summaryrefslogtreecommitdiff
path: root/src/libFLAC/md5.c
blob: 09933d7ec5e1ef101dea2d42e1a86a7468243d20 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
#ifdef HAVE_CONFIG_H
#  include <config.h>
#endif

#include <stdlib.h>		/* for malloc() */
#include <string.h>		/* for memcpy() */

#include "private/md5.h"
#include "share/alloc.h"
#include "share/compat.h"
#include "share/endswap.h"

/*
 * This code implements the MD5 message-digest algorithm.
 * The algorithm is due to Ron Rivest.  This code was
 * written by Colin Plumb in 1993, no copyright is claimed.
 * This code is in the public domain; do with it what you wish.
 *
 * Equivalent code is available from RSA Data Security, Inc.
 * This code has been tested against that, and is equivalent,
 * except that you don't need to include two pages of legalese
 * with every copy.
 *
 * To compute the message digest of a chunk of bytes, declare an
 * MD5Context structure, pass it to MD5Init, call MD5Update as
 * needed on buffers full of bytes, and then call MD5Final, which
 * will fill a supplied 16-byte array with the digest.
 *
 * Changed so as no longer to depend on Colin Plumb's `usual.h' header
 * definitions; now uses stuff from dpkg's config.h.
 *  - Ian Jackson <ijackson@nyx.cs.du.edu>.
 * Still in the public domain.
 *
 * Josh Coalson: made some changes to integrate with libFLAC.
 * Still in the public domain.
 */

/* The four core functions - F1 is optimized somewhat */

/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))

/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f,w,x,y,z,in,s) \
	 (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x)

/*
 * The core of the MD5 algorithm, this alters an existing MD5 hash to
 * reflect the addition of 16 longwords of new data.  MD5Update blocks
 * the data and converts bytes into longwords for this routine.
 */
static void FLAC__MD5Transform(FLAC__uint32 buf[4], FLAC__uint32 const in[16])
{
	register FLAC__uint32 a, b, c, d;

	a = buf[0];
	b = buf[1];
	c = buf[2];
	d = buf[3];

	MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
	MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
	MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
	MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
	MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
	MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
	MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
	MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
	MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
	MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
	MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
	MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
	MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
	MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
	MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
	MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);

	MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
	MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
	MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
	MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
	MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
	MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
	MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
	MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
	MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
	MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
	MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
	MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
	MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
	MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
	MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
	MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);

	MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
	MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
	MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
	MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
	MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
	MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
	MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
	MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
	MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
	MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
	MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
	MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
	MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
	MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
	MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
	MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);

	MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
	MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
	MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
	MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
	MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
	MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
	MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
	MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
	MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
	MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
	MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
	MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
	MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
	MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
	MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
	MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);

	buf[0] += a;
	buf[1] += b;
	buf[2] += c;
	buf[3] += d;
}

#if WORDS_BIGENDIAN
//@@@@@@ OPT: use bswap/intrinsics
static void byteSwap(FLAC__uint32 *buf, uint32_t words)
{
	register FLAC__uint32 x;
	do {
		x = *buf;
		x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff);
		*buf++ = (x >> 16) | (x << 16);
	} while (--words);
}
static void byteSwapX16(FLAC__uint32 *buf)
{
	register FLAC__uint32 x;

	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf   = (x >> 16) | (x << 16);
}
#else
#define byteSwap(buf, words)
#define byteSwapX16(buf)
#endif

/*
 * Update context to reflect the concatenation of another buffer full
 * of bytes.
 */
static void FLAC__MD5Update(FLAC__MD5Context *ctx, FLAC__byte const *buf, uint32_t len)
{
	FLAC__uint32 t;

	/* Update byte count */

	t = ctx->bytes[0];
	if ((ctx->bytes[0] = t + len) < t)
		ctx->bytes[1]++;	/* Carry from low to high */

	t = 64 - (t & 0x3f);	/* Space available in ctx->in (at least 1) */
	if (t > len) {
		memcpy((FLAC__byte *)ctx->in + 64 - t, buf, len);
		return;
	}
	/* First chunk is an odd size */
	memcpy((FLAC__byte *)ctx->in + 64 - t, buf, t);
	byteSwapX16(ctx->in);
	FLAC__MD5Transform(ctx->buf, ctx->in);
	buf += t;
	len -= t;

