/* libFLAC - Free Lossless Audio Codec library * Copyright (C) 2000-2009 Josh Coalson * Copyright (C) 2011-2022 Xiph.Org Foundation * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of the Xiph.org Foundation nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H # include #endif #include "private/cpu.h" #ifndef FLAC__INTEGER_ONLY_LIBRARY #ifndef FLAC__NO_ASM #if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN #include "private/fixed.h" #ifdef FLAC__SSSE3_SUPPORTED #include /* SSSE3 */ #include #include "private/macros.h" #include "share/compat.h" #include "FLAC/assert.h" #ifdef FLAC__CPU_IA32 #define m128i_to_i64(dest, src) _mm_storel_epi64((__m128i*)&dest, src) #else #define m128i_to_i64(dest, src) dest = _mm_cvtsi128_si64(src) #endif #ifdef local_abs #undef local_abs #endif #define local_abs(x) ((uint32_t)((x)<0? -(x) : (x))) FLAC__SSE_TARGET("ssse3") uint32_t FLAC__fixed_compute_best_predictor_intrin_ssse3(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1]) { FLAC__uint32 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4; FLAC__int32 i, data_len_int; uint32_t order; __m128i total_err0, total_err1, total_err2, total_err3, total_err4; __m128i prev_err0, prev_err1, prev_err2, prev_err3; __m128i tempA, tempB; FLAC__int32 data_scalar[4]; FLAC__int32 prev_err0_scalar[4]; FLAC__int32 prev_err1_scalar[4]; FLAC__int32 prev_err2_scalar[4]; FLAC__int32 prev_err3_scalar[4]; total_err0 = _mm_setzero_si128(); total_err1 = _mm_setzero_si128(); total_err2 = _mm_setzero_si128(); total_err3 = _mm_setzero_si128(); total_err4 = _mm_setzero_si128(); data_len_int = data_len; for(i = 0; i < 4; i++){ prev_err0_scalar[i] = data[-1+i*(data_len_int/4)]; prev_err1_scalar[i] = data[-1+i*(data_len_int/4)] - data[-2+i*(data_len_int/4)]; prev_err2_scalar[i] = prev_err1_scalar[i] - (data[-2+i*(data_len_int/4)] - data[-3+i*(data_len_int/4)]); prev_err3_scalar[i] = prev_err2_scalar[i] - (data[-2+i*(data_len_int/4)] - 2*data[-3+i*(data_len_int/4)] + data[-4+i*(data_len_int/4)]); } prev_err0 = _mm_loadu_si128((const __m128i*)prev_err0_scalar); prev_err1 = _mm_loadu_si128((const __m128i*)prev_err1_scalar); prev_err2 = _mm_loadu_si128((const __m128i*)prev_err2_scalar); prev_err3 = _mm_loadu_si128((const __m128i*)prev_err3_scalar); for(i = 0; i < data_len_int / 4; i++){ data_scalar[0] = data[i]; data_scalar[1] = data[i+data_len/4]; data_scalar[2] = data[i+2*(data_len/4)]; data_scalar[3] = data[i+3*(data_len/4)]; tempA = _mm_loadu_si128((const __m128i*)data_scalar); tempB = _mm_abs_epi32(tempA); total_err0 = _mm_add_epi32(total_err0,tempB); tempB = _mm_sub_epi32(tempA,prev_err0); prev_err0 = tempA; tempA = _mm_abs_epi32(tempB); total_err1 = _mm_add_epi32(total_err1,tempA); tempA = _mm_sub_epi32(tempB,prev_err1); prev_err1 = tempB; tempB = _mm_abs_epi32(tempA); total_err2 = _mm_add_epi32(total_err2,tempB); tempB = _mm_sub_epi32(tempA,prev_err2); prev_err2 = tempA; tempA = _mm_abs_epi32(tempB); total_err3 = _mm_add_epi32(total_err3,tempA); tempA = _mm_sub_epi32(tempB,prev_err3); prev_err3 = tempB; tempB = _mm_abs_epi32(tempA); total_err4 = _mm_add_epi32(total_err4,tempB); } _mm_storeu_si128((__m128i*)data_scalar,total_err0); total_error_0 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3]; _mm_storeu_si128((__m128i*)data_scalar,total_err1); total_error_1 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3]; _mm_storeu_si128((__m128i*)data_scalar,total_err2); total_error_2 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3]; _mm_storeu_si128((__m128i*)data_scalar,total_err3); total_error_3 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3]; _mm_storeu_si128((__m128i*)data_scalar,total_err4); total_error_4 = data_scalar[0] + data_scalar[1] + data_scalar[2] + data_scalar[3]; /* Now the remainder of samples needs to be processed */ i *= 4; if(data_len % 4 > 0){ FLAC__int32 last_error_0 = data[i-1]; FLAC__int32 last_error_1 = data[i-1] - data[i-2]; FLAC__int32 last_error_2 = last_error_1 - (data[i-2] - data[i-3]); FLAC__int32 last_error_3 = last_error_2 - (data[i-2] - 2*data[i-3] + data[i-4]); FLAC__int32 error, save; for(; i < data_len_int; i++) { error = data[i] ; total_error_0 += local_abs(error); save = error; error -= last_error_0; total_error_1 += local_abs(error); last_error_0 = save; save = error; error -= last_error_1; total_error_2 += local_abs(error); last_error_1 = save; save = error; error -= last_error_2; total_error_3 += local_abs(error); last_error_2 = save; save = error; error -= last_error_3; total_error_4 += local_abs(error); last_error_3 = save; } } /* prefer lower order */ if(total_error_0 <= flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4)) order = 0; else if(total_error_1 <= flac_min(flac_min(total_error_2, total_error_3), total_error_4)) order = 1; else if(total_error_2 <= flac_min(total_error_3, total_error_4)) order = 2; else if(total_error_3 <= total_error_4) order = 3; else order = 4; /* Estimate the expected number of bits per residual signal sample. */ /* 'total_error*' is linearly related to the variance of the residual */ /* signal, so we use it directly to compute E(|x|) */ FLAC__ASSERT(data_len > 0 || total_error_0 == 0); FLAC__ASSERT(data_len > 0 || total_error_1 == 0); FLAC__ASSERT(data_len > 0 || total_error_2 == 0); FLAC__ASSERT(data_len > 0 || total_error_3 == 0); FLAC__ASSERT(data_len > 0 || total_error_4 == 0); residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0); return order; } FLAC__SSE_TARGET("ssse3") uint32_t FLAC__fixed_compute_best_predictor_wide_intrin_ssse3(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1]) { FLAC__uint64 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4; uint32_t i, order; __m128i total_err0, total_err1, total_err3; { FLAC__int32 itmp; __m128i last_error, zero = _mm_setzero_si128(); last_error = _mm_cvtsi32_si128(data[-1]); // 0 0 0 le0 itmp = data[-2]; last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0)); last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 0 le0 le1 itmp -= data[-3]; last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0)); last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 le0 le1 le2 itmp -= data[-3] - data[-4]; last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0)); last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // le0 le1 le2 le3 total_err0 = total_err1 = total_err3 = _mm_setzero_si128(); for(i = 0; i < data_len; i++) { __m128i err0, err1; err0 = _mm_cvtsi32_si128(data[i]); // 0 0 0 e0 err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(0,0,0,0)); // e0 e0 e0 e0 #if 1 /* OPT_SSE */ err1 = _mm_sub_epi32(err1, last_error); last_error = _mm_srli_si128(last_error, 4); // 0 le0 le1 le2 err1 = _mm_sub_epi32(err1, last_error); last_error = _mm_srli_si128(last_error, 4); // 0 0 le0 le1 err1 = _mm_sub_epi32(err1, last_error); last_error = _mm_srli_si128(last_error, 4); // 0 0 0 le0 err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4 #else last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 8)); // le0 le1 le2+le0 le3+le1 last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 4)); // le0 le1+le0 le2+le0+le1 le3+le1+le2+le0 err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4 #endif last_error = _mm_alignr_epi8(err0, err1, 4); // e0 e1 e2 e3 err0 = _mm_abs_epi32(err0); err1 = _mm_abs_epi32(err1); // |e1| |e2| |e3| |e4| total_err0 = _mm_add_epi64(total_err0, err0); // 0 te0 err0 = _mm_unpacklo_epi32(err1, zero); // 0 |e3| 0 |e4| err1 = _mm_unpackhi_epi32(err1, zero); // 0 |e1| 0 |e2| total_err3 = _mm_add_epi64(total_err3, err0); // te3 te4 total_err1 = _mm_add_epi64(total_err1, err1); // te1 te2 } } m128i_to_i64(total_error_0, total_err0); m128i_to_i64(total_error_4, total_err3); m128i_to_i64(total_error_2, total_err1); total_err3 = _mm_srli_si128(total_err3, 8); // 0 te3 total_err1 = _mm_srli_si128(total_err1, 8); // 0 te1 m128i_to_i64(total_error_3, total_err3); m128i_to_i64(total_error_1, total_err1); /* prefer lower order */ if(total_error_0 <= flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4)) order = 0; else if(total_error_1 <= flac_min(flac_min(total_error_2, total_error_3), total_error_4)) order = 1; else if(total_error_2 <= flac_min(total_error_3, total_error_4)) order = 2; else if(total_error_3 <= total_error_4) order = 3; else order = 4; /* Estimate the expected number of bits per residual signal sample. */ /* 'total_error*' is linearly related to the variance of the residual */ /* signal, so we use it directly to compute E(|x|) */ FLAC__ASSERT(data_len > 0 || total_error_0 == 0); FLAC__ASSERT(data_len > 0 || total_error_1 == 0); FLAC__ASSERT(data_len > 0 || total_error_2 == 0); FLAC__ASSERT(data_len > 0 || total_error_3 == 0); FLAC__ASSERT(data_len > 0 || total_error_4 == 0); residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0); residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0); return order; } #endif /* FLAC__SSSE3_SUPPORTED */ #endif /* (FLAC__CPU_IA32 || FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN */ #endif /* FLAC__NO_ASM */ #endif /* FLAC__INTEGER_ONLY_LIBRARY */