{ Copyright (c) 1998-2007 by Florian Klaempfl Type checking and register allocation for inline nodes This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } unit ninl; {$i fpcdefs.inc} interface uses node,htypechk,cpuinfo,symtype; {$i compinnr.inc} type tinlinenode = class(tunarynode) inlinenumber : byte; constructor create(number : byte;is_const:boolean;l : tnode);virtual; constructor ppuload(t:tnodetype;ppufile:tcompilerppufile);override; procedure ppuwrite(ppufile:tcompilerppufile);override; function dogetcopy : tnode;override; function pass_1 : tnode;override; function pass_typecheck:tnode;override; function docompare(p: tnode): boolean; override; { pack and unpack are changed into for-loops by the compiler } function first_pack_unpack: tnode; virtual; { All the following routines currently call compilerprocs, unless they are overriden in which case, the code generator handles them. } function first_pi: tnode ; virtual; function first_arctan_real: tnode; virtual; function first_abs_real: tnode; virtual; function first_sqr_real: tnode; virtual; function first_sqrt_real: tnode; virtual; function first_ln_real: tnode; virtual; function first_cos_real: tnode; virtual; function first_sin_real: tnode; virtual; function first_exp_real: tnode; virtual; function first_frac_real: tnode; virtual; function first_round_real: tnode; virtual; function first_trunc_real: tnode; virtual; function first_int_real: tnode; virtual; private function handle_str: tnode; function handle_reset_rewrite_typed: tnode; function handle_text_read_write(filepara,params:Ttertiarynode;var newstatement:Tnode):boolean; function handle_typed_read_write(filepara,params:Ttertiarynode;var newstatement:Tnode):boolean; function handle_read_write: tnode; function handle_val: tnode; end; tinlinenodeclass = class of tinlinenode; var cinlinenode : tinlinenodeclass; function geninlinenode(number : byte;is_const:boolean;l : tnode) : tinlinenode; implementation uses verbose,globals,systems,constexp, globtype, cutils, symconst,symdef,symsym,symtable,paramgr,defutil, pass_1, ncal,ncon,ncnv,nadd,nld,nbas,nflw,nmem,nmat,nutils, cgbase,procinfo ; function geninlinenode(number : byte;is_const:boolean;l : tnode) : tinlinenode; begin geninlinenode:=cinlinenode.create(number,is_const,l); end; {***************************************************************************** TINLINENODE *****************************************************************************} constructor tinlinenode.create(number : byte;is_const:boolean;l : tnode); begin inherited create(inlinen,l); if is_const then include(flags,nf_inlineconst); inlinenumber:=number; end; constructor tinlinenode.ppuload(t:tnodetype;ppufile:tcompilerppufile); begin inherited ppuload(t,ppufile); inlinenumber:=ppufile.getbyte; end; procedure tinlinenode.ppuwrite(ppufile:tcompilerppufile); begin inherited ppuwrite(ppufile); ppufile.putbyte(inlinenumber); end; function tinlinenode.dogetcopy : tnode; var n : tinlinenode; begin n:=tinlinenode(inherited dogetcopy); n.inlinenumber:=inlinenumber; result:=n; end; function tinlinenode.handle_str : tnode; var lenpara, fracpara, newparas, tmppara, dest, source : tcallparanode; procname: string; is_real,is_enum : boolean; rt : aint; begin result := cerrornode.create; { make sure we got at least two parameters (if we got only one, } { this parameter may not be encapsulated in a callparan) } if not assigned(left) or (left.nodetype <> callparan) then begin CGMessage1(parser_e_wrong_parameter_size,'Str'); exit; end; { get destination string } dest := tcallparanode(left); { get source para (number) } source := dest; while assigned(source.right) do source := tcallparanode(source.right); { destination parameter must be a normal (not a colon) parameter, this check is needed because str(v:len) also has 2 parameters } if (source=dest) or (cpf_is_colon_para in tcallparanode(dest).callparaflags) then begin CGMessage1(parser_e_wrong_parameter_size,'Str'); exit; end; is_real:=(source.resultdef.typ = floatdef) or is_currency(source.resultdef); is_enum:=source.left.resultdef.typ=enumdef; if ((dest.left.resultdef.typ<>stringdef) and not(is_chararray(dest.left.resultdef))) or