{ Copyright (c) 1998-2006 by Florian Klaempfl This unit provides some help routines for type handling This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } unit defutil; {$i fpcdefs.inc} interface uses globtype,globals,constexp, symconst,symtype,symdef, cgbase,cpubase; type tmmxtype = (mmxno,mmxu8bit,mmxs8bit,mmxu16bit,mmxs16bit, mmxu32bit,mmxs32bit,mmxfixed16,mmxsingle,mmxs64bit,mmxu64bit); {***************************************************************************** Basic type functions *****************************************************************************} {# Returns true, if definition defines an ordinal type } function is_ordinal(def : tdef) : boolean; {# Returns true, if definition defines a string type } function is_string(def : tdef): boolean; {# Returns True, if definition defines a type that behaves like a string, namely that can be joined and compared with another string-like type } function is_stringlike(def : tdef) : boolean; {# Returns True, if definition defines an enumeration type } function is_enum(def : tdef) : boolean; {# Returns True, if definition defines a set type } function is_set(def : tdef) : boolean; {# Returns the minimal integer value of the type } function get_min_value(def : tdef) : TConstExprInt; {# Returns the maximal integer value of the type } function get_max_value(def : tdef) : TConstExprInt; {# Returns basetype of the specified integer range } function range_to_basetype(const l,h:TConstExprInt):tordtype; procedure range_to_type(const l,h:TConstExprInt;var def:tdef); procedure int_to_type(const v:TConstExprInt;var def:tdef); {# Return true if the type (orddef or enumdef) spans its entire bitrange } function spans_entire_range(def: tdef): boolean; {# Returns true, if definition defines an integer type } function is_integer(def : tdef) : boolean; {# Returns true if definition is a boolean } function is_boolean(def : tdef) : boolean; {# Returns true if definition is a Pascal-style boolean (1 = true, zero = false) } function is_pasbool(def : tdef) : boolean; {# Returns true if definition is a C-style boolean (non-zero value = true, zero = false) } function is_cbool(def : tdef) : boolean; {# Returns true if definition is a char This excludes the unicode char. } function is_char(def : tdef) : boolean; {# Returns true if definition is a widechar } function is_widechar(def : tdef) : boolean; {# Returns true if definition is either an AnsiChar or a WideChar } function is_anychar(def : tdef) : boolean; {# Returns true if definition is a void} function is_void(def : tdef) : boolean; {# Returns true if definition is a smallset} function is_smallset(p : tdef) : boolean; {# Returns true, if def defines a signed data type (only for ordinal types) } function is_signed(def : tdef) : boolean; {# Returns an unsigned integer type of the same size as def; def must be an ordinal or enum } function get_unsigned_inttype(def: tdef): torddef; {# Returns whether def_from's range is comprised in def_to's if both are orddefs, false otherwise } function is_in_limit(def_from,def_to : tdef) : boolean; {# Returns whether def is reference counted } function is_managed_type(def: tdef) : boolean;{$ifdef USEINLINE}inline;{$endif} { # Returns whether def is needs to load RTTI for reference counting } function is_rtti_managed_type(def: tdef) : boolean; { function is_in_limit_value(val_from:TConstExprInt;def_from,def_to : tdef) : boolean;} {***************************************************************************** Array helper functions *****************************************************************************} {# Returns true, if p points to a zero based (non special like open or dynamic array def). This is mainly used to see if the array is convertable to a pointer } function is_zero_based_array(p : tdef) : boolean; {# Returns true if p points to an open array definition } function is_open_array(p : tdef) : boolean; {# Returns true if p points to a dynamic array definition } function is_dynamic_array(p : tdef) : boolean; {# Returns true, if p points to an array of const definition } function is_array_constructor(p : tdef) : boolean; {# Returns true, if p points to a variant array } function is_variant_array(p : tdef) : boolean; {# Returns true, if p points to an array of const } function is_array_of_const(p : tdef) : boolean; {# Returns true, if p points any kind of special array That is if the array is an open array, a variant array, an array constants constructor, or an array of const. Bitpacked arrays aren't special in this regard though. } function is_special_array(p : tdef) : boolean; {# Returns true, if p points to a normal array, bitpacked arrays are included } function is_normal_array(p : tdef) : boolean; {# Returns true if p is a bitpacked array } function is_packed_array(p: tdef) : boolean; {# Returns true if p is a bitpacked record } function is_packed_record_or_object(p: tdef) : boolean; {# Returns true if p is a char array def } function is_chararray(p : tdef) : boolean; {# Returns true if p is a wide char array def } function is_widechararray(p : tdef) : boolean; {# Returns true if p is a open char array def } function is_open_chararray(p : tdef) : boolean; {# Returns true if p is a open wide char array def } function is_open_widechararray(p : tdef) : boolean; {***************************************************************************** String helper functions *****************************************************************************} {# Returns true if p points to an open string type } function is_open_string(p : tdef) : boolean; {# Returns true if p is an ansi string type } function is_ansistring(p : tdef) : boolean; {# Returns true if p is an ansi string type with codepage 0 } function is_rawbytestring(p : tdef) : boolean; {# Returns true if p is a long string type } function is_longstring(p : tdef) : boolean; {# returns true if p is a wide string type } function