_0_390180644);
z3 += z5;
z4 += z5;
tmp0 += z1 + z3;
tmp1 += z2 + z4;
tmp2 += z2 + z3;
tmp3 += z1 + z4;
} else {
/* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
z2 = d5 + d3;
z3 = d7 + d3;
z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
tmp0 = MULTIPLY(d7, FIX_0_298631336);
tmp1 = MULTIPLY(d5, FIX_2_053119869);
tmp2 = MULTIPLY(d3, FIX_3_072711026);
z1 = MULTIPLY(-d7, FIX_0_899976223);
z2 = MULTIPLY(-z2, FIX_2_562915447);
z3 = MULTIPLY(-z3, FIX_1_961570560);
z4 = MULTIPLY(-d5, FIX_0_390180644);
z3 += z5;
z4 += z5;
tmp0 += z1 + z3;
tmp1 += z2 + z4;
tmp2 += z2 + z3;
tmp3 = z1 + z4;
}
} else {
if (d1) {
/* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
z1 = d7 + d1;
z4 = d5 + d1;
z5 = MULTIPLY(d7 + z4, FIX_1_175875602);
tmp0 = MULTIPLY(d7, FIX_0_298631336);
tmp1 = MULTIPLY(d5, FIX_2_053119869);
tmp3 = MULTIPLY(d1, FIX_1_501321110);
z1 = MULTIPLY(-z1, FIX_0_899976223);
z2 = MULTIPLY(-d5, FIX_2_562915447);
z3 = MULTIPLY(-d7, FIX_1_961570560);
z4 = MULTIPLY(-z4, FIX_0_390180644);
z3 += z5;
z4 += z5;
tmp0 += z1 + z3;
tmp1 += z2 + z4;
tmp2 = z2 + z3;
tmp3 += z1 + z4;
} else {
/* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
tmp0 = MULTIPLY(-d7, FIX_0_601344887);
z1 = MULTIPLY(-d7, FIX_0_899976223);
z3 = MULTIPLY(-d7, FIX_1_961570560);
tmp1 = MULTIPLY(-d5, FIX_0_509795579);
z2 = MULTIPLY(-d5, FIX_2_562915447);
z4 = MULTIPLY(-d5, FIX_0_390180644);
z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
z3 += z5;
z4 += z5;
tmp0 += z3;
tmp1 += z4;
tmp2 = z2 + z3;
tmp3 = z1 + z4;
}
}
} else {
if (d3) {
if (d1) {
/* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
z1 = d7 + d1;
z3 = d7 + d3;
z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
tmp0 = MULTIPLY(d7, FIX_0_298631336);
tmp2 = MULTIPLY(d3, FIX_3_072711026);
tmp3 = MULTIPLY(d1, FIX_1_501321110);
z1 = MULTIPLY(-z1, FIX_0_899976223);
z2 = MULTIPLY(-d3, FIX_2_562915447);
z3 = MULTIPLY(-z3, FIX_1_961570560);
z4 = MULTIPLY(-d1, FIX_0_390180644);
z3 += z5;
z4 += z5;
tmp0 += z1 + z3;
tmp1 = z2 + z4;
tmp2 += z2 + z3;
tmp3 += z1 + z4;
} else {
/* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
z3 = d7 + d3;
tmp0 = MULTIPLY(-d7, FIX_0_601344887);
z1 = MULTIPLY(-d7, FIX_0_899976223);
tmp2 = MULTIPLY(d3, FIX_0_509795579);
z2 = MULTIPLY(-d3, FIX_2_562915447);
z5 = MULTIPLY(z3, FIX_1_175875602);
z3 = MULTIPLY(-z3, FIX_0_785694958);
tmp0 += z3;
tmp1 = z2 + z5;
tmp2 += z3;
tmp3 = z1 + z5;
}
} else {
if (d1) {
/* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
z1 = d7 + d1;
z5 = MULTIPLY(z1, FIX_1_175875602);
z1 = MULTIPLY(z1, FIX_0_275899380);
z3 = MULTIPLY(-d7, FIX_1_961570560);
tmp0 = MULTIPLY(-d7, FIX_1_662939225);
z4 = MULTIPLY(-d1, FIX_0_390180644);
tmp3 = MULTIPLY(d1, FIX_1_111140466);
tmp0 += z1;
tmp1 = z4 + z5;
tmp2 = z3 + z5;
tmp3 += z1;
} else {
/* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
tmp0 = MULTIPLY(-d7, FIX_1_387039845);
tmp1 = MULTIPLY(d7, FIX_1_175875602);
tmp2 = MULTIPLY(-d7, FIX_0_785694958);
tmp3 = MULTIPLY(d7, FIX_0_275899380);
}
}
}
} else {
if (d5) {
if (d3) {
if (d1) {
/* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
z2 = d5 + d3;
z4 = d5 + d1;