	/* Process data in 64-byte chunks */
	while (len >= 64) {
		memcpy(ctx->in, buf, 64);
		byteSwapX16(ctx->in);
		FLAC__MD5Transform(ctx->buf, ctx->in);
		buf += 64;
		len -= 64;
	}

	/* Handle any remaining bytes of data. */
	memcpy(ctx->in, buf, len);
}

/*
 * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
 * initialization constants.
 */
void FLAC__MD5Init(FLAC__MD5Context *ctx)
{
	ctx->buf[0] = 0x67452301;
	ctx->buf[1] = 0xefcdab89;
	ctx->buf[2] = 0x98badcfe;
	ctx->buf[3] = 0x10325476;

	ctx->bytes[0] = 0;
	ctx->bytes[1] = 0;

	ctx->internal_buf.p8 = 0;
	ctx->capacity = 0;
}

/*
 * Final wrapup - pad to 64-byte boundary with the bit pattern
 * 1 0* (64-bit count of bits processed, MSB-first)
 */
void FLAC__MD5Final(FLAC__byte digest[16], FLAC__MD5Context *ctx)
{
	int count = ctx->bytes[0] & 0x3f;	/* Number of bytes in ctx->in */
	FLAC__byte *p = (FLAC__byte *)ctx->in + count;

	/* Set the first char of padding to 0x80.  There is always room. */
	*p++ = 0x80;

	/* Bytes of padding needed to make 56 bytes (-8..55) */
	count = 56 - 1 - count;

	if (count < 0) {	/* Padding forces an extra block */
		memset(p, 0, count + 8);
		byteSwapX16(ctx->in);
		FLAC__MD5Transform(ctx->buf, ctx->in);
		p = (FLAC__byte *)ctx->in;
		count = 56;
	}
	memset(p, 0, count);
	byteSwap(ctx->in, 14);

	/* Append length in bits and transform */
	ctx->in[14] = ctx->bytes[0] << 3;
	ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29;
	FLAC__MD5Transform(ctx->buf, ctx->in);

	byteSwap(ctx->buf, 4);
	memcpy(digest, ctx->buf, 16);
	if (0 != ctx->internal_buf.p8) {
		free(ctx->internal_buf.p8);
		ctx->internal_buf.p8 = 0;
		ctx->capacity = 0;
	}
	memset(ctx, 0, sizeof(*ctx));	/* In case it's sensitive */
}

/*
 * Convert the incoming audio signal to a byte stream
 */
static void format_input_(FLAC__multibyte *mbuf, const FLAC__int32 * const signal[], uint32_t channels, uint32_t samples, uint32_t bytes_per_sample)
{
	FLAC__byte *buf_ = mbuf->p8;
	FLAC__int16 *buf16 = mbuf->p16;
	FLAC__int32 *buf32 = mbuf->p32;
	FLAC__int32 a_word;
	uint32_t channel, sample;

	/* Storage in the output buffer, buf, is little endian. */

#define BYTES_CHANNEL_SELECTOR(bytes, channels)   (bytes * 100 + channels)

	/* First do the most commonly used combinations. */
	switch (BYTES_CHANNEL_SELECTOR (bytes_per_sample, channels)) {
		/* One byte per sample. */
		case (BYTES_CHANNEL_SELECTOR (1, 1)):
			for (sample = 0; sample < samples; sample++)
				*buf_++ = signal[0][sample];
			return;

		case (BYTES_CHANNEL_SELECTOR (1, 2)):
			for (sample = 0; sample < samples; sample++) {
				*buf_++ = signal[0][sample];
				*buf_++ = signal[1][sample];
			}
			return;