is_widestring(p : tdef) : boolean; {# true if p is an unicode string def } function is_unicodestring(p : tdef) : boolean; {# true if p is an unicode/wide/ansistring string def } function is_dynamicstring(p : tdef) : boolean; {# returns true if p is a wide or unicode string type } function is_wide_or_unicode_string(p : tdef) : boolean; {# Returns true if p is a short string type } function is_shortstring(p : tdef) : boolean; {# Returns true if p is any pointer def } function is_pointer(p : tdef) : boolean; {# Returns true if p is a pchar def } function is_pchar(p : tdef) : boolean; {# Returns true if p is a pwidechar def } function is_pwidechar(p : tdef) : boolean; {# Returns true if p is a voidpointer def } function is_voidpointer(p : tdef) : boolean; {# Returns true, if definition is a float } function is_fpu(def : tdef) : boolean; {# Returns true, if def is a currency type } function is_currency(def : tdef) : boolean; {# Returns true, if def is a comp type (handled by the fpu) } function is_fpucomp(def : tdef) : boolean; {# Returns true, if def is a single type } function is_single(def : tdef) : boolean; {# Returns true, if def is a double type } function is_double(def : tdef) : boolean; {# Returns true, if def is an extended type } function is_extended(def : tdef) : boolean; {# Returns true, if definition is a "real" real (i.e. single/double/extended) } function is_real(def : tdef) : boolean; {# Returns true for single,double,extended and cextended } function is_real_or_cextended(def : tdef) : boolean; { true, if def is a 8 bit int type } function is_8bitint(def : tdef) : boolean; { true, if def is a 8 bit ordinal type } function is_8bit(def : tdef) : boolean; { true, if def is a 16 bit int type } function is_16bitint(def : tdef) : boolean; { true, if def is a 16 bit ordinal type } function is_16bit(def : tdef) : boolean; {# Returns true, if def is a 32 bit integer type } function is_32bitint(def : tdef) : boolean; {# Returns true, if def is a 32 bit ordinal type } function is_32bit(def : tdef) : boolean; {# Returns true, if def is a 64 bit integer type } function is_64bitint(def : tdef) : boolean; {# Returns true, if def is a 64 bit signed integer type } function is_s64bitint(def : tdef) : boolean; {# Returns true, if def is a 64 bit ordinal type } function is_64bit(def : tdef) : boolean; { returns true, if def is a longint type } function is_s32bitint(def : tdef) : boolean; { returns true, if def is a dword type } function is_u32bitint(def : tdef) : boolean; { true, if def1 and def2 are both integers of the same bit size and sign } function are_equal_ints(def1, def2: tdef): boolean; { true, if def is an int type, larger than the processor's native int size } function is_oversizedint(def : tdef) : boolean; { true, if def is an ordinal type, larger than the processor's native int size } function is_oversizedord(def : tdef) : boolean; { true, if def is an int type, equal in size to the processor's native int size } function is_nativeint(def : tdef) : boolean; { true, if def is an ordinal type, equal in size to the processor's native int size } function is_nativeord(def : tdef) : boolean; { true, if def is an unsigned int type, equal in size to the processor's native int size } function is_nativeuint(def : tdef) : boolean; { true, if def is a signed int type, equal in size to the processor's native int size } function is_nativesint(def : tdef) : boolean; type tperformrangecheck = ( rc_internal, { nothing, internal conversion } rc_explicit, { no, but this is an explcit user conversion and hence can still give warnings in some cases (or errors in case of enums) } rc_implicit, { no, but this is an implicit conversion and hence can still give warnings/errors in some cases } rc_yes { yes } ); {# If @var(l) isn't in the range of todef a range check error (if not explicit) is generated and the value is placed within the range } procedure adaptrange(todef : tdef;var l : tconstexprint; rangecheck: tperformrangecheck); { for when used with nf_explicit/nf_internal/cs_check_range nodeflags } procedure adaptrange(todef : tdef;var l : tconstexprint; internal, explicit, rangecheckstate: boolean); {# Returns the range of def, where @var(l) is the low-range and @var(h) is the high-range. } procedure getrange(def : tdef;out l, h : TConstExprInt); procedure getrangedefmasksize(def: tdef; out rangedef: tdef; out mask: TConstExprInt; out size: longint); { Returns the range type of an ordinal type in the sense of ISO-10206 } function get_iso_range_type(def: tdef): tdef; { type being a vector? } function is_vector(p : tdef) : boolean; { some type helper routines for MMX support } function is_mmx_able_array(p : tdef) : boolean; {# returns the mmx type } function mmx_type(p : tdef) : tmmxtype; { returns if the passed type (array) fits into an mm register } function fits_in_mm_register(p : tdef) : boolean; {# From a definition return the abstract code generator size enum. It is to note that the value returned can be @var(OS_NO) } function def_cgsize(def: tdef): tcgsize; { #Return an orddef (integer) correspondig to a tcgsize } function cgsize_orddef(size: tcgsize): torddef; {# Same as def_cgsize, except that it will interpret certain arrays as vectors and return OS_M* sizes for them } function def_cgmmsize(def: tdef): tcgsize; {# returns true, if the type passed is can be used with windows automation } function is_automatable(p : tdef) : boolean; { # returns true if the procdef has no parameters and no specified return type } function is_bareprocdef(pd : tprocdef): boolean; { returns true if the procdef is a C-style variadic function } function is_c_variadic(pd: tabstractprocdef): boolean; {$ifdef USEINLINE}inline;{$endif} { # returns the smallest base integer type whose range encompasses that of both ld and rd; if keep_sign_if_equal, then if ld and rd have the same signdness, the result will also get that signdness } function