/* plugin_common - Routines common to several plugins * Copyright (C) 2002-2009 Josh Coalson * Copyright (C) 2011-2022 Xiph.Org Foundation * * dithering routine derived from (other GPLed source): * mad - MPEG audio decoder * Copyright (C) 2000-2001 Robert Leslie * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #ifdef HAVE_CONFIG_H # include #endif #include "dither.h" #include "FLAC/assert.h" #ifdef max #undef max #endif #define max(a,b) ((a)>(b)?(a):(b)) #ifndef FLaC__INLINE #define FLaC__INLINE #endif /* 32-bit pseudo-random number generator * * @@@ According to Miroslav, this one is poor quality, the one from the * @@@ original replaygain code is much better */ static FLaC__INLINE FLAC__uint32 prng(FLAC__uint32 state) { return (state * 0x0019660dL + 0x3c6ef35fL) & 0xffffffffL; } /* dither routine derived from MAD winamp plugin */ typedef struct { FLAC__int32 error[3]; FLAC__int32 random; } dither_state; static FLAC__int32 linear_dither(uint32_t source_bps, uint32_t target_bps, FLAC__int32 sample, dither_state *dither, const FLAC__int32 MIN, const FLAC__int32 MAX) { uint32_t scalebits; FLAC__int32 output, mask, random; FLAC__ASSERT(source_bps < 32); FLAC__ASSERT(target_bps <= 24); FLAC__ASSERT(target_bps <= source_bps); /* noise shape */ sample += dither->error[0] - dither->error[1] + dither->error[2]; dither->error[2] = dither->error[1]; dither->error[1] = dither->error[0] / 2; /* bias */ output = sample + (1L << (source_bps - target_bps - 1)); scalebits = source_bps - target_bps; mask = (1L << scalebits) - 1; /* dither */ random = (FLAC__int32)prng(dither->random); output += (random & mask) - (dither->random & mask); dither->random = random; /* clip */ if(output > MAX) { output = MAX; if(sample > MAX) sample = MAX; } else if(output < MIN) { output = MIN; if(sample < MIN) sample = MIN; } /* quantize */ output &= ~mask; /* error feedback */ dither->error[0] = sample - output; /* scale */ return output >> scalebits; } size_t FLAC__plugin_common__pack_pcm_signed_big_endian(FLAC__byte *data, const FLAC__int32 * const input[], uint32_t wide_samples, uint32_t channels, uint32_t source_bps, uint32_t target_bps) { static dither_state dither[FLAC_PLUGIN__MAX_SUPPORTED_CHANNELS]; FLAC__byte * const start = data; FLAC__int32 sample; const FLAC__int32 *input_; uint32_t samples, channel; const uint32_t bytes_per_sample = target_bps / 8; const uint32_t incr = bytes_per_sample * channels; FLAC__ASSERT(channels > 0 && channels <= FLAC_PLUGIN__MAX_SUPPORTED_CHANNELS); FLAC__ASSERT(source_bps < 32); FLAC__ASSERT(target_bps <= 24); FLAC__ASSERT(target_bps <= source_bps); FLAC__ASSERT((source_bps & 7) == 0); FLAC__ASSERT((target_bps & 7) == 0); if(source_bps != target_bps) { const FLAC__int32 MIN = -(1L << (source_bps - 1)); const FLAC__int32 MAX = ~MIN; /*(1L << (source_bps-1)) - 1 */ for(channel = 0; channel < channels; channel++) { samples = wide_samples; data = start + bytes_per_sample * channel; input_ = input[channel]; while(samples--) { sample = linear_dither(source_bps, target_bps, *input_++, &dither[channel], MIN, MAX); switch(target_bps) { case 8: data[0] = sample ^ 0x80; break; case 16: data[0] = (FLAC__byte)(sample >> 8); data[1] = (FLAC__byte)sample; break; case 24: data[0] = (FLAC__byte)(sample >> 16); data[1] = (FLAC__byte)(sample >> 8); data[2] = (FLAC__byte)sample; break; } data += incr; } } } else { for(channel = 0; channel < channels; channel++) { samples = wide_samples; data = start + bytes_per_sample * channel; input_ = input[channel]; while(samples--) { sample = *input_++; switch(target_bps) { case 8: data[0] = sample ^ 0x80; break; case 16: data[0] = (FLAC__byte)(sample >> 8); data[1] = (FLAC__byte)sample; break; case 24: data[0] = (FLAC__byte)(sample >> 16); data[1] = (FLAC__byte)(sample >> 8); data[2] = (FLAC__byte)sample; break; } data += incr; } } } return wide_samples * channels * (target_bps/8); } size_t FLAC__plugin_common__pack_pcm_signed_little_endian(FLAC__byte *data, const FLAC__int32 * const input[], uint32_t wide_samples, uint32_t channels, uint32_t source_bps, uint32_t target_bps) { static dither_state dither[FLAC_PLUGIN__MAX_SUPPORTED_CHANNELS]; FLAC__byte * const start = data; FLAC__int32 sample; const FLAC__int32 *input_; uint32_t samples, channel; const uint32_t bytes_per_sample = target_bps / 8; const uint32_t incr = bytes_per_sample * channels; FLAC__ASSERT(channels > 0 && channels <= FLAC_PLUGIN__MAX_SUPPORTED_CHANNELS); FLAC__ASSERT(source_bps < 32); FLAC__ASSERT(target_bps <= 24); FLAC__ASSERT(target_bps <= source_bps); FLAC__ASSERT((source_bps & 7) == 0); FLAC__ASSERT((target_bps & 7) == 0); if(source_bps != target_bps) { const FLAC__int32 MIN = -(1L << (source_bps - 1)); const FLAC__int32 MAX = ~MIN; /*(1L << (source_bps-1)) - 1 */ for(channel = 0; channel < channels; channel++) { samples = wide_samples; data = start + bytes_per_sample * channel; input_ = input[channel]; while(samples--) { sample = linear_dither(source_bps, target_bps, *input_++, &dither[channel], MIN, MAX); switch(target_bps) { case 8: data[0] = sample ^ 0x80; break; case 24: data[2] = (FLAC__byte)(sample >> 16); /* fall through */ case 16: data[1] = (FLAC__byte)(sample >> 8); data[0] = (FLAC__byte)sample; } data += incr; } } } else { for(channel = 0; channel < channels; channel++) { samples = wide_samples; data = start + bytes_per_sample * channel; input_ = input[channel]; while(samples--) { sample = *input_++; switch(target_bps) { case 8: data[0] = sample ^ 0x80; break; case 24: data[2] = (FLAC__byte)(sample >> 16); /* fall through */ case 16: data[1] = (FLAC__byte)(sample >> 8); data[0] = (FLAC__byte)sample; } data += incr; } } } return wide_samples * channels * (target_bps/8); }