		case (BYTES_CHANNEL_SELECTOR (1, 4)):
			for (sample = 0; sample < samples; sample++) {
				*buf_++ = signal[0][sample];
				*buf_++ = signal[1][sample];
				*buf_++ = signal[2][sample];
				*buf_++ = signal[3][sample];
			}
			return;

		case (BYTES_CHANNEL_SELECTOR (1, 6)):
			for (sample = 0; sample < samples; sample++) {
				*buf_++ = signal[0][sample];
				*buf_++ = signal[1][sample];
				*buf_++ = signal[2][sample];
				*buf_++ = signal[3][sample];
				*buf_++ = signal[4][sample];
				*buf_++ = signal[5][sample];
			}
			return;

		case (BYTES_CHANNEL_SELECTOR (1, 8)):
			for (sample = 0; sample < samples; sample++) {
				*buf_++ = signal[0][sample];
				*buf_++ = signal[1][sample];
				*buf_++ = signal[2][sample];
				*buf_++ = signal[3][sample];
				*buf_++ = signal[4][sample];
				*buf_++ = signal[5][sample];
				*buf_++ = signal[6][sample];
				*buf_++ = signal[7][sample];
			}
			return;

		/* Two bytes per sample. */
		case (BYTES_CHANNEL_SELECTOR (2, 1)):
			for (sample = 0; sample < samples; sample++)
				*buf16++ = H2LE_16(signal[0][sample]);
			return;

		case (BYTES_CHANNEL_SELECTOR (2, 2)):
			for (sample = 0; sample < samples; sample++) {
				*buf16++ = H2LE_16(signal[0][sample]);
				*buf16++ = H2LE_16(signal[1][sample]);
			}
			return;

		case (BYTES_CHANNEL_SELECTOR (2, 4)):
			for (sample = 0; sample < samples; sample++) {
				*buf16++ = H2LE_16(signal[0][sample]);
				*buf16++ = H2LE_16(signal[1][sample]);
				*buf16++ = H2LE_16(signal[2][sample]);
				*buf16++ = H2LE_16(signal[3][sample]);
			}
			return;

		case (BYTES_CHANNEL_SELECTOR (2, 6)):
			for (sample = 0; sample < samples; sample++) {
				*buf16++ = H2LE_16(signal[0][sample]);
				*buf16++ = H2LE_16(signal[1][sample]);
				*buf16++ = H2LE_16(signal[2][sample]);
				*buf16++ = H2LE_16(signal[3][sample]);
				*buf16++ = H2LE_16(signal[4][sample]);
				*buf16++ = H2LE_16(signal[5][sample]);
			}
			return;

		case (BYTES_CHANNEL_SELECTOR (2, 8)):
			for (sample = 0; sample < samples; sample++) {
				*buf16++ = H2LE_16(signal[0][sample]);
				*buf16++ = H2LE_16(signal[1][sample]);
				*buf16++ = H2LE_16(signal[2][sample]);
				*buf16++ = H2LE_16(signal[3][sample]);
				*buf16++ = H2LE_16(signal[4][sample]);
				*buf16++ = H2LE_16(signal[5][sample]);
				*buf16++ = H2LE_16(signal[6][sample]);
				*buf16++ = H2LE_16(signal[7][sample]);
			}
			return;

		/* Three bytes per sample. */
		case (BYTES_CHANNEL_SELECTOR (3, 1)):
			for (sample = 0; sample < samples; sample++) {
				a_word = signal[0][sample];
				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
				*buf_++ = (FLAC__byte)a_word;
			}
			return;

		case (BYTES_CHANNEL_SELECTOR (3, 2)):
			for (sample = 0; sample < samples; sample++) {
				a_word = signal[0][sample];
				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
				*buf_++ = (FLAC__byte)a_word;
				a_word = signal[1][sample];
				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
				*buf_++ = (FLAC__byte)a_word;
			}
			return;