get_common_intdef(ld, rd: torddef; keep_sign_if_equal: boolean): torddef; { # calculates "not v" based on the provided def; returns true if the def was negatable, false otherwise } function calc_not_ordvalue(var v:Tconstexprint; var def:tdef):boolean; { # returns whether the type is potentially a valid type of/for an "univ" parameter (basically: it must have a compile-time size) } function is_valid_univ_para_type(def: tdef): boolean; { # returns whether the procdef/procvardef represents a nested procedure or not } function is_nested_pd(def: tabstractprocdef): boolean;{$ifdef USEINLINE}inline;{$endif} { # returns whether def is a type parameter of a generic } function is_typeparam(def : tdef) : boolean;{$ifdef USEINLINE}inline;{$endif} { returns true of def is a methodpointer } function is_methodpointer(def : tdef) : boolean; { returns true if def is a C "block" } function is_block(def: tdef): boolean; { returns the TTypeKind value of the def } function get_typekind(def: tdef): byte; implementation uses verbose,cutils, cpuinfo; { returns true, if def uses FPU } function is_fpu(def : tdef) : boolean; begin is_fpu:=(def.typ=floatdef); end; { returns true, if def is a currency type } function is_currency(def : tdef) : boolean; begin case s64currencytype.typ of orddef : result:=(def.typ=orddef) and (torddef(s64currencytype).ordtype=torddef(def).ordtype); floatdef : result:=(def.typ=floatdef) and (tfloatdef(s64currencytype).floattype=tfloatdef(def).floattype); else internalerror(200304222); end; end; function is_fpucomp(def: tdef): boolean; begin result:=(def.typ=floatdef) and (tfloatdef(def).floattype=s64comp); end; { returns true, if def is a single type } function is_single(def : tdef) : boolean; begin result:=(def.typ=floatdef) and (tfloatdef(def).floattype=s32real); end; { returns true, if def is a double type } function is_double(def : tdef) : boolean; begin result:=(def.typ=floatdef) and (tfloatdef(def).floattype=s64real); end; function is_extended(def : tdef) : boolean; begin result:=(def.typ=floatdef) and (tfloatdef(def).floattype in [s80real,sc80real]); end; { returns true, if definition is a "real" real (i.e. single/double/extended) } function is_real(def : tdef) : boolean; begin result:=(def.typ=floatdef) and (tfloatdef(def).floattype in [s32real,s64real,s80real]); end; function is_real_or_cextended(def: tdef): boolean; begin result:=(def.typ=floatdef) and (tfloatdef(def).floattype in [s32real,s64real,s80real,sc80real]); end; function range_to_basetype(const l,h:TConstExprInt):tordtype; begin { prefer signed over unsigned } if (l>=int64(-128)) and (h<=127) then range_to_basetype:=s8bit else if (l>=0) and (h<=255) then range_to_basetype:=u8bit else if (l>=int64(-32768)) and (h<=32767) then range_to_basetype:=s16bit else if (l>=0) and (h<=65535) then range_to_basetype:=u16bit else if (l>=int64(low(longint))) and (h<=high(longint)) then range_to_basetype:=s32bit else if (l>=low(cardinal)) and (h<=high(cardinal)) then range_to_basetype:=u32bit else if (l>=low(int64)) and (h<=high(int64)) then range_to_basetype:=s64bit else range_to_basetype:=u64bit; end; procedure range_to_type(const l,h:TConstExprInt;var def:tdef); begin { prefer signed over unsigned } if (l>=int64(-128)) and (h<=127) then def:=s8inttype else if (l>=0) and (h<=255) then def:=u8inttype else if (l>=int64(-32768)) and (h<=32767) then def:=s16inttype else if (l>=0) and (h<=65535) then def:=u16inttype else if (l>=int64(low(longint))) and (h<=high(longint)) then def:=s32inttype else if (l>=low(cardinal)) and (h<=high(cardinal)) then def:=u32inttype else if (l>=low(int64)) and (h<=high(int64)) then def:=s64inttype else def:=u64inttype; end; procedure int_to_type(const v:TConstExprInt;var def:tdef); begin range_to_type(v,v,def); end; { true if p is an ordinal } function is_ordinal(def : tdef) : boolean; var dt : tordtype; begin case def.typ of orddef : begin dt:=torddef(def).ordtype; is_ordinal:=dt in [uchar,uwidechar, u8bit,u16bit,u32bit,u64bit, s8bit,s16bit,s32bit,s64bit, pasbool1,pasbool8,pasbool16,pasbool32,pasbool64, bool8bit,bool16bit,bool32bit,bool64bit,customint]; end; enumdef : is_ordinal:=true; else is_ordinal:=false; end; end; { true if p is a string } function is_string(def : tdef) : boolean; begin is_string := (assigned(def) and (def.typ = stringdef)); end; function is_stringlike(def : tdef) : boolean; begin result := is_string(def) or is_anychar(def) or is_pchar(def) or is_pwidechar(def) or is_chararray(def) or is_widechararray(def) or is_open_chararray(def) or is_open_widechararray(def) or (def=java_jlstring); end; function is_enum(def : tdef) : boolean; begin result:=def.typ=enumdef; end; function is_set(def : tdef) : boolean; begin result:=def.typ=setdef; end; { returns the min. value of the type } function get_min_value(def : tdef) : TConstExprInt; begin case def.typ of orddef: result:=torddef(def).low; enumdef: result:=int64(tenumdef(def).min); else result:=0; end; end; { returns the max. value of the type } function get_max_value(def : tdef) : TConstExprInt; begin case def.typ of orddef: result:=torddef(def).high; enumdef: result:=tenumdef(def).max; else result:=0; end; end; function spans_entire_range(def: tdef): boolean; var lv, hv: Tconstexprint; mask: qword; size: longint; begin case def.typ of orddef, enumdef: getrange(def,lv,hv); else internalerror(2019062203); end; size:=def.size; case size of 1: mask:=$ff; 2: mask:=$ffff; 4: mask:=$ffffffff; 8: mask:=qword(-1); else internalerror(2019062204); end; result:=false; if is_signed(def) then begin if (lv.uvalue and mask)<>(qword(1) shl (size*8-1)) then exit; if (hv.uvalue and mask)<>(mask shr 1) then exit; end else begin if lv<>0 then exit; if hv.uvalue<>mask then exit; end; result:=true; end; { true if p is an integer } function is_integer(def : tdef) : boolean; begin result:=(def.typ=orddef) and (torddef(def).ordtype in [u8bit,u16bit,u32bit,u64bit, s8bit,s16bit,s32bit,s64bit, customint]); end; { true