not(is_real or is_enum or (source.left.resultdef.typ=orddef)) then begin CGMessagePos(fileinfo,parser_e_illegal_expression); exit; end; { get len/frac parameters } lenpara := nil; fracpara := nil; if (cpf_is_colon_para in tcallparanode(dest.right).callparaflags) then begin lenpara := tcallparanode(dest.right); { we can let the callnode do the type checking of these parameters too, } { but then the error messages aren't as nice } if not is_integer(lenpara.resultdef) then begin CGMessagePos1(lenpara.fileinfo, type_e_integer_expr_expected,lenpara.resultdef.typename); exit; end; if (cpf_is_colon_para in tcallparanode(lenpara.right).callparaflags) then begin { parameters are in reverse order! } fracpara := lenpara; lenpara := tcallparanode(lenpara.right); if not is_real then begin CGMessagePos(lenpara.fileinfo,parser_e_illegal_colon_qualifier); exit end; if not is_integer(lenpara.resultdef) then begin CGMessagePos1(lenpara.fileinfo, type_e_integer_expr_expected,lenpara.resultdef.typename); exit; end; end; end; { generate the parameter list for the compilerproc } newparas := dest; { if we have a float parameter, insert the realtype, len and fracpara parameters } if is_real then begin { insert realtype parameter } if not is_currency(source.resultdef) then begin rt:=ord(tfloatdef(source.left.resultdef).floattype); newparas.right := ccallparanode.create(cordconstnode.create( rt,s32inttype,true),newparas.right); tmppara:=tcallparanode(newparas.right); end else tmppara:=newparas; { if necessary, insert a fraction parameter } if not assigned(fracpara) then begin tmppara.right := ccallparanode.create( cordconstnode.create(int64(-1),s32inttype,false), tmppara.right); fracpara := tcallparanode(tmppara.right); end; { if necessary, insert a length para } if not assigned(lenpara) then fracpara.right := ccallparanode.create( cordconstnode.create(int64(-32767),s32inttype,false), fracpara.right); end else if is_enum then begin {Insert a reference to the ord2string index.} newparas.right:=Ccallparanode.create( Caddrnode.create_internal( Crttinode.create(Tenumdef(source.left.resultdef),fullrtti,rdt_normal) ), newparas.right); {Insert a reference to the typinfo.} newparas.right:=Ccallparanode.create( Caddrnode.create_internal( Crttinode.create(Tenumdef(source.left.resultdef),fullrtti,rdt_ord2str) ), newparas.right); {Insert a type conversion from the enumeration to longint.} source.left:=Ctypeconvnode.create_internal(source.left,s32inttype); typecheckpass(source.left); { if necessary, insert a length para } if not assigned(lenpara) then Tcallparanode(Tcallparanode(newparas.right).right).right:= Ccallparanode.create( cordconstnode.create(int64(-1),s32inttype,false), Tcallparanode(Tcallparanode(newparas.right).right).right ); end else { for a normal parameter, insert a only length parameter if one is missing } if not assigned(lenpara) then newparas.right := ccallparanode.create(cordconstnode.create(int64(-1),s32inttype,false), newparas.right); { remove the parameters from the original node so they won't get disposed, } { since they're reused } left := nil; { create procedure name } if is_chararray(dest.resultdef) then procname:='fpc_chararray_' else procname := 'fpc_' + tstringdef(dest.resultdef).stringtypname+'_'; if is_real then if is_currency(source.resultdef) then procname := procname + 'currency' else procname := procname + 'float' else if is_enum then procname:=procname+'enum' else case torddef(source.resultdef).ordtype of {$ifdef cpu64bit} u64bit: procname := procname + 'uint'; {$else} u32bit: procname := procname + 'uint'; u64bit: procname := procname + 'qword'; scurrency, s64bit: procname := procname + 'int64'; {$endif} else procname := procname + 'sint'; end; { free the errornode we generated in the beginning } result.free; { create the call node, } result := ccallnode.createintern(procname,newparas); end; function tinlinenode.handle_reset_rewrite_typed: tnode; begin { since this is a "in_xxxx_typedfile" node, we can be sure we have } { a typed file as argument and we don't have to check it again (JM) } { add the recsize parameter } { note: for some reason, the parameter of intern