z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
tmp1 = MULTIPLY(d5, FIX_2_053119869);
tmp2 = MULTIPLY(d3, FIX_3_072711026);
tmp3 = MULTIPLY(d1, FIX_1_501321110);
z1 = MULTIPLY(-d1, FIX_0_899976223);
z2 = MULTIPLY(-z2, FIX_2_562915447);
z3 = MULTIPLY(-d3, FIX_1_961570560);
z4 = MULTIPLY(-z4, FIX_0_390180644);
z3 += z5;
z4 += z5;
tmp0 = z1 + z3;
tmp1 += z2 + z4;
tmp2 += z2 + z3;
tmp3 += z1 + z4;
} else {
/* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
z2 = d5 + d3;
z5 = MULTIPLY(z2, FIX_1_175875602);
tmp1 = MULTIPLY(d5, FIX_1_662939225);
z4 = MULTIPLY(-d5, FIX_0_390180644);
z2 = MULTIPLY(-z2, FIX_1_387039845);
tmp2 = MULTIPLY(d3, FIX_1_111140466);
z3 = MULTIPLY(-d3, FIX_1_961570560);
tmp0 = z3 + z5;
tmp1 += z2;
tmp2 += z2;
tmp3 = z4 + z5;
}
} else {
if (d1) {
/* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
z4 = d5 + d1;
z5 = MULTIPLY(z4, FIX_1_175875602);
z1 = MULTIPLY(-d1, FIX_0_899976223);
tmp3 = MULTIPLY(d1, FIX_0_601344887);
tmp1 = MULTIPLY(-d5, FIX_0_509795579);
z2 = MULTIPLY(-d5, FIX_2_562915447);
z4 = MULTIPLY(z4, FIX_0_785694958);
tmp0 = z1 + z5;
tmp1 += z4;
tmp2 = z2 + z5;
tmp3 += z4;
} else {
/* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
tmp0 = MULTIPLY(d5, FIX_1_175875602);
tmp1 = MULTIPLY(d5, FIX_0_275899380);
tmp2 = MULTIPLY(-d5, FIX_1_387039845);
tmp3 = MULTIPLY(d5, FIX_0_785694958);
}
}
} else {
if (d3) {
if (d1) {
/* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
z5 = d1 + d3;
tmp3 = MULTIPLY(d1, FIX_0_211164243);
tmp2 = MULTIPLY(-d3, FIX_1_451774981);
z1 = MULTIPLY(d1, FIX_1_061594337);
z2 = MULTIPLY(-d3, FIX_2_172734803);
z4 = MULTIPLY(z5, FIX_0_785694958);
z5 = MULTIPLY(z5, FIX_1_175875602);
tmp0 = z1 - z4;
tmp1 = z2 + z4;
tmp2 += z5;
tmp3 += z5;
} else {
/* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
tmp0 = MULTIPLY(-d3, FIX_0_785694958);
tmp1 = MULTIPLY(-d3, FIX_1_387039845);
tmp2 = MULTIPLY(-d3, FIX_0_275899380);
tmp3 = MULTIPLY(d3, FIX_1_175875602);
}
} else {
if (d1) {
/* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
tmp0 = MULTIPLY(d1, FIX_0_275899380);
tmp1 = MULTIPLY(d1, FIX_0_785694958);
tmp2 = MULTIPLY(d1, FIX_1_175875602);
tmp3 = MULTIPLY(d1, FIX_1_387039845);
} else {
/* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
tmp0 = tmp1 = tmp2 = tmp3 = 0;
}
}
}
}
}
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
dataptr[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
dataptr[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
dataptr[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
dataptr[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
dataptr[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
dataptr[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
dataptr[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
dataptr += DCTSIZE; /* advance pointer to next row */
}
/* Pass 2: process columns. */
/* Note that we must descale the results by a factor of 8 == 2**3, */
/* and also undo the PASS1_BITS scaling. */
dataptr = data;
for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
/* Columns of zeroes can be exploited in the same way as we did with rows.