if p is a boolean } function is_boolean(def : tdef) : boolean; begin result:=(def.typ=orddef) and (torddef(def).ordtype in [pasbool1,pasbool8,pasbool16,pasbool32,pasbool64,bool8bit,bool16bit,bool32bit,bool64bit]); end; function is_pasbool(def : tdef) : boolean; begin result:=(def.typ=orddef) and (torddef(def).ordtype in [pasbool1,pasbool8,pasbool16,pasbool32,pasbool64]); end; { true if def is a C-style boolean (non-zero value = true, zero = false) } function is_cbool(def : tdef) : boolean; begin result:=(def.typ=orddef) and (torddef(def).ordtype in [bool8bit,bool16bit,bool32bit,bool64bit]); end; { true if p is a void } function is_void(def : tdef) : boolean; begin result:=(def.typ=orddef) and (torddef(def).ordtype=uvoid); end; { true if p is a char } function is_char(def : tdef) : boolean; begin result:=(def.typ=orddef) and (torddef(def).ordtype=uchar); end; { true if p is a wchar } function is_widechar(def : tdef) : boolean; begin result:=(def.typ=orddef) and (torddef(def).ordtype=uwidechar); end; { true if p is a char or wchar } function is_anychar(def : tdef) : boolean; begin result:=(def.typ=orddef) and (torddef(def).ordtype in [uchar,uwidechar]) end; { true if p is signed (integer) } function is_signed(def : tdef) : boolean; begin case def.typ of orddef : result:=torddef(def).low < 0; enumdef : result:=tenumdef(def).min < 0; arraydef : result:=is_signed(tarraydef(def).rangedef); else result:=false; end; end; function get_unsigned_inttype(def: tdef): torddef; begin case def.typ of orddef, enumdef: result:=cgsize_orddef(tcgsize2unsigned[def_cgsize(def)]); else internalerror(2016062001); end; end; function is_in_limit(def_from,def_to : tdef) : boolean; begin if (def_from.typ<>def_to.typ) or not(def_from.typ in [orddef,enumdef,setdef]) then begin is_in_limit := false; exit; end; case def_from.typ of orddef: is_in_limit:=(torddef(def_from).low>=torddef(def_to).low) and (torddef(def_from).high<=torddef(def_to).high); enumdef: is_in_limit:=(tenumdef(def_from).min>=tenumdef(def_to).min) and (tenumdef(def_from).max<=tenumdef(def_to).max); setdef: is_in_limit:=(tsetdef(def_from).setbase>=tsetdef(def_to).setbase) and (tsetdef(def_from).setmax<=tsetdef(def_to).setmax); else is_in_limit:=false; end; end; function is_managed_type(def: tdef): boolean;{$ifdef USEINLINE}inline;{$endif} begin result:=def.needs_inittable; end; function is_rtti_managed_type(def: tdef): boolean; begin result:=def.needs_inittable and not ( is_interfacecom_or_dispinterface(def) or (def.typ=variantdef) or ( (def.typ=stringdef) and (tstringdef(def).stringtype in [st_ansistring,st_widestring,st_unicodestring]) ) ); end; { true, if p points to an open array def } function is_open_string(p : tdef) : boolean; begin is_open_string:=(p.typ=stringdef) and (tstringdef(p).stringtype=st_shortstring) and (tstringdef(p).len=0); end; { true, if p points to a zero based array def } function is_zero_based_array(p : tdef) : boolean; begin result:=(p.typ=arraydef) and (tarraydef(p).lowrange=0) and not(is_special_array(p)); end; { true if p points to a dynamic array def } function is_dynamic_array(p : tdef) : boolean; begin result:=(p.typ=arraydef) and (ado_IsDynamicArray in tarraydef(p).arrayoptions); end; { true, if p points to an open array def } function is_open_array(p : tdef) : boolean; begin { check for sizesinttype is needed, because for unsigned the high range is also -1 ! (PFV) } result:=(p.typ=arraydef) and (tarraydef(p).rangedef=sizesinttype) and (tarraydef(p).lowrange=0) and (tarraydef(p).highrange=-1) and ((tarraydef(p).arrayoptions * [ado_IsVariant,ado_IsArrayOfConst,ado_IsConstructor,ado_IsDynamicArray])=[]); end; { true, if p points to an array of const def } function is_array_constructor(p : tdef) : boolean; begin result:=(p.typ=arraydef) and (ado_IsConstructor in tarraydef(p).arrayoptions); end; { true, if p points to a variant array } function is_variant_array(p : tdef) : boolean; begin result:=(p.typ=arraydef) and (ado_IsVariant in tarraydef(p).arrayoptions); end; { true, if p points to an array of const } function is_array_of_const(p : tdef) : boolean; begin result:=(p.typ=arraydef) and (ado_IsArrayOfConst in tarraydef(p).arrayoptions); end; { true, if p points to a special array, bitpacked arrays aren't special in this regard though } function is_special_array(p : tdef) : boolean; begin result:=(p.typ=arraydef) and ( ((tarraydef(p).arrayoptions * [ado_IsVariant,ado_IsArrayOfConst,ado_IsConstructor,ado_IsDynamicArray])<>[]) or is_open_array(p) ); end; { true, if p points to a normal array, bitpacked arrays are included } function is_normal_array(p : tdef) : boolean; begin result:=(p.typ=arraydef) and ((tarraydef(p).arrayoptions * [ado_IsVariant,ado_IsArrayOfConst,ado_IsConstructor,ado_IsDynamicArray])=[]) and not(is_open_array(p)); end; { true if p is an ansi string def } function is_ansistring(p : tdef) : boolean; begin is_ansistring:=(p.typ=stringdef) and (tstringdef(p).stringtype=st_ansistring); end; { true if p is an ansi string def with codepage CP_NONE } function is_rawbytestring(p : tdef) : boolean; begin is_rawbytestring:=(p.typ=stringdef) and (tstringdef(p).stringtype=st_ansistring) and (tstringdef(p).encoding=globals.CP_NONE); end; { true if p is an long string def } function is_longstring(p : tdef) : boolean; begin is_longstring:=(p.typ=stringdef) and (tstringdef(p).stringtype=st_longstring); end; { true if p is an wide string def } function is_widestring(p : tdef) : boolean; begin is_widestring:=(p.typ=stringdef) and (tstringdef(p).stringtype=st_widestring); end; function is_dynamicstring(p: tdef): boolean; begin is_dynamicstring:=(p.typ=stringdef) and (tstringdef(p).stringtype in [st_ansistring,st_widestring,st_unicodestring]); end; { true if p is an wide string def } function is_wide_or_unicode_string(p : tdef) : boolean; begin is_wide_or_unicode_string:=(p.typ=stringdef) and (tstringdef(p).stringtype in [st_widestring,st_unicodestring]); end; { true if p is an unicode string def } function is_unicodestring(p : tdef) : boolean; begin is_unicodestring:=(p.typ=stringdef) and (tstringdef(p).stringtype=st_unicodestring); end; { true if p is an short string def } function is_shortstring(p : tdef) : boolean; begin is_shortstring:=(p.typ=stringdef) and (tstringdef(p).stringtype=st_shortstring); end; { true if p is bit packed array def } function is_packed_array(p: tdef) : boolean; begin is_packed_array := (p.typ = arraydef) and (ado_IsBitPacked in tarraydef(p).arrayoptions); end; { true if p is bit packed record def } function is_packed_record_or_object(p: tdef) : boolean; begin is_packed_record_or_object := (p.typ in [recorddef,objectdef]) and (tabstractrecorddef(p).is_packed); end; { true if p is a char array def } function is_chararray(p : tdef) : boolean; begin is_chararray:=(p.typ=arraydef) and is_char(tarraydef(p).elementdef) and not(is_special_array(p)); end; { true if p is a widechar array def } function is_widechararray(p : tdef) : boolean; begin is_widechararray:=(p.typ=arraydef) and is_widechar(tarraydef(p).elementdef) and not(is_special_array(p)); end; { true if p is a open char array def } function is_open_chararray(p : tdef) : boolean; begin is_open_chararray:= is_open_array(p) and is_char(tarraydef(p).elementdef); end; { true if p is a open wide char array def } function is_open_widechararray(p : tdef) : boolean; begin is_open_widechararray:= is_open_array(p) and is_widechar(tarraydef(p).elementdef); end; { true if p is any pointer def } function is_pointer(p : tdef) : boolean; begin is_pointer:=(p.typ=pointerdef); end; { true if p is a pchar def } function is_pchar(p : tdef) : boolean; begin is_pchar:=(p.typ=pointerdef) and (is_char(tpointerdef(p).pointeddef) or (is_zero_based_array(tpointerdef(p).pointeddef) and is_chararray(tpointerdef(p).pointeddef))); end; { true if p is a pchar def } function is_pwidechar(p : tdef) : boolean; begin is_pwidechar:=(p.typ=pointerdef) and (is_widechar(tpointerdef(p).pointeddef) or (is_zero_based_array(tpointerdef(p).pointeddef) and is_widechararray(tpointerdef(p).pointeddef))); end; { true if p is a voidpointer def } function is_voidpointer(p : tdef) : boolean; begin is_voidpointer:=(p.typ=pointerdef) and (tpointerdef(p).pointeddef.typ=orddef) and (torddef(tpointerdef(p).pointeddef).ordtype=uvoid); end; { true, if def is a 8 bit int type } function is_8bitint(def : tdef) : boolean; begin result:=(def.typ=orddef) and (torddef(def).ordtype in [u8bit,s8bit]) end; { true, if def is a 8 bit ordinal type } function is_8bit(def : tdef) : boolean; begin result:=(def.typ=orddef) and (torddef(def).ordtype in [u8bit,s8bit,pasbool1,pasbool8,bool8bit,uchar]) end; { true, if def is a 16 bit int type } function is_16bitint(def : tdef) : boolean; begin result:=(def.typ=orddef) and (torddef(def).ordtype in [u16bit,s16bit]) end; { true, if def is a 16 bit ordinal type } function is_16bit(def : tdef) : boolean; begin result:=(def.typ=orddef) and (torddef(def).ordtype in [u16bit,s16bit,pasbool16,bool16bit,uwidechar]) end; { true, if def is a 32 bit int type } function is_32bitint(def : tdef) : boolean; begin result:=(def.typ=orddef) and (torddef(def).ordtype in [u32bit,s32bit]) end; { true, if def is a 32 bit ordinal type } function is_32bit(def: tdef): boolean; begin result:=(def.typ=orddef) and (torddef(def).ordtype in [u32bit,s32bit,pasbool32,bool32bit]) end; { true, if def is a 64 bit int type } function is_64bitint(def : tdef) : boolean; begin is_64bitint:=(def.typ=orddef) and (torddef(def).ordtype in [u64bit,s64bit]) end; function is_s64bitint(def: tdef): boolean; begin is_s64bitint:=(def.typ=orddef) and (torddef(def).ordtype=s64bit) end; { true, if def is a 64 bit type } function is_64bit(def : tdef) : boolean; begin is_64bit:=(def.typ=orddef) and (torddef(def).ordtype in [u64bit,s64bit,scurrency,pasbool64,bool64bit]) end; { returns true, if def is a longint type } function is_s32bitint(def : tdef) : boolean; begin result:=(def.typ=orddef) and (torddef(def).ordtype=s32bit); end; { returns true, if def is a dword type } function is_u32bitint(def : tdef) : boolean; begin result:=(def.typ=orddef) and (torddef(def).ordtype=u32bit); end; { true, if def1 and def2 are both integers of the same bit size and sign } function are_equal_ints(def1, def2: tdef): boolean; begin result:=(def1.typ=orddef) and (def2.typ=orddef) and (torddef(def1).ordtype in [u8bit,u16bit,u32bit,u64bit, s8bit,s16bit,s32bit,s64bit,customint]) and (torddef(def1).ordtype=torddef(def2).ordtype) and ((torddef(def1).ordtype<>customint) or ((torddef(def1).low=torddef(def2).low) and (torddef(def1).high=torddef(def2).high))); end; { true, if def is an int type, larger than the processor's native int size } function is_oversizedint(def : tdef) : boolean; begin {$if defined(cpu8bitalu)} result:=is_64bitint(def) or is_32bitint(def) or is_16bitint(def); {$elseif defined(cpu16bitalu)} result:=is_64bitint(def) or is_32bitint(def); {$elseif defined(cpu32bitaddr)} result:=is_64bitint(def); {$elseif defined(cpu64bitaddr)} result:=false; {$endif} end; { true, if def is an ordinal type, larger than the processor's native int size } function is_oversizedord(def : tdef) : boolean; begin {$if defined(cpu8bitalu)} result:=is_64bit(def) or is_32bit(def) or is_16bit(def); {$elseif defined(cpu16bitalu)} result:=is_64bit(def) or is_32bit(def); {$elseif defined(cpu32bitaddr)} result:=is_64bit(def); {$elseif defined(cpu64bitaddr)} result:=false; {$endif} end; { true, if def is an int type, equal in size to the processor's native int size } function is_nativeint(def: tdef): boolean; begin {$if defined(cpu8bitalu)} result:=is_8bitint(def); {$elseif defined(cpu16bitalu)} result:=is_16bitint(def); {$elseif defined(cpu32bitaddr)} result:=is_32bitint(def); {$elseif defined(cpu64bitaddr)} result:=is_64bitint(def); {$endif} end; { true, if def is an