procedures with only one } { parameter is gets lifted out of its original tcallparanode (see round } { line 1306 of ncal.pas), so recreate a tcallparanode here (JM) } left := ccallparanode.create(cordconstnode.create( tfiledef(left.resultdef).typedfiledef.size,s32inttype,true), ccallparanode.create(left,nil)); { create the correct call } if inlinenumber=in_reset_typedfile then result := ccallnode.createintern('fpc_reset_typed',left) else result := ccallnode.createintern('fpc_rewrite_typed',left); { make sure left doesn't get disposed, since we use it in the new call } left := nil; end; function Tinlinenode.handle_text_read_write(filepara,params:Ttertiarynode;var newstatement:Tnode):boolean; {Read(ln)/write(ln) for text files.} const procprefixes:array[boolean] of string[15]=('fpc_write_text_','fpc_read_text_'); var error_para,is_real,special_handling,found_error,do_read:boolean; p1:Tnode; nextpara, indexpara, lenpara, para, fracpara:Tcallparanode; temp:Ttempcreatenode; readfunctype:Tdef; name:string[31]; begin para:=Tcallparanode(params); found_error:=false; do_read:=inlinenumber in [in_read_x,in_readln_x,in_readstr_x]; while assigned(para) do begin { is this parameter faulty? } error_para:=false; { is this parameter a real? } is_real:=false; { type used for the read(), this is used to check whether a temp is needed for range checking } readfunctype:=nil; { can't read/write types } if para.left.nodetype=typen then begin CGMessagePos(para.fileinfo,type_e_cant_read_write_type); error_para := true; end; { support writeln(procvar) } if para.left.resultdef.typ=procvardef then begin p1:=ccallnode.create_procvar(nil,para.left); typecheckpass(p1); para.left:=p1; end; case para.left.resultdef.typ of stringdef : name:=procprefixes[do_read]+tstringdef(para.left.resultdef).stringtypname; pointerdef : begin if (not is_pchar(para.left.resultdef)) or do_read then begin CGMessagePos(para.fileinfo,type_e_cant_read_write_type); error_para := true; end else name:=procprefixes[do_read]+'pchar_as_pointer'; end; floatdef : begin is_real:=true; if Tfloatdef(para.left.resultdef).floattype=s64currency then name := procprefixes[do_read]+'currency' else begin name := procprefixes[do_read]+'float'; readfunctype:=pbestrealtype^; end; end; enumdef: begin name:=procprefixes[do_read]+'enum'; readfunctype:=s32inttype; end; orddef : begin case Torddef(para.left.resultdef).ordtype of {$ifdef cpu64bit} s64bit, {$endif cpu64bit} s8bit, s16bit, s32bit : begin name := procprefixes[do_read]+'sint'; readfunctype:=sinttype; end; {$ifdef cpu64bit} u64bit, {$endif cpu64bit} u8bit, u16bit, u32bit : begin name := procprefixes[do_read]+'uint'; readfunctype:=uinttype; end; uchar : begin name := procprefixes[do_read]+'char'; readfunctype:=cchartype; end; uwidechar : begin name := procprefixes[do_read]+'widechar'; readfunctype:=cwidechartype; end; {$ifndef cpu64bit} s64bit : begin name := procprefixes[do_read]+'int64'; readfunctype:=s64inttype; end; u64bit : begin name := procprefixes[do_read]+'qword'; readfunctype:=u64inttype; end; {$endif cpu64bit} scurrency: begin name := procprefixes[do_read]+'currency'; readfunctype:=s64currencytype; is_real:=true; end; bool8bit, bool16bit, bool32bit, bool64bit: if do_read then begin CGMessagePos(para.fileinfo,type_e_cant_read_write_type); error_para := true; end else begin name := procprefixes[do_read]+'boolean'; readfunctype:=booltype; end else CGMessagePos(para.fileinfo,type_e_cant_read_write_type); error_para := true; end; end; variantdef : name:=procprefixes[do_read]+'variant'; arraydef : begin if is_chararray(para.left.resultdef) then name := procprefixes[do_read]+'pchar_as_array' else begin CGMessagePos(para.fileinfo,type_e_cant_read_write_type); error_para := true; end end else CGMessagePos(para.fileinfo,type_e_cant_read_write_type); error_para := true; end; { check for length/fractional colon para's } fracpara:=nil; lenpara:=nil; indexpara:=nil; if assigned(para.right) and (cpf_is_colon_para in tcallparanode(para.right).callparaflags) then begin lenpara := tcallparanode(para.right); if assigned(lenpara.right) and (cpf_is_colon_para in tcallparanode(lenpara.right).callparaflags) then