summaryrefslogtreecommitdiff
path: root/lib/AST/ExprConstant.cpp
blob: a7477cc96b7658e6c265fdd063baa19e5e6a055f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
//===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expr constant evaluator.
//
//===----------------------------------------------------------------------===//

#include "flang/AST/ASTContext.h"
#include "flang/AST/Decl.h"
#include "flang/AST/Expr.h"
#include "flang/AST/ExprVisitor.h"
#include "flang/AST/ExprConstant.h"
#include <limits>

namespace flang {

ExprEvalScope::ExprEvalScope(ASTContext &C)
  : Context(C) {}

std::pair<int64_t, bool> ExprEvalScope::get(const Expr *E) const {
  if(auto VE = dyn_cast<VarExpr>(E)) {
    auto Substitute = InlinedVars.find(VE->getVarDecl());
    if(Substitute != InlinedVars.end())
      return std::make_pair(Substitute->second, true);
  }
  return std::make_pair(int64_t(0), false);
}

void ExprEvalScope::Assign(const VarDecl *Var, int64_t Value) {
  auto I = InlinedVars.find(Var);
  if(I != InlinedVars.end())
    I->second = Value;
  else
    InlinedVars.insert(std::make_pair(Var, Value));
}

class ConstExprVerifier: public ConstExprVisitor<ConstExprVerifier,
                                                 bool> {
  SmallVectorImpl<const Expr *> *NonConstants;
public:
  ConstExprVerifier(SmallVectorImpl<const Expr *> *NonConst = nullptr)
    : NonConstants(NonConst) {}

  bool Eval(const Expr *E);
  bool VisitExpr(const Expr *E);
  bool VisitUnaryExpr(const UnaryExpr *E);
  bool VisitBinaryExpr(const BinaryExpr *E);
  bool VisitImplicitCastExpr(const ImplicitCastExpr *E);
  bool VisitVarExpr(const VarExpr *E);
  bool VisitArrayConstructorExpr(const ArrayConstructorExpr *E);
  bool VisitTypeConstructorExpr(const TypeConstructorExpr *E);
  bool VisitIntrinsicCallExpr(const IntrinsicCallExpr *E);
};

bool ConstExprVerifier::Eval(const Expr *E) {
  if(isa<ConstantExpr>(E))
    return true;
  return Visit(E);
}

bool ConstExprVerifier::VisitExpr(const Expr *E) {
  if(NonConstants)
    NonConstants->push_back(E);
  return false;
}

bool ConstExprVerifier::VisitUnaryExpr(const UnaryExpr *E) {
  return Eval(E->getExpression());
}

bool ConstExprVerifier::VisitBinaryExpr(const BinaryExpr *E) {
  auto LHS = Eval(E->getLHS());
  auto RHS = Eval(E->getRHS());
  return LHS && RHS;
}

bool ConstExprVerifier::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
  return Eval(E->getExpression());
}

bool ConstExprVerifier::VisitVarExpr(const VarExpr *E) {
  if(E->getVarDecl()->isParameter())
    return Eval(E->getVarDecl()->getInit());
  if(NonConstants)
    NonConstants->push_back(E);
  return false;
}

bool ConstExprVerifier::VisitArrayConstructorExpr(const ArrayConstructorExpr *E) {
  for(auto I : E->getItems()) {
    if(!Eval(I))
      return false;
  }
  return true;
}

bool ConstExprVerifier::VisitTypeConstructorExpr(const TypeConstructorExpr *E) {
  for(auto I : E->getArguments()) {
    if(!Eval(I))
      return false;
  }
  return true;
}

bool ConstExprVerifier::VisitIntrinsicCallExpr(const IntrinsicCallExpr *E) {
  switch(E->getIntrinsicFunction()) {
  case intrinsic::SELECTED_REAL_KIND:
    //FIXME
    return false;
  case intrinsic::SELECTED_INT_KIND:
    for(auto I : E->getArguments()) {
      if(!Eval(I))
        return false;
    }
  case intrinsic::KIND:
  case intrinsic::BIT_SIZE:
    return true;
  }
  return VisitExpr(E);
}

struct IntValueTy : public llvm::APInt {

  IntValueTy() {}
  IntValueTy(uint64_t I) :
    llvm::APInt(64, I, true) {}

  template<typename T = int64_t>
  bool IsProperSignedInt() const {
    auto u64 = getLimitedValue();
    if(isNonNegative())
      return u64 <= uint64_t(std::numeric_limits<T>::max());
    else
      return T(int64_t(u64)) >= (std::numeric_limits<T>::min());
  }

  void operator=(const llvm::APInt &I) {
    llvm::APInt::operator =(I);
  }

  template<typename T = int64_t>
  bool Assign(const llvm::APInt &I) {
    auto u64 = I.getLimitedValue();
    *this = IntValueTy(u64);
    return true;
  }
};