ordinal type, equal in size to the processor's native int size } function is_nativeord(def: tdef): boolean; begin {$if defined(cpu8bitalu)} result:=is_8bit(def); {$elseif defined(cpu16bitalu)} result:=is_16bit(def); {$elseif defined(cpu32bitaddr)} result:=is_32bit(def); {$elseif defined(cpu64bitaddr)} result:=is_64bit(def); {$endif} end; { true, if def is an unsigned int type, equal in size to the processor's native int size } function is_nativeuint(def: tdef): boolean; begin result:=is_nativeint(def) and (def.typ=orddef) and (torddef(def).ordtype in [u64bit,u32bit,u16bit,u8bit]); end; { true, if def is a signed int type, equal in size to the processor's native int size } function is_nativesint(def: tdef): boolean; begin result:=is_nativeint(def) and (def.typ=orddef) and (torddef(def).ordtype in [s64bit,s32bit,s16bit,s8bit]); end; { if l isn't in the range of todef a range check error (if not explicit) is generated and the value is placed within the range } procedure adaptrange(todef : tdef;var l : tconstexprint; rangecheck: tperformrangecheck); var lv,hv,oldval,sextval,mask: TConstExprInt; rangedef: tdef; rangedefsize: longint; warned: boolean; begin getrange(todef,lv,hv); if (lhv) then begin warned:=false; if rangecheck in [rc_implicit,rc_yes] then begin if (rangecheck=rc_yes) or (todef.typ=enumdef) then Message3(type_e_range_check_error_bounds,tostr(l),tostr(lv),tostr(hv)) else Message3(type_w_range_check_error_bounds,tostr(l),tostr(lv),tostr(hv)); warned:=true; end { give warnings about range errors with explicit typeconversions if the target type does not span the entire range that can be represented by its bits (subrange type or enum), because then the result is undefined } else if (rangecheck<>rc_internal) and (not is_pasbool(todef) and not spans_entire_range(todef)) then begin Message3(type_w_range_check_error_bounds,tostr(l),tostr(lv),tostr(hv)); warned:=true; end; { Fix the value to fit in the allocated space for this type of variable } oldval:=l; getrangedefmasksize(todef,rangedef,mask,rangedefsize); l:=l and mask; {reset sign, i.e. converting -1 to qword changes the value to high(qword)} l.signed:=false; sextval:=0; { do sign extension if necessary (JM) } case rangedefsize of 1: sextval.svalue:=shortint(l.svalue); 2: sextval.svalue:=smallint(l.svalue); 4: sextval.svalue:=longint(l.svalue); 8: sextval.svalue:=l.svalue; else internalerror(201906230); end; sextval.signed:=true; { Detect if the type spans the entire range, but more bits were specified than the type can contain, e.g. shortint($fff). However, none of the following should result in a warning: 1) shortint($ff) (-> $ff -> $ff -> $ffff ffff ffff ffff) 2) shortint(longint(-1)) ($ffff ffff ffff ffff ffff -> $ff -> $ffff ffff ffff ffff 3) cardinal(-1) (-> $ffff ffff ffff ffff -> $ffff ffff) } if not warned and (rangecheck<>rc_internal) and (oldval.uvalue<>l.uvalue) and (oldval.uvalue<>sextval.uvalue) then begin Message3(type_w_range_check_error_bounds,tostr(oldval),tostr(lv),tostr(hv)); end; if is_signed(rangedef) then l:=sextval; end; end; procedure adaptrange(todef: tdef; var l: tconstexprint; internal, explicit, rangecheckstate: boolean); begin if internal then adaptrange(todef, l, rc_internal) else if explicit then adaptrange(todef, l, rc_explicit) else if not rangecheckstate then adaptrange(todef, l, rc_implicit) else adaptrange(todef, l, rc_yes) end; { return the range from def in l and h } procedure getrange(def : tdef;out l, h : TConstExprInt); begin case def.typ of orddef : begin l:=torddef(def).low; h:=torddef(def).high; end; enumdef : begin l:=int64(tenumdef(def).min); h:=int64(tenumdef(def).max); end; arraydef : begin l:=int64(tarraydef(def).lowrange); h:=int64(tarraydef(def).highrange); end; undefineddef: begin l:=torddef(sizesinttype).low; h:=torddef(sizesinttype).high; end; else internalerror(200611054); end; end; procedure getrangedefmasksize(def: tdef; out rangedef: tdef; out mask: TConstExprInt; out size: longint); begin case def.typ of orddef, enumdef: begin rangedef:=def; size:=def.size; case size of 1: mask:=$ff; 2: mask:=$ffff; 4: mask:=$ffffffff; 8: mask:=$ffffffffffffffff; else internalerror(2019062305); end; end; arraydef: begin rangedef:=tarraydef(def).rangedef; getrangedefmasksize(rangedef,rangedef,mask,size); end; undefineddef: begin rangedef:=sizesinttype; size:=rangedef.size; mask:=-1; end; else internalerror(2019062306); end; end; function mmx_type(p : tdef) : tmmxtype; begin mmx_type:=mmxno; if is_mmx_able_array(p) then begin if tarraydef(p).elementdef.typ=floatdef then case tfloatdef(tarraydef(p).elementdef).floattype of s32real: mmx_type:=mmxsingle; else ; end else case torddef(tarraydef(p).elementdef).ordtype of u8bit: mmx_type:=mmxu8bit; s8bit: mmx_type:=mmxs8bit; u16bit: mmx_type:=mmxu16bit; s16bit: mmx_type:=mmxs16bit; u32bit: mmx_type:=mmxu32bit; s32bit: mmx_type:=mmxs32bit; else ; end; end; end; { The range-type of an ordinal-type that is a subrange-type shall be the host-type (see 6.4.2.4) of the subrange-type. The range-type of an ordinal-type that is not a subrange-type shall be the ordinal-type. The subrange-bounds shall be of compatible ordinal-types, and the range-type (see 6.4.2.1) of the ordinal-types shall be designated the host-type of the subrange-type. } function get_iso_range_type(def: tdef): tdef; begin result:=nil; case def.typ of orddef: begin if is_integer(def) then begin if (torddef(def).low>=torddef(sinttype).low) and (torddef(def).high<=torddef(sinttype).high) then result:=sinttype else range_to_type(torddef(def).low,torddef(def).high,result); end else case torddef(def).ordtype of pasbool1: result:=pasbool1type; pasbool8: result:=pasbool8type; pasbool16: result:=pasbool16type; pasbool32: result:=pasbool32type; pasbool64: result:=pasbool64type; bool8bit: result:=bool8type; bool16bit: result:=bool16type; bool32bit: result:=bool32type; bool64bit: result:=bool64type; uchar: