{ Copyright (c) 1998-2012 by Florian Klaempfl and Peter Vreman Copyright (c) 2014 by Jonas Maebe and Florian Klaempfl Contains the base types for Aarch64 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } { Base unit for processor information. This unit contains enumerations of registers, opcodes, sizes, and other such things which are processor specific. } unit cpubase; {$define USEINLINE} {$i fpcdefs.inc} interface uses cutils,cclasses, globtype,globals, cpuinfo, aasmbase, cgbase ; {***************************************************************************** Assembler Opcodes *****************************************************************************} type TAsmOp= {$i a64op.inc} TAsmOps = set of TAsmOp; { This should define the array of instructions as string } op2strtable=array[tasmop] of string[11]; const { First value of opcode enumeration } firstop = low(tasmop); { Last value of opcode enumeration } lastop = high(tasmop); {***************************************************************************** Registers *****************************************************************************} type { Number of registers used for indexing in tables } tregisterindex=0..{$i ra64nor.inc}-1; const { Available Superregisters } {$i ra64sup.inc} RS_IP0 = RS_X16; RS_IP1 = RS_X17; R_SUBWHOLE = R_SUBQ; { Available Registers } {$i ra64con.inc} NR_IP0 = NR_X16; NR_IP1 = NR_X17; { Integer Super registers first and last } first_int_supreg = RS_X0; { xzr and sp take up a separate super register because some instructions are ambiguous otherwise } first_int_imreg = $21; { Integer Super registers first and last } first_fpu_supreg = RS_S0; first_fpu_imreg = $20; { MM Super register first and last } first_mm_supreg = RS_S0; first_mm_imreg = $20; { Required parameter alignment when calling a routine declared as stdcall and cdecl. The alignment value should be the one defined by GCC or the target ABI. The value of this constant is equal to the constant PARM_BOUNDARY / BITS_PER_UNIT in the GCC source. } std_param_align = 8; { TODO: Calculate bsstart} regnumber_count_bsstart = 256; regnumber_table : array[tregisterindex] of tregister = ( {$i ra64num.inc} ); regstabs_table : array[tregisterindex] of shortint = ( {$i ra64sta.inc} ); regdwarf_table : array[tregisterindex] of shortint = ( {$i ra64dwa.inc} ); { registers which may be destroyed by calls } VOLATILE_INTREGISTERS = [RS_X0..RS_X18,RS_X30]; VOLATILE_MMREGISTERS = [RS_D0..RS_D7,RS_D16..RS_D31]; {***************************************************************************** Instruction post fixes *****************************************************************************} type { ARM instructions load/store and arithmetic instructions can have several instruction post fixes which are collected in this enumeration } TOpPostfix = (PF_None, { update condition flags } PF_S, { load/store sizes } PF_B,PF_SB,PF_H,PF_SH,PF_W,PF_SW ); TOpPostfixes = set of TOpPostfix; const tcgsizep2size: array[OS_NO..OS_F128] of byte = {OS_NO } (0, {OS_8,OS_16,OS_32,OS_64,OS_128,OS_S8,OS_S16,OS_S32,OS_S64,OS_S128} 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, {OS_F32,OS_F64,OS_F80,OS_C64,OS_F128,} 2, 3, 0, 3, 4); oppostfix2str: array[TOpPostfix] of string[2] = ('', 's', 'b','sb','h','sh','w','sw'); {***************************************************************************** Conditions *****************************************************************************} type TAsmCond=(C_None, C_EQ,C_NE,C_HS,C_LO,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS, C_GE,C_LT,C_GT,C_LE,C_AL,C_NV ); TAsmConds = set of TAsmCond; const C_CS = C_HS; C_CC = C_LO; cond2str : array[TAsmCond] of string[2]=('', 'eq','ne','hs','lo','mi','pl','vs','vc','hi','ls', 