/// Evaluates 64 bit signed integers.
class IntExprEvaluator: public ConstExprVisitor<IntExprEvaluator,
                                                bool> {
  IntValueTy Result;
  const ASTContext &Context;
  const ExprEvalScope *Scope;
public:
  IntExprEvaluator(const ASTContext &C,
                   const ExprEvalScope *S)
    : Context(C), Scope(S) {}

  bool CheckResult(bool Overflow);

  bool Eval(const Expr *E);
  bool VisitExpr(const Expr *E);
  bool VisitIntegerConstantExpr(const IntegerConstantExpr *E);
  bool VisitUnaryExprMinus(const UnaryExpr *E);
  bool VisitUnaryExprPlus(const UnaryExpr *E);
  bool VisitBinaryExpr(const BinaryExpr *E);
  bool VisitVarExpr(const VarExpr *E);
  bool VisitIntrinsicCallExpr(const IntrinsicCallExpr *E);

  int64_t getResult() const;
};

int64_t IntExprEvaluator::getResult() const {
  if(Result.IsProperSignedInt()) {
    auto val = Result.getLimitedValue();
    return int64_t(val);
  }
  return 1;
}

bool IntExprEvaluator::Eval(const Expr *E) {
  if(E->getType()->isIntegerType())
    return Visit(E);
  return false;
}

bool IntExprEvaluator::CheckResult(bool Overflow) {
  if(Overflow || !Result.IsProperSignedInt())
    return false;
  return true;
}

bool IntExprEvaluator::VisitExpr(const Expr *E) {
  return false;
}

bool IntExprEvaluator::VisitIntegerConstantExpr(const IntegerConstantExpr *E) {
  return Result.Assign(E->getValue());
}

bool IntExprEvaluator::VisitUnaryExprMinus(const UnaryExpr *E) {
  if(!Eval(E->getExpression())) return false;
  bool Overflow = false;
  Result = IntValueTy(0).ssub_ov(Result, Overflow);
  return CheckResult(Overflow);
}

bool IntExprEvaluator::VisitUnaryExprPlus(const UnaryExpr *E) {
  return Eval(E->getExpression());
}

bool IntExprEvaluator::VisitBinaryExpr(const BinaryExpr *E) {
  if(!Eval(E->getRHS())) return false;
  IntValueTy RHS(Result);
  if(!Eval(E->getLHS())) return false;

  bool Overflow = false;
  switch(E->getOperator()) {
  case BinaryExpr::Plus:
    Result = Result.sadd_ov(RHS, Overflow);
    break;
  case BinaryExpr::Minus:
    Result = Result.ssub_ov(RHS, Overflow);
    break;
  case BinaryExpr::Multiply:
    Result = Result.smul_ov(RHS, Overflow);
    break;
  case BinaryExpr::Divide:
    Result = Result.sdiv_ov(RHS, Overflow);
    break;
  case BinaryExpr::Power: {
    if(RHS.isNegative()) return false;
    uint64_t N = RHS.getLimitedValue();
    IntValueTy Sum(1);
    for(uint64_t I = 0; I < N; ++I) {
      Overflow = false;
      Sum = Sum.smul_ov(Result, Overflow);
      if(Overflow || !Sum.IsProperSignedInt())
        return false;
    }
    Result = Sum;
    break;
  }
  default:
    return false;
  }
  return CheckResult(Overflow);
}

bool IntExprEvaluator::VisitVarExpr(const VarExpr *E) {
  auto VD = E->getVarDecl();
  if(VD->isParameter())
    return Eval(VD->getInit());
  if(Scope) {
    auto Val = Scope->get(E);
    if(Val.second) {
      Result.Assign(llvm::APInt(64, Val.first, true));
      return true;
    }
  }
  return false;
}

bool IntExprEvaluator::VisitIntrinsicCallExpr(const IntrinsicCallExpr *E) {
  auto Args = E->getArguments();
  if(Args.empty())
    return VisitExpr(E);