result:=cansichartype; uwidechar: result:=cwidechartype; scurrency: result:=s64currencytype; else internalerror(2018010901); end; end; enumdef: begin while assigned(tenumdef(def).basedef) do def:=tenumdef(def).basedef; result:=def; end else internalerror(2018010701); end; end; function is_vector(p : tdef) : boolean; begin result:=(p.typ=arraydef) and not(is_special_array(p)) and (tarraydef(p).elementdef.typ in [floatdef,orddef]) {and (tarraydef(p).elementdef.typ=floatdef) and (tfloatdef(tarraydef(p).elementdef).floattype in [s32real,s64real])}; end; { returns if the passed type (array) fits into an mm register } function fits_in_mm_register(p : tdef) : boolean; begin {$ifdef x86} result:= is_vector(p) and ( ( (tarraydef(p).elementdef.typ=floatdef) and ( (tarraydef(p).lowrange=0) and ((tarraydef(p).highrange=3) or (UseAVX and (tarraydef(p).highrange=7)) or (UseAVX512 and (tarraydef(p).highrange=15)) ) and (tfloatdef(tarraydef(p).elementdef).floattype=s32real) ) ) or ( (tarraydef(p).elementdef.typ=floatdef) and ( (tarraydef(p).lowrange=0) and ((tarraydef(p).highrange=1) or (UseAVX and (tarraydef(p).highrange=3)) or (UseAVX512 and (tarraydef(p).highrange=7)) )and (tfloatdef(tarraydef(p).elementdef).floattype=s64real) ) ) {or // MMX registers ( (tarraydef(p).elementdef.typ=floatdef) and ( (tarraydef(p).lowrange=0) and (tarraydef(p).highrange=1) and (tfloatdef(tarraydef(p).elementdef).floattype=s32real) ) ) or ( (tarraydef(p).elementdef.typ=orddef) and ( (tarraydef(p).lowrange=0) and (tarraydef(p).highrange=1) and (torddef(tarraydef(p).elementdef).ordtype in [s32bit,u32bit]) ) ) or ( (tarraydef(p).elementdef.typ=orddef) and ( (tarraydef(p).lowrange=0) and (tarraydef(p).highrange=3) and (torddef(tarraydef(p).elementdef).ordtype in [s16bit,u16bit]) ) ) or ( (tarraydef(p).elementdef.typ=orddef) and ( (tarraydef(p).lowrange=0) and (tarraydef(p).highrange=7) and (torddef(tarraydef(p).elementdef).ordtype in [s8bit,u8bit]) ) ) } ); {$else x86} result:=false; {$endif x86} end; function is_mmx_able_array(p : tdef) : boolean; begin {$ifdef SUPPORT_MMX} if (cs_mmx_saturation in current_settings.localswitches) then begin is_mmx_able_array:=(p.typ=arraydef) and not(is_special_array(p)) and ( ( (tarraydef(p).elementdef.typ=orddef) and ( ( (tarraydef(p).lowrange=0) and (tarraydef(p).highrange=1) and (torddef(tarraydef(p).elementdef).ordtype in [u32bit,s32bit]) ) or ( (tarraydef(p).lowrange=0) and (tarraydef(p).highrange=3) and (torddef(tarraydef(p).elementdef).ordtype in [u16bit,s16bit]) ) ) ) or ( ( (tarraydef(p).elementdef.typ=floatdef) and ( (tarraydef(p).lowrange=0) and (tarraydef(p).highrange=1) and (tfloatdef(tarraydef(p).elementdef).floattype=s32real) ) ) ) ); end else begin is_mmx_able_array:=(p.typ=arraydef) and ( ( (tarraydef(p).elementdef.typ=orddef) and ( ( (tarraydef(p).lowrange=0) and (tarraydef(p).highrange=1) and (torddef(tarraydef(p).elementdef).ordtype in [u32bit,s32bit]) ) or ( (tarraydef(p).lowrange=0) and (tarraydef(p).highrange=3) and (torddef(tarraydef(p).elementdef).ordtype in [u16bit,s16bit]) ) or ( (tarraydef(p).lowrange=0) and (tarraydef(p).highrange=7) and (torddef(tarraydef(p).elementdef).ordtype in [u8bit,s8bit]) ) ) ) or ( (tarraydef(p).elementdef.typ=floatdef) and ( (tarraydef(p).lowrange=0) and (tarraydef(p).highrange=1) and (tfloatdef(tarraydef(p).elementdef).floattype=s32real) ) ) ); end; {$else SUPPORT_MMX} is_mmx_able_array:=false; {$endif SUPPORT_MMX} end; function def_cgsize(def: tdef): tcgsize; begin case def.typ of orddef, enumdef, setdef: begin result:=int_cgsize(def.size); if is_signed(def) then result:=tcgsize(ord(result)+(ord(OS_S8)-ord(OS_8))); end; classrefdef, pointerdef: begin result:=int_cgsize(def.size); { can happen for far/huge pointers on non-i8086 } if result=OS_NO then internalerror(2013052201); end; formaldef: result := int_cgsize(voidpointertype.size); procvardef: result:=int_cgsize(def.size); stringdef : result:=int_cgsize(def.size); objectdef : result:=int_cgsize(def.size); floatdef: if (cs_fp_emulation in current_settings.moduleswitches) {$ifdef xtensa} or not(tfloatdef(def).floattype=s32real) or not(FPUXTENSA_SINGLE in fpu_capabilities[current_settings.fputype]) {$endif xtensa} then result:=int_cgsize(def.size) else result:=tfloat2tcgsize[tfloatdef(def).floattype]; recorddef : result:=int_cgsize(def.size); arraydef : begin if is_dynamic_array(def) or not is_special_array(def) then begin if is_vector(def) and ((TArrayDef(def).elementdef.typ = floatdef) and not (cs_fp_emulation in current_settings.moduleswitches)) then begin { Determine if, based on the floating-point type and the size of the array, if it can be made into a vector } case tfloatdef(tarraydef(def).elementdef).floattype of s32real: result := float_array_cgsize(def.size); s64real: result := double_array_cgsize(def.size); else { If not, fall back } result := int_cgsize(def.size); end; end else result := int_cgsize(def.size); end else result := OS_NO; end; else begin { undefined size } result:=OS_NO; end; end; end; function cgsize_orddef(size: tcgsize): torddef; begin case size of OS_8: result:=torddef(u8inttype); OS_S8: result:=torddef(s8inttype); OS_16: result:=torddef(u16inttype); OS_S16: result:=torddef(s16inttype); OS_32: result:=torddef(u32inttype); OS_S32: result:=torddef(s32inttype); OS_64: result:=torddef(u64inttype); OS_S64: result:=torddef(s64inttype); else internalerror(2012050401); end; end; function def_cgmmsize(def: tdef): tcgsize; begin case def.typ of arraydef: begin case tarraydef(def).elementdef.typ of orddef: begin { this is not correct, OS_MX normally mean that the vector contains elements of size X. However, vectors themselves can also have different sizes (e.g. a vector of 2 singles on SSE) and the total size is currently more important } case def.size of 1: result:=OS_M8; 2: result:=OS_M16; 4: result:=OS_M32; 8: result:=OS_M64; 16: result:=OS_M128; 32: result:=OS_M256; 64: result:=OS_M512; else