1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
/* plugin_common - Routines common to several plugins
* Copyright (C) 2002,2003,2004,2005,2006,2007,2008 Josh Coalson
*
* dithering routine derived from (other GPLed source):
* mad - MPEG audio decoder
* Copyright (C) 2000-2001 Robert Leslie
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#if HAVE_CONFIG_H
# include <config.h>
#endif
#include "dither.h"
#include "FLAC/assert.h"
#ifdef max
#undef max
#endif
#define max(a,b) ((a)>(b)?(a):(b))
#ifndef FLaC__INLINE
#define FLaC__INLINE
#endif
/* 32-bit pseudo-random number generator
*
* @@@ According to Miroslav, this one is poor quality, the one from the
* @@@ original replaygain code is much better
*/
static FLaC__INLINE FLAC__uint32 prng(FLAC__uint32 state)
{
return (state * 0x0019660dL + 0x3c6ef35fL) & 0xffffffffL;
}
/* dither routine derived from MAD winamp plugin */
typedef struct {
FLAC__int32 error[3];
FLAC__int32 random;
} dither_state;
static FLaC__INLINE FLAC__int32 linear_dither(unsigned source_bps, unsigned target_bps, FLAC__int32 sample, dither_state *dither, const FLAC__int32 MIN, const FLAC__int32 MAX)
{
unsigned scalebits;
FLAC__int32 output, mask, random;
FLAC__ASSERT(source_bps < 32);
FLAC__ASSERT(target_bps <= 24);
FLAC__ASSERT(target_bps <= source_bps);
/* noise shape */
sample += dither->error[0] - dither->error[1] + dither->error[2];
dither->error[2] = dither->error[1];
dither->error[1] = dither->error[0] / 2;
/* bias */
output = sample + (1L << (source_bps - target_bps - 1));
scalebits = source_bps - target_bps;
mask = (1L << scalebits) - 1;
/* dither */
random = (FLAC__int32)prng(dither->random);
output += (random & mask) - (dither->random & mask);
dither->random = random;
/* clip */
if(output > MAX) {
output = MAX;
if(sample > MAX)
sample = MAX;
}
else if(output < MIN) {
output = MIN;
if(sample < MIN)
sample = MIN;
}
/* quantize */
output &= ~mask;
/* error feedback */
dither->error[0] = sample - output;
/* scale */
return output >> scalebits;
}
size_t FLAC__plugin_common__pack_pcm_signed_big_endian(FLAC__byte *data, const FLAC__int32 * const input[], unsigned wide_samples, unsigned channels, unsigned source_bps, unsigned target_bps)
{
static dither_state dither[FLAC_PLUGIN__MAX_SUPPORTED_CHANNELS];
FLAC__byte * const start = data;
FLAC__int32 sample;
const FLAC__int32 *input_;
unsigned samples, channel;
const unsigned bytes_per_sample = target_bps / 8;
const unsigned incr = bytes_per_sample * channels;
FLAC__ASSERT(channels > 0 && channels <= FLAC_PLUGIN__MAX_SUPPORTED_CHANNELS);
FLAC__ASSERT(source_bps < 32);
FLAC__ASSERT(target_bps <= 24);
FLAC__ASSERT(target_bps <= source_bps);
FLAC__ASSERT((source_bps & 7) == 0);
FLAC__ASSERT((target_bps & 7) == 0);
if(source_bps != target_bps) {
const FLAC__int32 MIN = -(1L << (source_bps - 1));
const FLAC__int32 MAX = ~MIN; /*(1L << (source_bps-1)) - 1 */
for(channel = 0; channel < channels; channel++) {
samples = wide_samples;
data = start + bytes_per_sample * channel;
input_ = input[channel];
while(samples--) {
sample = linear_dither(source_bps, target_bps, *input_++, &dither[channel], MIN, MAX);
switch(target_bps) {
case 8:
data[0] = sample ^ 0x80;
break;
case 16:
data[0] = (FLAC__byte)(sample >> 8);
data[1] = (FLAC__byte)sample;
break;
case 24:
data[0] = (FLAC__byte)(sample >> 16);
data[1] = (FLAC__byte)(sample >> 8);
data[2] = (FLAC__byte)sample;
break;
}
data += incr;
}
}
}
else {
for(channel = 0; channel < channels; channel++) {
samples = wide_samples;
data = start + bytes_per_sample * channel;
input_ = input[channel];
while(samples--) {
sample = *input_++;
switch(target_bps) {
case 8:
data[0] = sample ^ 0x80;
break;
case 16:
data[0] = (FLAC__byte)(sample >> 8);
data[1] = (FLAC__byte)sample;
break;
case 24:
data[0] = (FLAC__byte)(sample >> 16);
data[1] = (FLAC__byte)(sample >> 8);
data[2] = (FLAC__byte)sample;
break;
}
data += incr;
}
}
}
return wide_samples * channels * (target_bps/8);
}
size_t FLAC__plugin_common__pack_pcm_signed_little_endian(FLAC__byte *data, const FLAC__int32 * const input[], unsigned wide_samples, unsigned channels, unsigned source_bps, unsigned target_bps)
{
static dither_state dither[FLAC_PLUGIN__MAX_SUPPORTED_CHANNELS];
FLAC__byte * const start = data;
FLAC__int32 sample;
const FLAC__int32 *input_;
unsigned samples, channel;
const unsigned bytes_per_sample = target_bps / 8;
const unsigned incr = bytes_per_sample * channels;
FLAC__ASSERT(channels > 0 && channels <= FLAC_PLUGIN__MAX_SUPPORTED_CHANNELS);
FLAC__ASSERT(source_bps < 32);
FLAC__ASSERT(target_bps <= 24);
FLAC__ASSERT(target_bps <= source_bps);
FLAC__ASSERT((source_bps & 7) == 0);
FLAC__ASSERT((target_bps & 7) == 0);
if(source_bps != target_bps) {
const FLAC__int32 MIN = -(1L << (source_bps - 1));
const FLAC__int32 MAX = ~MIN; /*(1L << (source_bps-1)) - 1 */
for(channel = 0; channel < channels; channel++) {
samples = wide_samples;
data = start + bytes_per_sample * channel;
input_ = input[channel];
while(samples--) {
sample = linear_dither(source_bps, target_bps, *input_++, &dither[channel], MIN, MAX);
switch(target_bps) {
case 8:
data[0] = sample ^ 0x80;
break;
case 24:
data[2] = (FLAC__byte)(sample >> 16);
/* fall through */
case 16:
data[1] = (FLAC__byte)(sample >> 8);
data[0] = (FLAC__byte)sample;
}
data += incr;
}
}
}
else {
for(channel = 0; channel < channels; channel++) {
samples = wide_samples;
data = start + bytes_per_sample * channel;
input_ = input[channel];
while(samples--) {
sample = *input_++;
switch(target_bps) {
case 8:
data[0] = sample ^ 0x80;
break;
case 24:
data[2] = (FLAC__byte)(sample >> 16);
/* fall through */
case 16:
data[1] = (FLAC__byte)(sample >> 8);
data[0] = (FLAC__byte)sample;
}
data += incr;
}
}
}
return wide_samples * channels * (target_bps/8);
}
|