fracpara:=tcallparanode(lenpara.right); end; { get the next parameter now already, because we're going } { to muck around with the pointers } if assigned(fracpara) then nextpara := tcallparanode(fracpara.right) else if assigned(lenpara) then nextpara := tcallparanode(lenpara.right) else nextpara := tcallparanode(para.right); { check if a fracpara is allowed } if assigned(fracpara) and not is_real then begin CGMessagePos(fracpara.fileinfo,parser_e_illegal_colon_qualifier); error_para := true; end else if assigned(lenpara) and do_read then begin { I think this is already filtered out by parsing, but I'm not sure (JM) } CGMessagePos(lenpara.fileinfo,parser_e_illegal_colon_qualifier); error_para := true; end; { adjust found_error } found_error := found_error or error_para; if not error_para then begin special_handling:=false; { create dummy frac/len para's if necessary } if not do_read then begin { difference in default value for floats and the rest :( } if not is_real then begin if not assigned(lenpara) then lenpara := ccallparanode.create( cordconstnode.create(0,s32inttype,false),nil) else { make sure we don't pass the successive } { parameters too. We also already have a } { reference to the next parameter in } { nextpara } lenpara.right := nil; end else begin if not assigned(lenpara) then lenpara := ccallparanode.create( cordconstnode.create(int64(-32767),s32inttype,false),nil); { also create a default fracpara if necessary } if not assigned(fracpara) then fracpara := ccallparanode.create( cordconstnode.create(int64(-1),s32inttype,false),nil); { add it to the lenpara } lenpara.right := fracpara; if not is_currency(para.left.resultdef) then begin { and add the realtype para (this also removes the link } { to any parameters coming after it) } fracpara.right := ccallparanode.create( cordconstnode.create(ord(tfloatdef(para.left.resultdef).floattype), s32inttype,true),nil); end; end; if para.left.resultdef.typ=enumdef then begin {To write(ln) an enum we need a some extra parameters.} {Insert a reference to the ord2string index.} indexpara:=Ccallparanode.create( Caddrnode.create_internal( Crttinode.create(Tenumdef(para.left.resultdef),fullrtti,rdt_normal) ), nil); {Insert a reference to the typinfo.} indexpara:=Ccallparanode.create( Caddrnode.create_internal( Crttinode.create(Tenumdef(para.left.resultdef),fullrtti,rdt_ord2str) ), indexpara); {Insert a type conversion to to convert the enum to longint.} para.left:=Ctypeconvnode.create_internal(para.left,s32inttype); typecheckpass(para.left); end; end else begin {To read(ln) an enum we need a an extra parameter.} if para.left.resultdef.typ=enumdef then begin {Insert a reference to the string2ord index.} indexpara:=Ccallparanode.create(Caddrnode.create_internal( Crttinode.create(Tenumdef(para.left.resultdef),fullrtti,rdt_str2ord) ),nil); {Insert a type conversion to to convert the enum to longint.} para.left:=Ctypeconvnode.create_internal(para.left,s32inttype); typecheckpass(para.left); end; { special handling of reading small numbers, because the helpers } { expect a longint/card/bestreal var parameter. Use a temp. can't } { use functions because then the call to FPC_IOCHECK destroys } { their result before we can store it } if (readfunctype<>nil) and (para.left.resultdef<>readfunctype) then special_handling:=true; end; if special_handling then begin { since we're not going to pass the parameter as var-parameter } { to the read function, manually check whether the parameter } { can be used as var-parameter (e.g., whether it isn't a } { property) } valid_for_var(para.left,true); { create the parameter list: the temp ... } temp := ctempcreatenode.create(readfunctype,readfunctype.size,tt_persistent,false); addstatement(Tstatementnode(newstatement),temp); { ... and the file } p1 := ccallparanode.create(ctemprefnode.create(temp), filepara.getcopy); Tcallparanode(Tcallparanode(p1).right).right:=indexpara; { create the call to the helper } addstatement(Tstatementnode(newstatement), ccallnode.createintern(name,tcallparanode(p1))); { assign the result to the original var (this automatically } { takes care of range checking) } addstatement(Tstatementnode(newstatement), cassignmentnode.create(para.left, ctemprefnode.create(temp))); { release the temp location } addstatement(Tstatementnode(newstatement),ctempdeletenode.create(temp)); { statement of para is used } para.left := nil; { free the enclosing tcallparanode, but not the } { parameters coming after it } para.right := nil; para.free; end else { read of non s/u-8/16bit, or a write } begin { add the filepara to the current parameter } para.right := filepara.getcopy; {Add the lenpara and the indexpara(s) (fracpara and realtype are already linked with the lenpara if necessary).