'ge','lt','gt','le','al','nv' ); uppercond2str : array[TAsmCond] of string[2]=('', 'EQ','NE','HS','LO','MI','PL','VS','VC','HI','LS', 'GE','LT','GT','LE','AL','NV' ); {***************************************************************************** Flags *****************************************************************************} type TResFlags = (F_EQ,F_NE,F_CS,F_CC,F_MI,F_PL,F_VS,F_VC,F_HI,F_LS, F_GE,F_LT,F_GT,F_LE); const F_HS = F_CS; F_LO = F_CC; {***************************************************************************** Operands *****************************************************************************} type taddressmode = (AM_OFFSET,AM_PREINDEXED,AM_POSTINDEXED); tshiftmode = (SM_None, { shifted register instructions. LSL can also be used for the index register of certain loads/stores } SM_LSL,SM_LSR,SM_ASR, { extended register instructions: zero/sign extension + optional shift (interpreted as LSL after extension) -- the index register of certain loads/stores can be extended via (s|u)xtw with a shiftval of either 0 or log2(transfer size of the load/store) } SM_UXTB,SM_UXTH,SM_UXTW,SM_UXTX,SM_SXTB,SM_SXTH,SM_SXTW,SM_SXTX); tupdatereg = (UR_None,UR_Update); pshifterop = ^tshifterop; tshifterop = record shiftmode : tshiftmode; shiftimm : byte; end; {***************************************************************************** Constants *****************************************************************************} const max_operands = 6; maxintregs = 32; maxfpuregs = 32; maxaddrregs = 0; shiftedregmodes = [SM_LSL,SM_UXTB,SM_UXTH,SM_UXTW,SM_UXTX,SM_SXTB,SM_SXTH,SM_SXTW,SM_SXTX]; extendedregmodes = [SM_LSL,SM_LSR,SM_ASR]; {***************************************************************************** Operand Sizes *****************************************************************************} type topsize = (S_NO, S_B,S_W,S_L,S_BW,S_BL,S_WL, S_IS,S_IL,S_IQ, S_FS,S_FL,S_FX,S_D,S_Q,S_FV,S_FXX ); {***************************************************************************** Default generic sizes *****************************************************************************} const { Defines the default address size for a processor, } OS_ADDR = OS_64; { the natural int size for a processor, has to match osuinttype/ossinttype as initialized in psystem } OS_INT = OS_64; OS_SINT = OS_S64; { the maximum float size for a processor, } OS_FLOAT = OS_F64; { the size of a vector register for a processor } OS_VECTOR = OS_M128; {***************************************************************************** Generic Register names *****************************************************************************} NR_FP = NR_X29; RS_FP = RS_X29; NR_WFP = NR_W29; RS_WFP = RS_W29; NR_LR = NR_X30; RS_LR = RS_X30; NR_WLR = NR_W30; RS_WLR = RS_W30; { Stack pointer register } NR_STACK_POINTER_REG = NR_SP; RS_STACK_POINTER_REG = RS_SP; { Frame pointer register } NR_FRAME_POINTER_REG = NR_X29; RS_FRAME_POINTER_REG = RS_X29; { Register for addressing absolute data in a position independant way, such as in PIC code. The exact meaning is ABI specific. For further information look at GCC source : PIC_OFFSET_TABLE_REGNUM } NR_PIC_OFFSET_REG = NR_X18; { Results are returned in this register (32-bit values) } NR_FUNCTION_RETURN_REG = NR_X0; RS_FUNCTION_RETURN_REG = RS_X0; { The value returned from a function is available in this register } NR_FUNCTION_RESULT_REG = NR_FUNCTION_RETURN_REG; RS_FUNCTION_RESULT_REG = RS_FUNCTION_RETURN_REG; NR_FPU_RESULT_REG = NR_NO; NR_MM_RESULT_REG = NR_D0; NR_RETURN_ADDRESS_REG = NR_FUNCTION_RETURN_REG; { Offset where the parent framepointer is pushed } PARENT_FRAMEPOINTER_OFFSET = 0; NR_DEFAULTFLAGS = NR_NZCV; RS_DEFAULTFLAGS = RS_NZCV; {***************************************************************************** Helpers *****************************************************************************} { Returns the tcgsize corresponding with the size of reg.