  switch(E->getIntrinsicFunction()) {
  case intrinsic::SELECTED_INT_KIND: {
    if(!Eval(Args[0]))
      return false;
    auto Kind = Context.getSelectedIntKind(getResult());
    Result.Assign(llvm::APInt(64, Kind == BuiltinType::NoKind? -1 :
                    Context.getTypeKindBitWidth(Kind)/8, true));
    return true;
  }
  case intrinsic::SELECTED_REAL_KIND:
    //FIXME
    return false;
  case intrinsic::KIND: {
    auto T = Args[0]->getType().getSelfOrArrayElementType();
    if(T->isCharacterType()) {
      Result.Assign(llvm::APInt(64, 1, true));
      return true;
    }
    if(!T->isBuiltinType()) {
      Result.Assign(llvm::APInt(64, 4, true));
      return true;
    }
    Result.Assign(llvm::APInt(64, Context.getTypeKindBitWidth(T->getBuiltinTypeKind())/8, true));
    return true;
  }
  case intrinsic::BIT_SIZE: {
    auto T = Args[0]->getType().getSelfOrArrayElementType();
    auto Val = T->isIntegerType()?
                 Context.getTypeKindBitWidth(T->getBuiltinTypeKind()) : 1;
    Result.Assign(llvm::APInt(64, Val, true));
    return true;
  }
  }

  return VisitExpr(E);
}

bool Expr::EvaluateAsInt(int64_t &Result, const ASTContext &Ctx,
                         const ExprEvalScope *Scope) const {
  IntExprEvaluator EV(Ctx, Scope);
  auto Success = EV.Eval(this);
  Result = EV.getResult();
  return Success;
}

bool Expr::isEvaluatable(const ASTContext &Ctx) const {
  ConstExprVerifier EV;
  return EV.Eval(this);
}

void Expr::GatherNonEvaluatableExpressions(const ASTContext &Ctx,
                                           SmallVectorImpl<const Expr*> &Result) {
  ConstExprVerifier EV(&Result);
  EV.Eval(this);
  if(Result.size() == 0)
    Result.push_back(this);
}

uint64_t EvaluatedArraySpec::EvaluateOffset(int64_t Index) const {
  auto I = Index - LowerBound;
  assert(I >= 0);
  return uint64_t(I);
}

bool ArraySpec::Evaluate(EvaluatedArraySpec &Spec, const ASTContext &Ctx) const {
  return false;
}

bool ExplicitShapeSpec::Evaluate(EvaluatedArraySpec &Spec, const ASTContext &Ctx) const {
  if(getLowerBound()) {
    if(!getLowerBound()->EvaluateAsInt(Spec.LowerBound, Ctx))
      return false;
  } else Spec.LowerBound = 1;
  if(!getUpperBound()->EvaluateAsInt(Spec.UpperBound, Ctx))
    return false;
  auto Sz = Spec.UpperBound - Spec.LowerBound + 1;
  assert(Sz > 0);
  Spec.Size = uint64_t(Sz);
  return true;
}

static
bool EvaluateDimensions(const ArrayType *T,
                        llvm::MutableArrayRef<EvaluatedArraySpec> Dims,
                        const ASTContext &Ctx) {
  assert(T->getDimensionCount() == Dims.size());
  auto Dimensions = T->getDimensions();
  for(size_t I = 0; I < Dimensions.size(); ++I) {
    if(!Dimensions[I]->Evaluate(Dims[I], Ctx))
      return false;
  }
  return true;
}

bool ArrayElementExpr::EvaluateOffset(ASTContext &Ctx, uint64_t &Offset,
                                      const ExprEvalScope *Scope) const {
  auto ATy = getTarget()->getType()->asArrayType();
  SmallVector<EvaluatedArraySpec, 8> Dims(ATy->getDimensionCount());
  if(!EvaluateDimensions(ATy, Dims, Ctx))
    return false;
  auto Subscripts = getSubscripts();
  Offset = 0;
  uint64_t DimSizes = 0;
  for(size_t I = 0; I < Dims.size(); ++I) {
    int64_t Index;
    if(!Subscripts[I]->EvaluateAsInt(Index, Ctx, Scope))
      return false;
    if(I == 0) {
      Offset = Dims[I].EvaluateOffset(Index);
      DimSizes = Dims[I].Size;
    } else {
      Offset += DimSizes * Dims[I].EvaluateOffset(Index);
      DimSizes *= Dims[I].Size;
    }
  }
  return true;
}

bool SubstringExpr::EvaluateRange(ASTContext &Ctx, uint64_t Len,
                                  uint64_t &Start, uint64_t &End,
                                  const ExprEvalScope *Scope) const {
  if(StartingPoint) {
    int64_t I;
    if(!StartingPoint->EvaluateAsInt(I, Ctx, Scope))
      return false;
    if(I < 1) return false;
    Start = I - 1;
  } else Start = 0;
  if(EndPoint) {
    int64_t I;
    if(!EndPoint->EvaluateAsInt(I, Ctx, Scope))
      return false;
    if(I < 1 || I > Len) return false;
    End = I;
  } else End = Len;
  return true;
}


} // end namespace flang