} if indexpara=nil then Tcallparanode(para.right).right:=lenpara else begin if lenpara=nil then Tcallparanode(para.right).right:=indexpara else begin Tcallparanode(para.right).right:=lenpara; lenpara.right:=indexpara; end; { indexpara.right:=lenpara;} end; { in case of writing a chararray, add whether it's } { zero-based } if para.left.resultdef.typ=arraydef then para := ccallparanode.create(cordconstnode.create( ord(tarraydef(para.left.resultdef).lowrange=0),booltype,false),para); { create the call statement } addstatement(Tstatementnode(newstatement), ccallnode.createintern(name,para)); end end else { error_para = true } begin { free the parameter, since it isn't referenced anywhere anymore } para.right := nil; para.free; if assigned(lenpara) then begin lenpara.right := nil; lenpara.free; end; if assigned(fracpara) then begin fracpara.right := nil; fracpara.free; end; end; { process next parameter } para := nextpara; end; { if no error, add the write(ln)/read(ln) end calls } if not found_error then begin case inlinenumber of in_read_x, in_readstr_x: name:='fpc_read_end'; in_write_x, in_writestr_x: name:='fpc_write_end'; in_readln_x: name:='fpc_readln_end'; in_writeln_x: name:='fpc_writeln_end'; end; addstatement(Tstatementnode(newstatement),ccallnode.createintern(name,filepara)); end; handle_text_read_write:=found_error; end; function Tinlinenode.handle_typed_read_write(filepara,params:Ttertiarynode;var newstatement:Tnode):boolean; {Read/write for typed files.} const procprefixes:array[boolean] of string[15]=('fpc_typed_write','fpc_typed_read'); procnamesdisplay:array[boolean,boolean] of string[8] = (('Write','Read'),('WriteStr','ReadStr')); var found_error,do_read,is_rwstr:boolean; para,nextpara:Tcallparanode; p1:Tnode; temp:Ttempcreatenode; begin found_error:=false; para:=Tcallparanode(params); do_read:=inlinenumber in [in_read_x,in_readln_x,in_readstr_x]; is_rwstr := inlinenumber in [in_readstr_x,in_writestr_x]; { add the typesize to the filepara } if filepara.resultdef.typ=filedef then filepara.right := ccallparanode.create(cordconstnode.create( tfiledef(filepara.resultdef).typedfiledef.size,s32inttype,true),nil); { check for "no parameters" (you need at least one extra para for typed files) } if not assigned(para) then begin CGMessage1(parser_e_wrong_parameter_size,procnamesdisplay[is_rwstr,do_read]); found_error := true; end; { process all parameters } while assigned(para) do begin { check if valid parameter } if para.left.nodetype=typen then begin CGMessagePos(para.left.fileinfo,type_e_cant_read_write_type); found_error := true; end; { support writeln(procvar) } if (para.left.resultdef.typ=procvardef) then begin p1:=ccallnode.create_procvar(nil,para.left); typecheckpass(p1); para.left:=p1; end; if filepara.resultdef.typ=filedef then inserttypeconv(para.left,tfiledef(filepara.resultdef).typedfiledef); if assigned(para.right) and (cpf_is_colon_para in tcallparanode(para.right).callparaflags) then begin CGMessagePos(para.right.fileinfo,parser_e_illegal_colon_qualifier); { skip all colon para's } nextpara := tcallparanode(tcallparanode(para.right).right); while assigned(nextpara) and (cpf_is_colon_para in nextpara.callparaflags) do nextpara := tcallparanode(nextpara.right); found_error := true; end else { get next parameter } nextpara := tcallparanode(para.right); { When we have a call, we have a problem: you can't pass the } { result of a call as a formal const parameter. Solution: } { assign the result to a temp and pass this temp as parameter } { This is not very efficient, but