* However, the row calculation has created many nonzero AC terms, so the
* simplification applies less often (typically 5% to 10% of the time).
* On machines with very fast multiplication, it's possible that the
* test takes more time than it's worth. In that case this section
* may be commented out.
*/
d0 = dataptr[DCTSIZE*0];
d1 = dataptr[DCTSIZE*1];
d2 = dataptr[DCTSIZE*2];
d3 = dataptr[DCTSIZE*3];
d4 = dataptr[DCTSIZE*4];
d5 = dataptr[DCTSIZE*5];
d6 = dataptr[DCTSIZE*6];
d7 = dataptr[DCTSIZE*7];
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
if (d6) {
if (d2) {
/* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
tmp0 = (d0 + d4) << CONST_BITS;
tmp1 = (d0 - d4) << CONST_BITS;
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
} else {
/* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
tmp2 = MULTIPLY(-d6, FIX_1_306562965);
tmp3 = MULTIPLY(d6, FIX_0_541196100);
tmp0 = (d0 + d4) << CONST_BITS;
tmp1 = (d0 - d4) << CONST_BITS;
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
}
} else {
if (d2) {
/* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
tmp2 = MULTIPLY(d2, FIX_0_541196100);
tmp3 = MULTIPLY(d2, FIX_1_306562965);
tmp0 = (d0 + d4) << CONST_BITS;
tmp1 = (d0 - d4) << CONST_BITS;
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
} else {
/* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
}
}
/* Odd part per figure 8; the matrix is unitary and hence its
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
*/
if (d7) {
if (d5) {
if (d3) {
if (d1) {
/* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
z1 = d7 + d1;
z2 = d5 + d3;
z3 = d7 + d3;
z4 = d5 + d1;
z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
tmp0 = MULTIPLY(d7, FIX_0_298631336);
tmp1 = MULTIPLY(d5, FIX_2_053119869);
tmp2 = MULTIPLY(d3, FIX_3_072711026);
tmp3 = MULTIPLY(d1, FIX_1_501321110);
z1 = MULTIPLY(-z1, FIX_0_899976223);
z2 = MULTIPLY(-z2, FIX_2_562915447);
z3 = MULTIPLY(-z3, FIX_1_961570560);
z4 = MULTIPLY(-z4, FIX_0_390180644);
z3 += z5;
z4 += z5;
tmp0 += z1 + z3;
tmp1 += z2 + z4;
tmp2 += z2 + z3;
tmp3 += z1 + z4;
} else {
/* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
z2 = d5 + d3;
z3 = d7 + d3;
z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
tmp0 = MULTIPLY(d7, FIX_0_298631336);
tmp1 = MULTIPLY(d5, FIX_2_053119869);
tmp2 = MULTIPLY(d3, FIX_3_072711026);
z1 = MULTIPLY(-d7, FIX_0_899976223);
z2 = MULTIPLY(-z2, FIX_2_562915447);
z3 = MULTIPLY(-z3, FIX_1_961570560);
z4 = MULTIPLY(-d5, FIX_0_390180644);
z3 += z5;
z4 += z5;
tmp0 += z1 + z3;
tmp1 += z2 + z4;
tmp2 += z2 + z3;
tmp3 = z1 + z4;
}
} else {
if (d1) {
/* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
z1 = d7 + d1;
z3 = d7;
z4 = d5 + d1;
z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
tmp0 = MULTIPLY(d7, FIX_0_298631336);
tmp1 = MULTIPLY(d5, FIX_2_053119869);
tmp3 = MULTIPLY(d1, FIX_1_501321110);
z1 = MULTIPLY(-z1, FIX_0_899976223);
z2 = MULTIPLY(-d5, FIX_2_562915447);
z3 = MULTIPLY(-d7, FIX_1_961570560);
z4 = MULTIPLY(-z4, FIX_0_390180644);
z3 += z5;
z4 += z5;