} function reg_cgsize(const reg: tregister) : tcgsize; function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister; function is_calljmp(o:tasmop):boolean;{$ifdef USEINLINE}inline;{$endif USEINLINE} procedure inverse_flags(var f: TResFlags); function flags_to_cond(const f: TResFlags) : TAsmCond; function findreg_by_number(r:Tregister):tregisterindex; function std_regnum_search(const s:string):Tregister; function std_regname(r:Tregister):string; function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE} function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE} procedure shifterop_reset(var so : tshifterop); {$ifdef USEINLINE}inline;{$endif USEINLINE} function dwarf_reg(r:tregister):shortint; function dwarf_reg_no_error(r:tregister):shortint; function eh_return_data_regno(nr: longint): longint; function is_shifter_const(d: aint; size: tcgsize): boolean; function IsFloatImmediate(ft : tfloattype;value : bestreal) : boolean; implementation uses systems,rgBase,verbose; const std_regname_table : TRegNameTable = ( {$i ra64std.inc} ); regnumber_index : array[tregisterindex] of tregisterindex = ( {$i ra64rni.inc} ); std_regname_index : array[tregisterindex] of tregisterindex = ( {$i ra64sri.inc} ); function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister; begin case regtype of R_INTREGISTER: begin case s of { there's only Wn and Xn } OS_64, OS_S64: cgsize2subreg:=R_SUBWHOLE; else cgsize2subreg:=R_SUBD; end; end; R_MMREGISTER: begin case s of { records } OS_32, OS_F32: cgsize2subreg:=R_SUBMMS; OS_64, OS_F64: cgsize2subreg:=R_SUBMMD; else internalerror(2009112701); end; end; else cgsize2subreg:=R_SUBWHOLE; end; end; function reg_cgsize(const reg: tregister): tcgsize; begin case getregtype(reg) of R_INTREGISTER: case getsubreg(reg) of R_SUBD: result:=OS_32 else result:=OS_64; end; R_MMREGISTER : begin case getsubreg(reg) of R_SUBMMD: result:=OS_F64; R_SUBMMS: result:=OS_F32; R_SUBMMWHOLE: result:=OS_M128; else internalerror(2009112903); end; end; else internalerror(200303181); end; end; function is_calljmp(o:tasmop):boolean;{$ifdef USEINLINE}inline;{$endif USEINLINE} begin is_calljmp:=o in [A_B,A_BL,A_BLR,A_RET,A_CBNZ,A_CBZ,A_TBNZ,A_TBZ]; end; procedure inverse_flags(var f: TResFlags); const inv_flags: array[TResFlags] of TResFlags = (F_NE,F_EQ,F_CC,F_CS,F_PL,F_MI,F_VC,F_VS,F_LS,F_HI, F_LT,F_GE,F_LE,F_GT); begin f:=inv_flags[f]; end; function flags_to_cond(const f: TResFlags) : TAsmCond; const flag_2_cond: array[TResFlags] of TAsmCond = (C_EQ,C_NE,C_HS,C_LO,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS, C_GE,C_LT,C_GT,C_LE); begin if f>high(flag_2_cond) then internalerror(200112301); result:=flag_2_cond[f]; end; function findreg_by_number(r:Tregister):tregisterindex; begin result:=rgBase.findreg_by_number_table(r,regnumber_index); end; function std_regnum_search(const s:string):Tregister; begin result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)]; end; function std_regname(r:Tregister):string; var p : tregisterindex; begin p:=findreg_by_number_table(r,regnumber_index); if p<>0 then result:=std_regname_table[p] else result:=generic_regname(r); end; procedure shifterop_reset(var so : tshifterop);{$ifdef USEINLINE}inline;{$endif USEINLINE} begin FillChar(so,sizeof(so),0); end; function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE} const inverse: array[TAsmCond] of TAsmCond=(C_None, C_NE,C_EQ,C_LO,C_HS,C_PL,C_MI,C_VC,C_VS,C_LS,C_HI, C_LT,C_GE,C_LE,C_GT,C_None,C_None ); begin