summaryrefslogtreecommitdiff
path: root/libavcodec/lagarith.c
blob: 39fbfab94f5bcb8f7b492ef97486356ce2062f87 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
/*
 * Lagarith lossless decoder
 * Copyright (c) 2009 Nathan Caldwell <saintdev (at) gmail.com>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * Lagarith lossless decoder
 * @author Nathan Caldwell
 */

#include <inttypes.h>

#include "avcodec.h"
#include "codec_internal.h"
#include "get_bits.h"
#include "mathops.h"
#include "lagarithrac.h"
#include "lossless_videodsp.h"
#include "thread.h"

enum LagarithFrameType {
    FRAME_RAW           = 1,    /**< uncompressed */
    FRAME_U_RGB24       = 2,    /**< unaligned RGB24 */
    FRAME_ARITH_YUY2    = 3,    /**< arithmetic coded YUY2 */
    FRAME_ARITH_RGB24   = 4,    /**< arithmetic coded RGB24 */
    FRAME_SOLID_GRAY    = 5,    /**< solid grayscale color frame */
    FRAME_SOLID_COLOR   = 6,    /**< solid non-grayscale color frame */
    FRAME_OLD_ARITH_RGB = 7,    /**< obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) */
    FRAME_ARITH_RGBA    = 8,    /**< arithmetic coded RGBA */
    FRAME_SOLID_RGBA    = 9,    /**< solid RGBA color frame */
    FRAME_ARITH_YV12    = 10,   /**< arithmetic coded YV12 */
    FRAME_REDUCED_RES   = 11,   /**< reduced resolution YV12 frame */
};

typedef struct LagarithContext {
    AVCodecContext *avctx;
    LLVidDSPContext llviddsp;
    int zeros;                  /**< number of consecutive zero bytes encountered */
    int zeros_rem;              /**< number of zero bytes remaining to output */
} LagarithContext;

/**
 * Compute the 52-bit mantissa of 1/(double)denom.
 * This crazy format uses floats in an entropy coder and we have to match x86
 * rounding exactly, thus ordinary floats aren't portable enough.
 * @param denom denominator
 * @return 52-bit mantissa
 * @see softfloat_mul
 */
static uint64_t softfloat_reciprocal(uint32_t denom)
{
    int shift = av_log2(denom - 1) + 1;
    uint64_t ret = (1ULL << 52) / denom;
    uint64_t err = (1ULL << 52) - ret * denom;
    ret <<= shift;
    err <<= shift;
    err +=  denom / 2;
    return ret + err / denom;
}

/**
 * (uint32_t)(x*f), where f has the given mantissa, and exponent 0
 * Used in combination with softfloat_reciprocal computes x/(double)denom.
 * @param x 32-bit integer factor
 * @param mantissa mantissa of f with exponent 0
 * @return 32-bit integer value (x*f)
 * @see softfloat_reciprocal
 */
static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa)
{
    uint64_t l = x * (mantissa & 0xffffffff);
    uint64_t h = x * (mantissa >> 32);
    h += l >> 32;
    l &= 0xffffffff;
    l += 1LL << av_log2(h >> 21);
    h += l >> 32;
    return h >> 20;
}

static uint8_t lag_calc_zero_run(int8_t x)
{
    return (x * 2) ^ (x >> 7);
}

static int lag_decode_prob(GetBitContext *gb, uint32_t *value)
{
    static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 };
    int i;
    int bit     = 0;
    int bits    = 0;
    int prevbit = 0;
    unsigned val;

    for (i = 0; i < 7; i++) {
        if (prevbit && bit)
            break;
        prevbit = bit;
        bit = get_bits1(gb);
        if (bit && !prevbit)
            bits += series[i];
    }
    bits--;
    if (bits < 0 || bits > 31) {
        *value = 0;
        return AVERROR_INVALIDDATA;
    } else if (bits == 0) {
        *value = 0;
        return 0;
    }

    val  = get_bits_long(gb, bits);
    val |= 1U << bits;