tmp0 += z1 + z3;
tmp1 += z2 + z4;
tmp2 = z2 + z3;
tmp3 += z1 + z4;
} else {
/* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
tmp0 = MULTIPLY(-d7, FIX_0_601344887);
z1 = MULTIPLY(-d7, FIX_0_899976223);
z3 = MULTIPLY(-d7, FIX_1_961570560);
tmp1 = MULTIPLY(-d5, FIX_0_509795579);
z2 = MULTIPLY(-d5, FIX_2_562915447);
z4 = MULTIPLY(-d5, FIX_0_390180644);
z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
z3 += z5;
z4 += z5;
tmp0 += z3;
tmp1 += z4;
tmp2 = z2 + z3;
tmp3 = z1 + z4;
}
}
} else {
if (d3) {
if (d1) {
/* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
z1 = d7 + d1;
z3 = d7 + d3;
z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
tmp0 = MULTIPLY(d7, FIX_0_298631336);
tmp2 = MULTIPLY(d3, FIX_3_072711026);
tmp3 = MULTIPLY(d1, FIX_1_501321110);
z1 = MULTIPLY(-z1, FIX_0_899976223);
z2 = MULTIPLY(-d3, FIX_2_562915447);
z3 = MULTIPLY(-z3, FIX_1_961570560);
z4 = MULTIPLY(-d1, FIX_0_390180644);
z3 += z5;
z4 += z5;
tmp0 += z1 + z3;
tmp1 = z2 + z4;
tmp2 += z2 + z3;
tmp3 += z1 + z4;
} else {
/* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
z3 = d7 + d3;
tmp0 = MULTIPLY(-d7, FIX_0_601344887);
z1 = MULTIPLY(-d7, FIX_0_899976223);
tmp2 = MULTIPLY(d3, FIX_0_509795579);
z2 = MULTIPLY(-d3, FIX_2_562915447);
z5 = MULTIPLY(z3, FIX_1_175875602);
z3 = MULTIPLY(-z3, FIX_0_785694958);
tmp0 += z3;
tmp1 = z2 + z5;
tmp2 += z3;
tmp3 = z1 + z5;
}
} else {
if (d1) {
/* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
z1 = d7 + d1;
z5 = MULTIPLY(z1, FIX_1_175875602);
z1 = MULTIPLY(z1, FIX_0_275899380);
z3 = MULTIPLY(-d7, FIX_1_961570560);
tmp0 = MULTIPLY(-d7, FIX_1_662939225);
z4 = MULTIPLY(-d1, FIX_0_390180644);
tmp3 = MULTIPLY(d1, FIX_1_111140466);
tmp0 += z1;
tmp1 = z4 + z5;
tmp2 = z3 + z5;
tmp3 += z1;
} else {
/* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
tmp0 = MULTIPLY(-d7, FIX_1_387039845);
tmp1 = MULTIPLY(d7, FIX_1_175875602);
tmp2 = MULTIPLY(-d7, FIX_0_785694958);
tmp3 = MULTIPLY(d7, FIX_0_275899380);
}
}
}
} else {
if (d5) {
if (d3) {
if (d1) {
/* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
z2 = d5 + d3;
z4 = d5 + d1;
z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
tmp1 = MULTIPLY(d5, FIX_2_053119869);
tmp2 = MULTIPLY(d3, FIX_3_072711026);
tmp3 = MULTIPLY(d1, FIX_1_501321110);
z1 = MULTIPLY(-d1, FIX_0_899976223);
z2 = MULTIPLY(-z2, FIX_2_562915447);
z3 = MULTIPLY(-d3, FIX_1_961570560);
z4 = MULTIPLY(-z4, FIX_0_390180644);
z3 += z5;
z4 += z5;
tmp0 = z1 + z3;
tmp1 += z2 + z4;
tmp2 += z2 + z3;
tmp3 += z1 + z4;
} else {
/* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
z2 = d5 + d3;
z5 = MULTIPLY(z2, FIX_1_175875602);
tmp1 = MULTIPLY(d5, FIX_1_662939225);
z4 = MULTIPLY(-d5, FIX_0_390180644);
z2 = MULTIPLY(-z2, FIX_1_387039845);
tmp2 = MULTIPLY(d3, FIX_1_111140466);
z3 = MULTIPLY(-d3, FIX_1_961570560);
tmp0 = z3 + z5;
tmp1 += z2;
tmp2 += z2;
tmp3 = z4 + z5;
}
} else {
if (d1) {
/* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
z4 = d5 + d1;
z5 = MULTIPLY(z4, FIX_1_175875602);
z1 = MULTIPLY(-d1, FIX_0_899976223);