result := inverse[c]; end; function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE} begin result := c1 = c2; end; function dwarf_reg(r:tregister):shortint; begin result:=regdwarf_table[findreg_by_number(r)]; if result=-1 then internalerror(200603251); end; function dwarf_reg_no_error(r:tregister):shortint; begin result:=regdwarf_table[findreg_by_number(r)]; end; function is_shifter_const(d: aint; size: tcgsize): boolean; var pattern, checkpattern: qword; patternlen, maxbits, replicatedlen: longint; rightmostone, rightmostzero, checkbit, secondrightmostbit: longint; begin result:=false; { patterns with all bits 0 or 1 cannot be represented this way } if (d=0) then exit; case size of OS_64, OS_S64: begin if d=-1 then exit; maxbits:=64; end else begin if longint(d)=-1 then exit; { we'll generate a 32 bit pattern -> ignore upper sign bits in case of negative longint value } d:=cardinal(d); maxbits:=32; end; end; { "The Logical (immediate) instructions accept a bitmask immediate value that is a 32-bit pattern or a 64-bit pattern viewed as a vector of identical elements of size e = 2, 4, 8, 16, 32 or, 64 bits. Each element contains the same sub-pattern, that is a single run of 1 to (e - 1) nonzero bits from bit 0 followed by zero bits, then rotated by 0 to (e - 1) bits." (ARMv8 ARM) Rather than generating all possible patterns and checking whether they match our constant, we check whether the lowest 2/4/8/... bits are a valid pattern, and if so whether the constant consists of a replication of this pattern. Such a valid pattern has the form of either (regexp notation) * 1+0+1* * 0+1+0* } patternlen:=2; while patternlen<=maxbits do begin { try lowest bits of d as pattern } if patternlen<>64 then pattern:=qword(d) and ((qword(1) shl patternlen)-1) else pattern:=qword(d); { valid pattern? If it contains too many 1<->0 transitions, larger parts of d cannot be a valid pattern either } rightmostone:=BsfQWord(pattern); rightmostzero:=BsfQWord(not(pattern)); { pattern all ones or zeroes -> not a valid pattern (but larger ones can still be valid, since we have too few transitions) } if (rightmostonerightmostzero then begin { we have .*1*0* -> check next zero position by shifting out the existing zeroes (shr rightmostone), inverting and then again looking for the rightmost one position } checkpattern:=not(pattern); checkbit:=rightmostone; end else begin { same as above, but for .*0*1* } checkpattern:=pattern; checkbit:=rightmostzero; end; secondrightmostbit:=BsfQWord(checkpattern shr checkbit)+checkbit; { if this position is >= patternlen -> ok (1 transition), otherwise we now have 2 transitions and have to check for a third (if there is one, abort) bsf returns 255 if no 1 bit is found, so in that case it's also ok } if secondrightmostbit=0) and (nr<2) then result:=nr else result:=-1; end; function IsFloatImmediate(ft : tfloattype;value : bestreal) : boolean; var singlerec : tcompsinglerec; doublerec : tcompdoublerec; begin Result:=false; case ft of s32real: begin singlerec.value:=value; singlerec:=tcompsinglerec(NtoLE(DWord(singlerec))); Result:=(singlerec.bytes[0]=0) and (singlerec.bytes[1]=0) and ((singlerec.bytes[2] and 7)=0) and (((singlerec.bytes[3] and $7e)=$40) or ((singlerec.bytes[3] and $7e)=$3e)); end; s64real: begin doublerec.value:=value; doublerec:=tcompdoublerec(NtoLE(QWord(doublerec))); Result:=(doublerec.bytes[0]=0) and (doublerec.bytes[1]=0) and (doublerec.bytes[2]=0) and (doublerec.bytes[3]=0) and (doublerec.bytes[4]=0) and (doublerec.bytes[5]=0) and ((((doublerec.bytes[6] and $c0)=$0) and ((doublerec.bytes[7] and $7f)=$40)) or (((doublerec.bytes[6] and $c0)=$c0) and ((doublerec.bytes[7] and $7f)=$3f))); end; else ; end; end; end.