    *value = val - 1;

    return 0;
}

static int lag_read_prob_header(lag_rac *rac, GetBitContext *gb)
{
    int i, j, scale_factor;
    unsigned prob, cumulative_target;
    unsigned cumul_prob = 0;
    unsigned scaled_cumul_prob = 0;
    int nnz = 0;

    rac->prob[0] = 0;
    rac->prob[257] = UINT_MAX;
    /* Read probabilities from bitstream */
    for (i = 1; i < 257; i++) {
        if (lag_decode_prob(gb, &rac->prob[i]) < 0) {
            av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n");
            return AVERROR_INVALIDDATA;
        }
        if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) {
            av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n");
            return AVERROR_INVALIDDATA;
        }
        cumul_prob += rac->prob[i];
        if (!rac->prob[i]) {
            if (lag_decode_prob(gb, &prob)) {
                av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n");
                return AVERROR_INVALIDDATA;
            }
            if (prob > 256 - i)
                prob = 256 - i;
            for (j = 0; j < prob; j++)
                rac->prob[++i] = 0;
        }else {
            nnz++;
        }
    }

    if (!cumul_prob) {
        av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n");
        return AVERROR_INVALIDDATA;
    }

    if (nnz == 1 && (show_bits_long(gb, 32) & 0xFFFFFF)) {
        return AVERROR_INVALIDDATA;
    }

    /* Scale probabilities so cumulative probability is an even power of 2. */
    scale_factor = av_log2(cumul_prob);

    if (cumul_prob & (cumul_prob - 1)) {
        uint64_t mul = softfloat_reciprocal(cumul_prob);
        for (i = 1; i <= 128; i++) {
            rac->prob[i] = softfloat_mul(rac->prob[i], mul);
            scaled_cumul_prob += rac->prob[i];
        }
        if (scaled_cumul_prob <= 0) {
            av_log(rac->avctx, AV_LOG_ERROR, "Scaled probabilities invalid\n");
            return AVERROR_INVALIDDATA;
        }
        for (; i < 257; i++) {
            rac->prob[i] = softfloat_mul(rac->prob[i], mul);
            scaled_cumul_prob += rac->prob[i];
        }

        scale_factor++;
        if (scale_factor >= 32U)
            return AVERROR_INVALIDDATA;
        cumulative_target = 1U << scale_factor;

        if (scaled_cumul_prob > cumulative_target) {
            av_log(rac->avctx, AV_LOG_ERROR,
                   "Scaled probabilities are larger than target!\n");
            return AVERROR_INVALIDDATA;
        }

        scaled_cumul_prob = cumulative_target - scaled_cumul_prob;

        for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) {
            if (rac->prob[i]) {
                rac->prob[i]++;
                scaled_cumul_prob--;
            }
            /* Comment from reference source:
             * if (b & 0x80 == 0) {     // order of operations is 'wrong'; it has been left this way
             *                          // since the compression change is negligible and fixing it
             *                          // breaks backwards compatibility
             *      b =- (signed int)b;
             *      b &= 0xFF;
             * } else {
             *      b++;
             *      b &= 0x7f;
             * }
             */
        }
    }

    if (scale_factor > 23)
        return AVERROR_INVALIDDATA;

    rac->scale = scale_factor;

    /* Fill probability array with cumulative probability for each symbol. */
    for (i = 1; i < 257; i++)
        rac->prob[i] += rac->prob[i - 1];

    return 0;
}

static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1,
                                      uint8_t *diff, int w, int *left,
                                      int *left_top)
{
    /* This is almost identical to add_hfyu_median_pred in huffyuvdsp.h.
     * However the &0xFF on the gradient predictor yields incorrect output
     * for lagarith.
     */
    int i;
    uint8_t l, lt;

    l  = *left;
    lt = *left_top;

    for (i = 0; i < w; i++) {
        l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i];
        lt = src1[i];
        dst[i] = l;
    }