tmp3 = MULTIPLY(d1, FIX_0_601344887);
tmp1 = MULTIPLY(-d5, FIX_0_509795579);
z2 = MULTIPLY(-d5, FIX_2_562915447);
z4 = MULTIPLY(z4, FIX_0_785694958);
tmp0 = z1 + z5;
tmp1 += z4;
tmp2 = z2 + z5;
tmp3 += z4;
} else {
/* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
tmp0 = MULTIPLY(d5, FIX_1_175875602);
tmp1 = MULTIPLY(d5, FIX_0_275899380);
tmp2 = MULTIPLY(-d5, FIX_1_387039845);
tmp3 = MULTIPLY(d5, FIX_0_785694958);
}
}
} else {
if (d3) {
if (d1) {
/* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
z5 = d1 + d3;
tmp3 = MULTIPLY(d1, FIX_0_211164243);
tmp2 = MULTIPLY(-d3, FIX_1_451774981);
z1 = MULTIPLY(d1, FIX_1_061594337);
z2 = MULTIPLY(-d3, FIX_2_172734803);
z4 = MULTIPLY(z5, FIX_0_785694958);
z5 = MULTIPLY(z5, FIX_1_175875602);
tmp0 = z1 - z4;
tmp1 = z2 + z4;
tmp2 += z5;
tmp3 += z5;
} else {
/* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
tmp0 = MULTIPLY(-d3, FIX_0_785694958);
tmp1 = MULTIPLY(-d3, FIX_1_387039845);
tmp2 = MULTIPLY(-d3, FIX_0_275899380);
tmp3 = MULTIPLY(d3, FIX_1_175875602);
}
} else {
if (d1) {
/* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
tmp0 = MULTIPLY(d1, FIX_0_275899380);
tmp1 = MULTIPLY(d1, FIX_0_785694958);
tmp2 = MULTIPLY(d1, FIX_1_175875602);
tmp3 = MULTIPLY(d1, FIX_1_387039845);
} else {
/* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
tmp0 = tmp1 = tmp2 = tmp3 = 0;
}
}
}
}
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp3,
CONST_BITS+PASS1_BITS+3);
dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp10 - tmp3,
CONST_BITS+PASS1_BITS+3);
dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp11 + tmp2,
CONST_BITS+PASS1_BITS+3);
dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(tmp11 - tmp2,
CONST_BITS+PASS1_BITS+3);
dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp12 + tmp1,
CONST_BITS+PASS1_BITS+3);
dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12 - tmp1,
CONST_BITS+PASS1_BITS+3);
dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp13 + tmp0,
CONST_BITS+PASS1_BITS+3);
dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp13 - tmp0,
CONST_BITS+PASS1_BITS+3);
dataptr++; /* advance pointer to next column */
}
}
#undef DCTSIZE
#define DCTSIZE 4
#define DCTSTRIDE 8
void ff_j_rev_dct4(DCTBLOCK data)
{
int32_t tmp0, tmp1, tmp2, tmp3;
int32_t tmp10, tmp11, tmp12, tmp13;
int32_t z1;
int32_t d0, d2, d4, d6;
register DCTELEM *dataptr;
int rowctr;
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true IDCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
data[0] += 4;
dataptr = data;
for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
/* Due to quantization, we will usually find that many of the input
* coefficients are zero, especially the AC terms. We can exploit this
* by short-circuiting the IDCT calculation for any row in which all
* the AC terms are zero. In that case each output is equal to the
* DC coefficient (with scale factor as needed).
* With typical images and quantization tables, half or more of the
* row DCT calculations can be simplified this way.