write(typedfile,x) is } { already slow by itself anyway (no buffering) (JM) } { Actually, thge same goes for every non-simple expression } { (such as an addition, ...) -> put everything but load nodes } { into temps (JM) } { of course, this must only be allowed for writes!!! (JM) } if not(do_read) and (para.left.nodetype <> loadn) then begin { create temp for result } temp := ctempcreatenode.create(para.left.resultdef, para.left.resultdef.size,tt_persistent,false); addstatement(Tstatementnode(newstatement),temp); { assign result to temp } addstatement(Tstatementnode(newstatement), cassignmentnode.create(ctemprefnode.create(temp), para.left)); { replace (reused) paranode with temp } para.left := ctemprefnode.create(temp); end; { add fileparameter } para.right := filepara.getcopy; { create call statment } { since the parameters are in the correct order, we have to insert } { the statements always at the end of the current block } addstatement(Tstatementnode(newstatement), Ccallnode.createintern(procprefixes[do_read],para )); { if we used a temp, free it } if para.left.nodetype = temprefn then addstatement(Tstatementnode(newstatement),ctempdeletenode.create(temp)); { process next parameter } para := nextpara; end; { free the file parameter } filepara.free; handle_typed_read_write:=found_error; end; function tinlinenode.handle_read_write: tnode; var filepara, nextpara, params : tcallparanode; newstatement : tstatementnode; newblock : tblocknode; filetemp : Ttempcreatenode; name : string[31]; textsym : ttypesym; readfunctype : tdef; is_typed, do_read, is_rwstr, found_error : boolean; begin filepara := nil; is_typed := false; filetemp := nil; do_read := inlinenumber in [in_read_x,in_readln_x,in_readstr_x]; is_rwstr := inlinenumber in [in_readstr_x,in_writestr_x]; { if we fail, we can quickly exit this way. We must generate something } { instead of the inline node, because firstpass will bomb with an } { internalerror if it encounters a read/write } result := cerrornode.create; { reverse the parameters (needed to get the colon parameters in the } { correct order when processing write(ln) } left := reverseparameters(tcallparanode(left)); if is_rwstr then begin filepara := tcallparanode(left); { needs at least two parameters: source/dest string + min. 1 value } if not(assigned(filepara)) or not(assigned(filepara.right)) then begin CGMessagePos1(fileinfo,parser_e_wrong_parameter_size,'ReadStr/WriteStr'); exit; end else if (filepara.resultdef.typ <> stringdef) then begin { convert chararray to string, or give an appropriate error message } { (if you want to optimize to use shortstring, keep in mind that } { readstr internally always uses ansistring, and to account for } { chararrays with > 255 characters) } inserttypeconv(filepara.left,cansistringtype); filepara.resultdef:=filepara.left.resultdef; if codegenerror then exit; end end else if assigned(left) then begin { check if we have a file parameter and if yes, what kind it is } filepara := tcallparanode(left); if (filepara.resultdef.typ=filedef) then begin if (tfiledef(filepara.resultdef).filetyp=ft_untyped) then begin CGMessagePos(fileinfo,type_e_no_read_write_for_untyped_file); exit; end else begin if (tfiledef(filepara.resultdef).filetyp=ft_typed) then begin if (inlinenumber in [in_readln_x,in_writeln_x]) then begin CGMessagePos(fileinfo,type_e_no_readln_writeln_for_typed_file); exit; end; is_typed := true; end end; end else filepara := nil; end; { create a blocknode in which the successive write/read statements will be } { put, since they belong together. Also create a dummy statement already to } { make inserting of additional statements easier } newblock:=internalstatements(newstatement); { if we don't have a filepara, create one containing the default } if not assigned(filepara) or is_rwstr then begin { since the input/output variables are threadvars loading them into a temp once is faster. Create a temp which will hold a pointer to the file } filetemp := ctempcreatenode.create(voidpointertype,voidpointertype.size,tt_persistent,true); addstatement(newstatement,filetemp); { make sure the resultdef of the temp (and as such of the } { temprefs