    *left     = l;
    *left_top = lt;
}

static void lag_pred_line(LagarithContext *l, uint8_t *buf,
                          int width, int stride, int line)
{
    int L, TL;

    if (!line) {
        /* Left prediction only for first line */
        L = l->llviddsp.add_left_pred(buf, buf, width, 0);
    } else {
        /* Left pixel is actually prev_row[width] */
        L = buf[width - stride - 1];

        if (line == 1) {
            /* Second line, left predict first pixel, the rest of the line is median predicted
             * NOTE: In the case of RGB this pixel is top predicted */
            TL = l->avctx->pix_fmt == AV_PIX_FMT_YUV420P ? buf[-stride] : L;
        } else {
            /* Top left is 2 rows back, last pixel */
            TL = buf[width - (2 * stride) - 1];
        }

        add_lag_median_prediction(buf, buf - stride, buf,
                                  width, &L, &TL);
    }
}

static void lag_pred_line_yuy2(LagarithContext *l, uint8_t *buf,
                               int width, int stride, int line,
                               int is_luma)
{
    int L, TL;

    if (!line) {
        L= buf[0];
        if (is_luma)
            buf[0] = 0;
        l->llviddsp.add_left_pred(buf, buf, width, 0);
        if (is_luma)
            buf[0] = L;
        return;
    }
    if (line == 1) {
        const int HEAD = is_luma ? 4 : 2;
        int i;

        L  = buf[width - stride - 1];
        TL = buf[HEAD  - stride - 1];
        for (i = 0; i < HEAD; i++) {
            L += buf[i];
            buf[i] = L;
        }
        for (; i < width; i++) {
            L      = mid_pred(L & 0xFF, buf[i - stride], (L + buf[i - stride] - TL) & 0xFF) + buf[i];
            TL     = buf[i - stride];
            buf[i] = L;
        }
    } else {
        TL = buf[width - (2 * stride) - 1];
        L  = buf[width - stride - 1];
        l->llviddsp.add_median_pred(buf, buf - stride, buf, width, &L, &TL);
    }
}

static int lag_decode_line(LagarithContext *l, lag_rac *rac,
                           uint8_t *dst, int width, int stride,
                           int esc_count)
{
    int i = 0;
    int ret = 0;

    if (!esc_count)
        esc_count = -1;

    /* Output any zeros remaining from the previous run */
handle_zeros:
    if (l->zeros_rem) {
        int count = FFMIN(l->zeros_rem, width - i);
        memset(dst + i, 0, count);
        i += count;
        l->zeros_rem -= count;
    }

    while (i < width) {
        dst[i] = lag_get_rac(rac);
        ret++;

        if (dst[i])
            l->zeros = 0;
        else
            l->zeros++;

        i++;
        if (l->zeros == esc_count) {
            int index = lag_get_rac(rac);
            ret++;

            l->zeros = 0;

            l->zeros_rem = lag_calc_zero_run(index);
            goto handle_zeros;
        }
    }
    return ret;
}

static int lag_decode_zero_run_line(LagarithContext *l, uint8_t *dst,
                                    const uint8_t *src, const uint8_t *src_end,
                                    int width, int esc_count)
{
    int i = 0;
    int count;
    uint8_t zero_run = 0;
    const uint8_t *src_start = src;
    uint8_t mask1 = -(esc_count < 2);
    uint8_t mask2 = -(esc_count < 3);
    uint8_t *end = dst + (width - 2);

    avpriv_request_sample(l->avctx, "zero_run_line");

    memset(dst, 0, width);

output_zeros:
    if (l->zeros_rem) {
        count = FFMIN(l->zeros_rem, width - i);
        if (end - dst < count) {
            av_log(l->avctx, AV_LOG_ERROR, "Too many zeros remaining.\n");
            return AVERROR_INVALIDDATA;
        }

        memset(dst, 0, count);
        l->zeros_rem -= count;
        dst += count;
    }

