summaryrefslogtreecommitdiff
path: root/src/libFLAC/fixed.c
blob: 75063687ee150a88f19b88b905e47872fa30238e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/* libFLAC - Free Lossless Audio Codec library
 * Copyright (C) 2000,2001  Josh Coalson
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA  02111-1307, USA.
 */

#include <assert.h>
#include <math.h>
#include "private/fixed.h"

#ifndef M_LN2
/* math.h in VC++ doesn't seem to have this (how Microsoft is that?) */
#define M_LN2 0.69314718055994530942
#endif

#ifdef min
#undef min
#endif
#define min(x,y) ((x) < (y)? (x) : (y))

#ifdef local_abs
#undef local_abs
#endif
#define local_abs(x) ((unsigned)((x)<0? -(x) : (x)))

unsigned FLAC__fixed_compute_best_predictor(const int32 data[], unsigned data_len, real residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
{
	int32 last_error_0 = data[-1];
	int32 last_error_1 = data[-1] - data[-2];
	int32 last_error_2 = last_error_1 - (data[-2] - data[-3]);
	int32 last_error_3 = last_error_2 - (data[-2] - 2*data[-3] + data[-4]);
	int32 error_0, error_1, error_2, error_3, error_4;
	uint32 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0;
	unsigned i, order;

	for(i = 0; i < data_len; i++) {
		error_0 = data[i]               ; total_error_0 += local_abs(error_0);
		error_1 = error_0 - last_error_0; total_error_1 += local_abs(error_1);
		error_2 = error_1 - last_error_1; total_error_2 += local_abs(error_2);
		error_3 = error_2 - last_error_2; total_error_3 += local_abs(error_3);
		error_4 = error_3 - last_error_3; total_error_4 += local_abs(error_4);

		last_error_0 = error_0;
		last_error_1 = error_1;
		last_error_2 = error_2;
		last_error_3 = error_3;
	}

	if(total_error_0 < min(min(min(total_error_1, total_error_2), total_error_3), total_error_4))
		order = 0;
	else if(total_error_1 < min(min(total_error_2, total_error_3), total_error_4))
		order = 1;
	else if(total_error_2 < min(total_error_3, total_error_4))
		order = 2;
	else if(total_error_3 < total_error_4)
		order = 3;
	else
		order = 4;

	/* Estimate the expected number of bits per residual signal sample. */
	/* 'total_error*' is linearly related to the variance of the residual */
	/* signal, so we use it directly to compute E(|x|) */
#ifdef _MSC_VER
	/* with VC++ you have to spoon feed it the casting */
	residual_bits_per_sample[0] = (real)((data_len > 0) ? log(M_LN2 * (real)(int64)total_error_0  / (real) data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[1] = (real)((data_len > 0) ? log(M_LN2 * (real)(int64)total_error_1  / (real) data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[2] = (real)((data_len > 0) ? log(M_LN2 * (real)(int64)total_error_2  / (real) data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[3] = (real)((data_len > 0) ? log(M_LN2 * (real)(int64)total_error_3  / (real) data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[4] = (real)((data_len > 0) ? log(M_LN2 * (real)(int64)total_error_4  / (real) data_len) / M_LN2 : 0.0);
#else
	residual_bits_per_sample[0] = (real)((data_len > 0) ? log(M_LN2 * (real)total_error_0  / (real) data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[1] = (real)((data_len > 0) ? log(M_LN2 * (real)total_error_1  / (real) data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[2] = (real)((data_len > 0) ? log(M_LN2 * (real)total_error_2  / (real) data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[3] = (real)((data_len > 0) ? log(M_LN2 * (real)total_error_3  / (real) data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[4] = (real)((data_len > 0) ? log(M_LN2 * (real)total_error_4  / (real) data_len) / M_LN2 : 0.0);
#endif

	return order;
}

unsigned FLAC__fixed_compute_best_predictor_slow(const int32 data[], unsigned data_len, real residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])
{
	int32 last_error_0 = data[-1];
	int32 last_error_1 = data[-1] - data[-2];
	int32 last_error_2 = last_error_1 - (data[-2] - data[-3]);
	int32 last_error_3 = last_error_2 - (data[-2] - 2*data[-3] + data[-4]);
	int32 error_0, error_1, error_2, error_3, error_4;
	/* total_error_* are 64-bits to avoid overflow when encoding
	 * erratic signals when the bits-per-sample and blocksize are
	 * large.
	 */
	uint64 total_error_0 = 0, total_error_1 = 0, total_error_2 = 0, total_error_3 = 0, total_error_4 = 0;
	unsigned i, order;

	for(i = 0; i < data_len; i++) {
		error_0 = data[i]               ; total_error_0 += local_abs(error_0);
		error_1 = error_0 - last_error_0; total_error_1 += local_abs(error_1);
		error_2 = error_1 - last_error_1; total_error_2 += local_abs(error_2);
		error_3 = error_2 - last_error_2; total_error_3 += local_abs(error_3);
		error_4 = error_3 - last_error_3; total_error_4 += local_abs(error_4);

		last_error_0 = error_0;
		last_error_1 = error_1;
		last_error_2 = error_2;
		last_error_3 = error_3;
	}

	if(total_error_0 < min(min(min(total_error_1, total_error_2), total_error_3), total_error_4))
		order = 0;
	else if(total_error_1 < min(min(total_error_2, total_error_3), total_error_4))
		order = 1;
	else if(total_error_2 < min(total_error_3, total_error_4))
		order = 2;
	else if(total_error_3 < total_error_4)
		order = 3;
	else
		order = 4;