coming after it) is set (necessary because the } { temprefs will be part of the filepara, of which we need } { the resultdef later on and temprefs can only be } { typecheckpassed if the resultdef of the temp is known) } typecheckpass(tnode(filetemp)); if not is_rwstr then begin { assign the address of the file to the temp } if do_read then name := 'input' else name := 'output'; addstatement(newstatement, cassignmentnode.create(ctemprefnode.create(filetemp), ccallnode.createintern('fpc_get_'+name,nil))); end else begin if (do_read) then name := 'fpc_setupreadstr_' else name := 'fpc_setupwritestr_'; name:=name+tstringdef(filepara.resultdef).stringtypname; { remove the source/destination string parameter from the } { parameter chain } left:=filepara.right; filepara.right:=nil; { pass the source/destination string to the setup routine, which } { will store the string's address in the returned textrec } addstatement(newstatement, cassignmentnode.create(ctemprefnode.create(filetemp), ccallnode.createintern(name,filepara))); end; { create a new fileparameter as follows: file_type(temp^) } { (so that we pass the value and not the address of the temp } { to the read/write routine) } textsym:=search_system_type('TEXT'); filepara := ccallparanode.create(ctypeconvnode.create_internal( cderefnode.create(ctemprefnode.create(filetemp)),textsym.typedef),nil); end else { remove filepara from the parameter chain } begin left := filepara.right; filepara.right := nil; { the file para is a var parameter, but it must be valid already } set_varstate(filepara.left,vs_readwritten,[vsf_must_be_valid]); { check if we should make a temp to store the result of a complex } { expression (better heuristics, anyone?) (JM) } if (filepara.left.nodetype <> loadn) then begin { create a temp which will hold a pointer to the file } filetemp := ctempcreatenode.create(voidpointertype,voidpointertype.size,tt_persistent,true); { add it to the statements } addstatement(newstatement,filetemp); { make sure the resultdef of the temp (and as such of the } { temprefs coming after it) is set (necessary because the } { temprefs will be part of the filepara, of which we need } { the resultdef later on and temprefs can only be } { typecheckpassed if the resultdef of the temp is known) } typecheckpass(tnode(filetemp)); { assign the address of the file to the temp } addstatement(newstatement, cassignmentnode.create(ctemprefnode.create(filetemp), caddrnode.create_internal(filepara.left))); typecheckpass(newstatement.left); { create a new fileparameter as follows: file_type(temp^) } { (so that we pass the value and not the address of the temp } { to the read/write routine) } nextpara := ccallparanode.create(ctypeconvnode.create_internal( cderefnode.create(ctemprefnode.create(filetemp)),filepara.left.resultdef),nil); { replace the old file para with the new one } filepara.left := nil; filepara.free; filepara := nextpara; end; end; { the resultdef of the filepara must be set since it's } { used below } filepara.get_paratype; { now, filepara is nowhere referenced anymore, so we can safely dispose it } { if something goes wrong or at the end of the procedure } { we're going to reuse the paranodes, so make sure they don't get freed } { twice } params:=Tcallparanode(left); left := nil; if is_typed then found_error:=handle_typed_read_write(filepara,Ttertiarynode(params),newstatement) else found_error:=handle_text_read_write(filepara,Ttertiarynode(params),newstatement); { if we found an error, simply delete the generated blocknode } if found_error then newblock.free else begin { deallocate the temp for the file para if we used one } if assigned(filetemp) then addstatement(newstatement,ctempdeletenode.create(filetemp)); { otherwise return the newly generated block of instructions, } { but first free the errornode we generated at the beginning } result.free; result := newblock end; end; function tinlinenode.handle_val: tnode; var procname, suffix : string[31]; sourcepara, destpara, codepara, sizepara, newparas : tcallparanode; orgcode,tc : tnode; newstatement : tstatementnode; newblock : tblocknode; tempcode : ttempcreatenode; begin { for