    while (dst < end) {
        i = 0;
        while (!zero_run && dst + i < end) {
            i++;
            if (i+2 >= src_end - src)
                return AVERROR_INVALIDDATA;
            zero_run =
                !(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2));
        }
        if (zero_run) {
            zero_run = 0;
            i += esc_count;
            memcpy(dst, src, i);
            dst += i;
            l->zeros_rem = lag_calc_zero_run(src[i]);

            src += i + 1;
            goto output_zeros;
        } else {
            memcpy(dst, src, i);
            src += i;
            dst += i;
        }
    }
    return  src - src_start;
}



static int lag_decode_arith_plane(LagarithContext *l, uint8_t *dst,
                                  int width, int height, int stride,
                                  const uint8_t *src, int src_size)
{
    int i = 0;
    int read = 0;
    uint32_t length;
    uint32_t offset = 1;
    int esc_count;
    GetBitContext gb;
    lag_rac rac;
    const uint8_t *src_end = src + src_size;
    int ret;

    rac.avctx = l->avctx;
    l->zeros = 0;

    if(src_size < 2)
        return AVERROR_INVALIDDATA;

    esc_count = src[0];
    if (esc_count < 4) {
        length = width * height;
        if(src_size < 5)
            return AVERROR_INVALIDDATA;
        if (esc_count && AV_RL32(src + 1) < length) {
            length = AV_RL32(src + 1);
            offset += 4;
        }

        if ((ret = init_get_bits8(&gb, src + offset, src_size - offset)) < 0)
            return ret;

        if ((ret = lag_read_prob_header(&rac, &gb)) < 0)
            return ret;

        ff_lag_rac_init(&rac, &gb, length - stride);
        for (i = 0; i < height; i++) {
            if (rac.overread > MAX_OVERREAD)
                return AVERROR_INVALIDDATA;
            read += lag_decode_line(l, &rac, dst + (i * stride), width,
                                    stride, esc_count);
        }

        if (read > length)
            av_log(l->avctx, AV_LOG_WARNING,
                   "Output more bytes than length (%d of %"PRIu32")\n", read,
                   length);
    } else if (esc_count < 8) {
        esc_count -= 4;
        src ++;
        src_size --;
        if (esc_count > 0) {
            /* Zero run coding only, no range coding. */
            for (i = 0; i < height; i++) {
                int res = lag_decode_zero_run_line(l, dst + (i * stride), src,
                                                   src_end, width, esc_count);
                if (res < 0)
                    return res;
                src += res;
            }
        } else {
            if (src_size < width * height)
                return AVERROR_INVALIDDATA; // buffer not big enough
            /* Plane is stored uncompressed */
            for (i = 0; i < height; i++) {
                memcpy(dst + (i * stride), src, width);
                src += width;
            }
        }
    } else if (esc_count == 0xff) {
        /* Plane is a solid run of given value */
        for (i = 0; i < height; i++)
            memset(dst + i * stride, src[1], width);
        /* Do not apply prediction.
           Note: memset to 0 above, setting first value to src[1]
           and applying prediction gives the same result. */
        return 0;
    } else {
        av_log(l->avctx, AV_LOG_ERROR,
               "Invalid zero run escape code! (%#x)\n", esc_count);
        return AVERROR_INVALIDDATA;
    }

    if (l->avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
        for (i = 0; i < height; i++) {
            lag_pred_line(l, dst, width, stride, i);
            dst += stride;
        }
    } else {
        for (i = 0; i < height; i++) {
            lag_pred_line_yuy2(l, dst, width, stride, i,
                               width == l->avctx->width);
            dst += stride;
        }
    }

    return 0;
}

/**
 * Decode a frame.
 * @param avctx codec context
 * @param data output AVFrame
 * @param data_size size of output data or 0 if no picture is returned
 * @param avpkt input packet
 * @return number of consumed bytes on success or negative if decode fails
 */
static int lag_decode_frame(AVCodecContext *avctx,
                            void *data, int *got_frame, AVPacket *avpkt)
{
    const uint8_t *buf = avpkt->data;
    unsigned int buf_size = avpkt->size;
    LagarithContext *l = avctx->priv_data;
    AVFrame *const p  = data;
    uint8_t frametype;
    uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9;
    uint32_t offs[4];
    uint8_t *srcs[4];
    int i, j, planes = 3;
    int ret = 0;