		/* Four bytes per sample. */
		case (BYTES_CHANNEL_SELECTOR (4, 1)):
			for (sample = 0; sample < samples; sample++)
				*buf32++ = H2LE_32(signal[0][sample]);
			return;

		case (BYTES_CHANNEL_SELECTOR (4, 2)):
			for (sample = 0; sample < samples; sample++) {
				*buf32++ = H2LE_32(signal[0][sample]);
				*buf32++ = H2LE_32(signal[1][sample]);
			}
			return;

		case (BYTES_CHANNEL_SELECTOR (4, 4)):
			for (sample = 0; sample < samples; sample++) {
				*buf32++ = H2LE_32(signal[0][sample]);
				*buf32++ = H2LE_32(signal[1][sample]);
				*buf32++ = H2LE_32(signal[2][sample]);
				*buf32++ = H2LE_32(signal[3][sample]);
			}
			return;

		case (BYTES_CHANNEL_SELECTOR (4, 6)):
			for (sample = 0; sample < samples; sample++) {
				*buf32++ = H2LE_32(signal[0][sample]);
				*buf32++ = H2LE_32(signal[1][sample]);
				*buf32++ = H2LE_32(signal[2][sample]);
				*buf32++ = H2LE_32(signal[3][sample]);
				*buf32++ = H2LE_32(signal[4][sample]);
				*buf32++ = H2LE_32(signal[5][sample]);
			}
			return;

		case (BYTES_CHANNEL_SELECTOR (4, 8)):
			for (sample = 0; sample < samples; sample++) {
				*buf32++ = H2LE_32(signal[0][sample]);
				*buf32++ = H2LE_32(signal[1][sample]);
				*buf32++ = H2LE_32(signal[2][sample]);
				*buf32++ = H2LE_32(signal[3][sample]);
				*buf32++ = H2LE_32(signal[4][sample]);
				*buf32++ = H2LE_32(signal[5][sample]);
				*buf32++ = H2LE_32(signal[6][sample]);
				*buf32++ = H2LE_32(signal[7][sample]);
			}
			return;

		default:
			break;
	}

	/* General version. */
	switch (bytes_per_sample) {
		case 1:
			for (sample = 0; sample < samples; sample++)
				for (channel = 0; channel < channels; channel++)
					*buf_++ = signal[channel][sample];
			return;

		case 2:
			for (sample = 0; sample < samples; sample++)
				for (channel = 0; channel < channels; channel++)
					*buf16++ = H2LE_16(signal[channel][sample]);
			return;

		case 3:
			for (sample = 0; sample < samples; sample++)
				for (channel = 0; channel < channels; channel++) {
					a_word = signal[channel][sample];
					*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
					*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
					*buf_++ = (FLAC__byte)a_word;
				}
			return;

		case 4:
			for (sample = 0; sample < samples; sample++)
				for (channel = 0; channel < channels; channel++)
					*buf32++ = H2LE_32(signal[channel][sample]);
			return;

		default:
			break;
	}
}

/*
 * Convert the incoming audio signal to a byte stream and FLAC__MD5Update it.
 */
FLAC__bool FLAC__MD5Accumulate(FLAC__MD5Context *ctx, const FLAC__int32 * const signal[], uint32_t channels, uint32_t samples, uint32_t bytes_per_sample)
{
	const size_t bytes_needed = (size_t)channels * (size_t)samples * (size_t)bytes_per_sample;

	/* overflow check */
	if ((size_t)channels > SIZE_MAX / (size_t)bytes_per_sample)
		return false;
	if ((size_t)channels * (size_t)bytes_per_sample > SIZE_MAX / (size_t)samples)
		return false;

	if (ctx->capacity < bytes_needed) {
		if (0 == (ctx->internal_buf.p8 = safe_realloc_(ctx->internal_buf.p8, bytes_needed))) {
			if (0 == (ctx->internal_buf.p8 = safe_malloc_(bytes_needed))) {
				ctx->capacity = 0;
				return false;
			}
		}
		ctx->capacity = bytes_needed;
	}

	format_input_(&ctx->internal_buf, signal, channels, samples, bytes_per_sample);

	FLAC__MD5Update(ctx, ctx->internal_buf.p8, bytes_needed);

	return true;
}