internalerror(2013060103); end; end; floatdef: begin case TFloatDef(tarraydef(def).elementdef).floattype of s32real: case def.size of 4: result:=OS_M32; 16: result:=OS_M128; 32: result:=OS_M256; 64: result:=OS_M512; else internalerror(2017121400); end; s64real: case def.size of 8: result:=OS_M64; 16: result:=OS_M128; 32: result:=OS_M256; 64: result:=OS_M512; else internalerror(2017121401); end; else internalerror(2017121402); end; end; else result:=def_cgsize(def); end; end else result:=def_cgsize(def); end; end; { In Windows 95 era, ordinals were restricted to [u8bit,s32bit,s16bit,bool16bit] As of today, both signed and unsigned types from 8 to 64 bits are supported. } function is_automatable(p : tdef) : boolean; begin case p.typ of orddef: result:=torddef(p).ordtype in [u8bit,s8bit,u16bit,s16bit,u32bit,s32bit, u64bit,s64bit,bool16bit,scurrency]; floatdef: result:=tfloatdef(p).floattype in [s64currency,s64real,s32real]; stringdef: result:=tstringdef(p).stringtype in [st_ansistring,st_widestring,st_unicodestring]; variantdef: result:=true; objectdef: result:=tobjectdef(p).objecttype in [odt_interfacecom,odt_dispinterface,odt_interfacecorba]; else result:=false; end; end; {# returns true, if the type passed is a varset } function is_smallset(p : tdef) : boolean; begin {$if defined(cpu8bitalu)} result:=(p.typ=setdef) and (p.size = 1) {$elseif defined(cpu16bitalu)} result:=(p.typ=setdef) and (p.size in [1,2]) {$else} result:=(p.typ=setdef) and (p.size in [1,2,4]) {$endif} end; function is_bareprocdef(pd : tprocdef): boolean; begin result:=(pd.maxparacount=0) and (is_void(pd.returndef) or (pd.proctypeoption = potype_constructor)); end; function is_c_variadic(pd: tabstractprocdef): boolean; begin result:= (po_varargs in pd.procoptions) or (po_variadic in pd.procoptions); end; function get_common_intdef(ld, rd: torddef; keep_sign_if_equal: boolean): torddef; var llow, lhigh: tconstexprint; begin llow:=min(ld.low,rd.low); lhigh:=max(ld.high,rd.high); case range_to_basetype(llow,lhigh) of s8bit: result:=torddef(s8inttype); u8bit: result:=torddef(u8inttype); s16bit: result:=torddef(s16inttype); u16bit: result:=torddef(u16inttype); s32bit: result:=torddef(s32inttype); u32bit: result:=torddef(u32inttype); s64bit: result:=torddef(s64inttype); u64bit: result:=torddef(u64inttype); else begin { avoid warning } result:=nil; internalerror(200802291); end; end; if keep_sign_if_equal and (is_signed(ld)=is_signed(rd)) and (is_signed(result)<>is_signed(ld)) then case result.ordtype of s8bit: result:=torddef(u8inttype); u8bit: result:=torddef(s16inttype); s16bit: result:=torddef(u16inttype); u16bit: result:=torddef(s32inttype); s32bit: result:=torddef(u32inttype); u32bit: result:=torddef(s64inttype); s64bit: result:=torddef(u64inttype); else ; end; end; function calc_not_ordvalue(var v:Tconstexprint;var def:tdef):boolean; begin if not assigned(def) or (def.typ<>orddef) then exit(false); result:=true; case torddef(def).ordtype of pasbool1, pasbool8, pasbool16, pasbool32, pasbool64: v:=byte(not(boolean(int64(v)))); bool8bit, bool16bit, bool32bit, bool64bit: begin if v=0 then v:=-1 else v:=0; end; uchar, uwidechar, u8bit, s8bit, u16bit, s16bit, s32bit, u32bit, s64bit, u64bit: begin { unsigned, equal or bigger than the native int size? } if (torddef(def).ordtype in [u64bit,u32bit,u16bit,u8bit,uchar,uwidechar]) and (is_nativeord(def) or is_oversizedord(def)) then begin { Delphi-compatible: not dword = dword (not word = longint) } { Extension: not qword = qword } v:=qword(not qword(v)); { will be truncated by the ordconstnode for u32bit } end else begin v:=int64(not int64(v)); def:=get_common_intdef(torddef(def),torddef(sinttype),false); end; end; else result:=false; end; end; function is_valid_univ_para_type(def: tdef): boolean; begin result:= not is_open_array(def) and not is_void(def) and (def.typ<>formaldef); end; function is_nested_pd(def: tabstractprocdef): boolean;{$ifdef USEINLINE}inline;{$endif} begin result:=def.parast.symtablelevel>normal_function_level; end; function is_typeparam(def : tdef) : boolean;{$ifdef USEINLINE}inline;{$endif} begin result:=(def.typ=undefineddef) or (df_genconstraint in def.defoptions); end; function is_methodpointer(def: tdef): boolean; begin result:=(def.typ=procvardef) and (po_methodpointer in tprocvardef(def).procoptions); end; function is_block(def: tdef): boolean; begin result:=(def.typ=procvardef) and (po_is_block in tprocvardef(def).procoptions) end; function get_typekind(def:tdef):byte; begin case def.typ of arraydef: if ado_IsDynamicArray in tarraydef(def).arrayoptions then result:=tkDynArray else result:=tkArray; recorddef: result:=tkRecord; pointerdef: result:=tkPointer; orddef: case torddef(def).ordtype of u8bit, u16bit, u32bit, s8bit, s16bit, s32bit: result:=tkInteger; u64bit: result:=tkQWord; s64bit: result:=tkInt64; pasbool1, pasbool8, pasbool16, pasbool32, pasbool64, bool8bit, bool16bit, bool32bit, bool64bit: result:=tkBool; uchar: result:=tkChar; uwidechar: result:=tkWChar; scurrency: result:=tkFloat; else result:=tkUnknown; end; stringdef: case tstringdef(def).stringtype of st_shortstring: result:=tkSString; st_longstring: result:=tkLString; st_ansistring: result:=tkAString; st_widestring: result:=tkWString; st_unicodestring: result:=tkUString; end; enumdef: result:=tkEnumeration; objectdef: case tobjectdef(def).objecttype of odt_class, odt_javaclass: result:=tkClass; odt_object: result:=tkObject; odt_interfacecom, odt_dispinterface, odt_interfacejava: result:=tkInterface; odt_interfacecorba: result:=tkInterfaceCorba; odt_helper: result:=tkHelper; else result:=tkUnknown; end; { currently tkFile is not used } {filedef: result:=tkFile;} setdef: result:=tkSet; procvardef: if tprocvardef(def).is_methodpointer then result:=tkMethod else result:=tkProcVar; floatdef: result:=tkFloat; classrefdef: result:=tkClassRef; variantdef: result:=tkVariant; else result:=tkUnknown; end; end; end.