    p->key_frame = 1;
    p->pict_type = AV_PICTURE_TYPE_I;

    frametype = buf[0];

    offset_gu = AV_RL32(buf + 1);
    offset_bv = AV_RL32(buf + 5);

    switch (frametype) {
    case FRAME_SOLID_RGBA:
        avctx->pix_fmt = AV_PIX_FMT_GBRAP;
    case FRAME_SOLID_GRAY:
        if (frametype == FRAME_SOLID_GRAY)
            if (avctx->bits_per_coded_sample == 24) {
                avctx->pix_fmt = AV_PIX_FMT_GBRP;
            } else {
                avctx->pix_fmt = AV_PIX_FMT_GBRAP;
                planes = 4;
            }

        if ((ret = ff_thread_get_buffer(avctx, p, 0)) < 0)
            return ret;

        if (frametype == FRAME_SOLID_RGBA) {
            for (i = 0; i < avctx->height; i++) {
                memset(p->data[0] + i * p->linesize[0], buf[2], avctx->width);
                memset(p->data[1] + i * p->linesize[1], buf[1], avctx->width);
                memset(p->data[2] + i * p->linesize[2], buf[3], avctx->width);
                memset(p->data[3] + i * p->linesize[3], buf[4], avctx->width);
            }
        } else {
            for (i = 0; i < avctx->height; i++) {
                for (j = 0; j < planes; j++)
                    memset(p->data[j] + i * p->linesize[j], buf[1], avctx->width);
            }
        }
        break;
    case FRAME_SOLID_COLOR:
        if (avctx->bits_per_coded_sample == 24) {
            avctx->pix_fmt = AV_PIX_FMT_GBRP;
        } else {
            avctx->pix_fmt = AV_PIX_FMT_GBRAP;
        }

        if ((ret = ff_thread_get_buffer(avctx, p,0)) < 0)
            return ret;

        for (i = 0; i < avctx->height; i++) {
            memset(p->data[0] + i * p->linesize[0], buf[2], avctx->width);
            memset(p->data[1] + i * p->linesize[1], buf[1], avctx->width);
            memset(p->data[2] + i * p->linesize[2], buf[3], avctx->width);
            if (avctx->pix_fmt == AV_PIX_FMT_GBRAP)
                memset(p->data[3] + i * p->linesize[3], 0xFFu, avctx->width);
        }
        break;
    case FRAME_ARITH_RGBA:
        avctx->pix_fmt = AV_PIX_FMT_GBRAP;
        planes = 4;
        offset_ry += 4;
        offs[3] = AV_RL32(buf + 9);
    case FRAME_ARITH_RGB24:
    case FRAME_U_RGB24:
        if (frametype == FRAME_ARITH_RGB24 || frametype == FRAME_U_RGB24)
            avctx->pix_fmt = AV_PIX_FMT_GBRP;

        if ((ret = ff_thread_get_buffer(avctx, p, 0)) < 0)
            return ret;

        offs[0] = offset_bv;
        offs[1] = offset_gu;
        offs[2] = offset_ry;

        for (i = 0; i < planes; i++)
            srcs[i] = p->data[i] + (avctx->height - 1) * p->linesize[i];
        for (i = 0; i < planes; i++)
            if (buf_size <= offs[i]) {
                av_log(avctx, AV_LOG_ERROR,
                        "Invalid frame offsets\n");
                return AVERROR_INVALIDDATA;
            }