*/
register int *idataptr = (int*)dataptr;
d0 = dataptr[0];
d2 = dataptr[1];
d4 = dataptr[2];
d6 = dataptr[3];
if ((d2 | d4 | d6) == 0) {
/* AC terms all zero */
if (d0) {
/* Compute a 32 bit value to assign. */
DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS);
register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000);
idataptr[0] = v;
idataptr[1] = v;
}
dataptr += DCTSTRIDE; /* advance pointer to next row */
continue;
}
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
if (d6) {
if (d2) {
/* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
tmp0 = (d0 + d4) << CONST_BITS;
tmp1 = (d0 - d4) << CONST_BITS;
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
} else {
/* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
tmp2 = MULTIPLY(-d6, FIX_1_306562965);
tmp3 = MULTIPLY(d6, FIX_0_541196100);
tmp0 = (d0 + d4) << CONST_BITS;
tmp1 = (d0 - d4) << CONST_BITS;
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
}
} else {
if (d2) {
/* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
tmp2 = MULTIPLY(d2, FIX_0_541196100);
tmp3 = MULTIPLY(d2, FIX_1_306562965);
tmp0 = (d0 + d4) << CONST_BITS;
tmp1 = (d0 - d4) << CONST_BITS;
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
} else {
/* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
}
}
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
dataptr[0] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
dataptr[1] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
dataptr[2] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
dataptr[3] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
dataptr += DCTSTRIDE; /* advance pointer to next row */
}
/* Pass 2: process columns. */
/* Note that we must descale the results by a factor of 8 == 2**3, */
/* and also undo the PASS1_BITS scaling. */
dataptr = data;
for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
/* Columns of zeroes can be exploited in the same way as we did with rows.
* However, the row calculation has created many nonzero AC terms, so the
* simplification applies less often (typically 5% to 10% of the time).
* On machines with very fast multiplication, it's possible that the
* test takes more time than it's worth. In that case this section
* may be commented out.
*/
d0 = dataptr[DCTSTRIDE*0];
d2 = dataptr[DCTSTRIDE*1];
d4 = dataptr[DCTSTRIDE*2];
d6 = dataptr[DCTSTRIDE*3];
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
if (d6) {
if (d2) {
/* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
tmp0 = (d0 + d4) << CONST_BITS;
tmp1 = (d0 - d4) << CONST_BITS;
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
} else {
/* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
tmp2 = MULTIPLY(-d6, FIX_1_306562965);
tmp3 = MULTIPLY(d6, FIX_0_541196100);
tmp0 = (d0 + d4) << CONST_BITS;
tmp1 = (d0 - d4) << CONST_BITS;
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
}
} else {
if (d2) {
/* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
tmp2 = MULTIPLY(d2, FIX_0_541196100);
tmp3 = MULTIPLY(d2, FIX_1_306562965);
tmp0 = (d0 + d4) << CONST_BITS;
tmp1 = (d0 - d4) << CONST_BITS;
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
} else {
/* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
}
}
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
dataptr[DCTSTRIDE*0] = tmp10 >> (CONST_BITS+PASS1_BITS+3);
dataptr[DCTSTRIDE*1] = tmp11 >> (CONST_BITS+PASS1_BITS+3);
dataptr[DCTSTRIDE*2] = tmp12 >> (CONST_BITS+PASS1_BITS+3);
dataptr[DCTSTRIDE*3] = tmp13 >> (CONST_BITS+PASS1_BITS+3);
dataptr++; /* advance pointer to next column */
}
}
void ff_j_rev_dct2(DCTBLOCK data){
int d00, d01, d10, d11;
data[0] += 4;
d00 = data[0+0*DCTSTRIDE] + data[1+0*DCTSTRIDE];
d01 = data[0+0*DCTSTRIDE] - data[1+0*DCTSTRIDE];
d10 = data[0+1*DCTSTRIDE] + data[1+1*DCTSTRIDE];
d11 = data[0+1*DCTSTRIDE] - data[1+1*DCTSTRIDE];
data[0+0*DCTSTRIDE]= (d00 + d10)>>3;
data[1+0*DCTSTRIDE]= (d01 + d11)>>3;
data[0+1*DCTSTRIDE]= (d00 - d10)>>3;
data[1+1*DCTSTRIDE]= (d01 - d11)>>3;
}
void ff_j_rev_dct1(DCTBLOCK data){
data[0] = (data[0] + 4)>>3;
}
#undef FIX
#undef CONST_BITS
|