	/* Estimate the expected number of bits per residual signal sample. */
	/* 'total_error*' is linearly related to the variance of the residual */
	/* signal, so we use it directly to compute E(|x|) */
#ifdef _MSC_VER
	/* with VC++ you have to spoon feed it the casting */
	residual_bits_per_sample[0] = (real)((data_len > 0) ? log(M_LN2 * (real)(int64)total_error_0  / (real) data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[1] = (real)((data_len > 0) ? log(M_LN2 * (real)(int64)total_error_1  / (real) data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[2] = (real)((data_len > 0) ? log(M_LN2 * (real)(int64)total_error_2  / (real) data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[3] = (real)((data_len > 0) ? log(M_LN2 * (real)(int64)total_error_3  / (real) data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[4] = (real)((data_len > 0) ? log(M_LN2 * (real)(int64)total_error_4  / (real) data_len) / M_LN2 : 0.0);
#else
	residual_bits_per_sample[0] = (real)((data_len > 0) ? log(M_LN2 * (real)total_error_0  / (real) data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[1] = (real)((data_len > 0) ? log(M_LN2 * (real)total_error_1  / (real) data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[2] = (real)((data_len > 0) ? log(M_LN2 * (real)total_error_2  / (real) data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[3] = (real)((data_len > 0) ? log(M_LN2 * (real)total_error_3  / (real) data_len) / M_LN2 : 0.0);
	residual_bits_per_sample[4] = (real)((data_len > 0) ? log(M_LN2 * (real)total_error_4  / (real) data_len) / M_LN2 : 0.0);
#endif

	return order;
}

void FLAC__fixed_compute_residual(const int32 data[], unsigned data_len, unsigned order, int32 residual[])
{
	unsigned i;

#if 0
	switch(order) {
		case 0:
			for(i = 0; i < data_len; i++) {
				residual[i] = data[i];
			}
			break;
		case 1:
			for(i = 0; i < data_len; i++) {
				residual[i] = data[i] - data[i-1];
			}
			break;
		case 2:
			for(i = 0; i < data_len; i++) {
				/* == data[i] - 2*data[i-1] + data[i-2] */
				residual[i] = data[i] - (data[i-1] << 1) + data[i-2];
			}
			break;
		case 3:
			for(i = 0; i < data_len; i++) {
				/* == data[i] - 3*data[i-1] + 3*data[i-2] - data[i-3] */
				residual[i] = data[i] - (((data[i-1]-data[i-2])<<1) + (data[i-1]-data[i-2])) - data[i-3];
			}
			break;
		case 4:
			for(i = 0; i < data_len; i++) {
				/* == data[i] - 4*data[i-1] + 6*data[i-2] - 4*data[i-3] + data[i-4] */
				residual[i] = data[i] - ((data[i-1]+data[i-3])<<2) + ((data[i-2]<<2) + (data[i-2]<<1)) + data[i-4];
			}
			break;
		default:
			assert(0);
	}
#else
	switch(order) {
		case 0:
			for(i = 0; i < data_len; i++)
				residual[i] = data[i];
			break;
		case 1:
			for(i = 0; i < data_len; i++)
				residual[i] = data[i] - data[i-1];
			break;
		case 2:
			for(i = 0; i < data_len; i++)
				residual[i] = data[i] - 2*data[i-1] + data[i-2];
			break;
		case 3:
			for(i = 0; i < data_len; i++)
				residual[i] = data[i] - 3*data[i-1] + 3*data[i-2] - data[i-3];
			break;
		case 4:
			for(i = 0; i < data_len; i++)
				residual[i] = data[i] - 4*data[i-1] + 6*data[i-2] - 4*data[i-3] + data[i-4];
			break;
		default:
			assert(0);
	}
#endif
}

void FLAC__fixed_restore_signal(const int32 residual[], unsigned data_len, unsigned order, int32 data[])
{
	unsigned i;

	switch(order) {
		case 0:
			for(i = 0; i < data_len; i++) {
				data[i] = residual[i];
			}
			break;
		case 1:
			for(i = 0; i < data_len; i++) {
				data[i] = residual[i] + data[i-1];
			}
			break;
		case 2:
			for(i = 0; i < data_len; i++) {
				/* == residual[i] + 2*data[i-1] - data[i-2] */
				data[i] = residual[i] + (data[i-1]<<1) - data[i-2];
			}
			break;
		case 3:
			for(i = 0; i < data_len; i++) {
				/* residual[i] + 3*data[i-1] - 3*data[i-2]) + data[i-3] */
				data[i] = residual[i] + (((data[i-1]-data[i-2])<<1) + (data[i-1]-data[i-2])) + data[i-3];
			}
			break;
		case 4:
			for(i = 0; i < data_len; i++) {
				/* == residual[i] + 4*data[i-1] - 6*data[i-2] + 4*data[i-3] - data[i-4] */
				data[i] = residual[i] + ((data[i-1]+data[i-3])<<2) - ((data[i-2]<<2) + (data[i-2]<<1)) - data[i-4];
			}
			break;
		default:
			assert(0);
	}
}