        for (i = 0; i < planes; i++) {
            ret = lag_decode_arith_plane(l, srcs[i],
                                   avctx->width, avctx->height,
                                   -p->linesize[i], buf + offs[i],
                                   buf_size - offs[i]);
            if (ret < 0)
                return ret;
        }
        for (i = 0; i < avctx->height; i++) {
            l->llviddsp.add_bytes(p->data[0] + i * p->linesize[0], p->data[1] + i * p->linesize[1], avctx->width);
            l->llviddsp.add_bytes(p->data[2] + i * p->linesize[2], p->data[1] + i * p->linesize[1], avctx->width);
        }
        FFSWAP(uint8_t*, p->data[0], p->data[1]);
        FFSWAP(int, p->linesize[0], p->linesize[1]);
        FFSWAP(uint8_t*, p->data[2], p->data[1]);
        FFSWAP(int, p->linesize[2], p->linesize[1]);
        break;
    case FRAME_ARITH_YUY2:
        avctx->pix_fmt = AV_PIX_FMT_YUV422P;

        if ((ret = ff_thread_get_buffer(avctx, p, 0)) < 0)
            return ret;

        if (offset_ry >= buf_size ||
            offset_gu >= buf_size ||
            offset_bv >= buf_size) {
            av_log(avctx, AV_LOG_ERROR,
                   "Invalid frame offsets\n");
            return AVERROR_INVALIDDATA;
        }

        ret = lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
                               p->linesize[0], buf + offset_ry,
                               buf_size - offset_ry);
        if (ret < 0)
            return ret;
        ret = lag_decode_arith_plane(l, p->data[1], (avctx->width + 1) / 2,
                               avctx->height, p->linesize[1],
                               buf + offset_gu, buf_size - offset_gu);
        if (ret < 0)
            return ret;
        ret = lag_decode_arith_plane(l, p->data[2], (avctx->width + 1) / 2,
                               avctx->height, p->linesize[2],
                               buf + offset_bv, buf_size - offset_bv);
        break;
    case FRAME_ARITH_YV12:
        avctx->pix_fmt = AV_PIX_FMT_YUV420P;

        if ((ret = ff_thread_get_buffer(avctx, p, 0)) < 0)
            return ret;

        if (offset_ry >= buf_size ||
            offset_gu >= buf_size ||
            offset_bv >= buf_size) {
            av_log(avctx, AV_LOG_ERROR,
                   "Invalid frame offsets\n");
            return AVERROR_INVALIDDATA;
        }

        ret = lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
                               p->linesize[0], buf + offset_ry,
                               buf_size - offset_ry);
        if (ret < 0)
            return ret;
        ret = lag_decode_arith_plane(l, p->data[2], (avctx->width + 1) / 2,
                               (avctx->height + 1) / 2, p->linesize[2],
                               buf + offset_gu, buf_size - offset_gu);
        if (ret < 0)
            return ret;
        ret = lag_decode_arith_plane(l, p->data[1], (avctx->width + 1) / 2,
                               (avctx->height + 1) / 2, p->linesize[1],
                               buf + offset_bv, buf_size - offset_bv);
        break;
    default:
        av_log(avctx, AV_LOG_ERROR,
               "Unsupported Lagarith frame type: %#"PRIx8"\n", frametype);
        return AVERROR_PATCHWELCOME;
    }

    if (ret < 0)
        return ret;

    *got_frame = 1;

    return buf_size;
}

static av_cold int lag_decode_init(AVCodecContext *avctx)
{
    LagarithContext *l = avctx->priv_data;
    l->avctx = avctx;

    ff_llviddsp_init(&l->llviddsp);

    return 0;
}

const FFCodec ff_lagarith_decoder = {
    .p.name         = "lagarith",
    .p.long_name    = NULL_IF_CONFIG_SMALL("Lagarith lossless"),
    .p.type         = AVMEDIA_TYPE_VIDEO,
    .p.id           = AV_CODEC_ID_LAGARITH,
    .priv_data_size = sizeof(LagarithContext),
    .init           = lag_decode_init,
    .decode         = lag_decode_frame,
    .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
    .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
};