easy exiting if something goes wrong } result := cerrornode.create; { check the amount of parameters } if not(assigned(left)) or not(assigned(tcallparanode(left).right)) then begin CGMessage1(parser_e_wrong_parameter_size,'Val'); exit; end; { reverse parameters for easier processing } left := reverseparameters(tcallparanode(left)); { get the parameters } tempcode := nil; orgcode := nil; sizepara := nil; sourcepara := tcallparanode(left); destpara := tcallparanode(sourcepara.right); codepara := tcallparanode(destpara.right); { check if codepara is valid } if assigned(codepara) and ( (codepara.resultdef.typ <> orddef) {$ifndef cpu64bit} or is_64bitint(codepara.resultdef) {$endif cpu64bit} ) then begin CGMessagePos1(codepara.fileinfo,type_e_integer_expr_expected,codepara.resultdef.typename); exit; end; { check if dest para is valid } if not(destpara.resultdef.typ in [orddef,floatdef,enumdef]) then begin CGMessagePos(destpara.fileinfo,type_e_integer_or_real_expr_expected); exit; end; { we're going to reuse the exisiting para's, so make sure they } { won't be disposed } left := nil; { create the blocknode which will hold the generated statements + } { an initial dummy statement } newblock:=internalstatements(newstatement); { do we need a temp for code? Yes, if no code specified, or if } { code is not a 32bit parameter (we already checked whether the } { the code para, if specified, was an orddef) } if not assigned(codepara) or (codepara.resultdef.size<>sinttype.size) then begin tempcode := ctempcreatenode.create(sinttype,sinttype.size,tt_persistent,false); addstatement(newstatement,tempcode); { set the resultdef of the temp (needed to be able to get } { the resultdef of the tempref used in the new code para) } typecheckpass(tnode(tempcode)); { create a temp codepara, but save the original code para to } { assign the result to later on } if assigned(codepara) then begin orgcode := codepara.left; codepara.left := ctemprefnode.create(tempcode); end else codepara := ccallparanode.create(ctemprefnode.create(tempcode),nil); { we need its resultdef later on } codepara.get_paratype; end else if (torddef(codepara.resultdef).ordtype = torddef(sinttype).ordtype) then { because code is a var parameter, it must match types exactly } { however, since it will return values in [0..255], both longints } { and cardinals are fine. Since the formal code para type is } { longint, insert a typecoversion to longint for cardinal para's } begin codepara.left := ctypeconvnode.create_internal(codepara.left,sinttype); { make it explicit, oterwise you may get a nonsense range } { check error if the cardinal already contained a value } { > $7fffffff } codepara.get_paratype; end; { create the procedure name } procname := 'fpc_val_'; case destpara.resultdef.typ of orddef: begin case torddef(destpara.resultdef).ordtype of {$ifdef cpu64bit} s64bit, {$endif cpu64bit} s8bit, s16bit, s32bit: begin suffix := 'sint_'; { we also need a destsize para in this case } sizepara := ccallparanode.create(cordconstnode.create (destpara.resultdef.size,s32inttype,true),nil); end; {$ifdef cpu64bit} u64bit, {$endif cpu64bit} u8bit, u16bit, u32bit: suffix := 'uint_'; {$ifndef cpu64bit} s64bit: suffix := 'int64_'; u64bit: suffix := 'qword_'; {$endif cpu64bit} scurrency: suffix := 'currency_'; else internalerror(200304225); end; end; floatdef: suffix:='real_'; enumdef: begin suffix:='enum_'; sizepara:=Ccallparanode.create(Caddrnode.create_internal( Crttinode.create(Tenumdef(destpara.resultdef),fullrtti,rdt_str2ord) ),nil); end; end; procname := procname + suffix; { play a trick to have tcallnode handle invalid source parameters: } { the shortstring-longint val routine by default } if (sourcepara.resultdef.typ = stringdef) then procname := procname + tstringdef(sourcepara.resultdef).stringtypname { zero-based arrays (of char) can be implicitely converted to ansistring } else if is_zero_based_array(sourcepara.resultdef) then procname := procname + 'ansistr' else procname := procname + 'shortstr'; { set up the correct parameters for the call: the code para... } newparas := codepara; { and the source para } codepara.right := sourcepara; { sizepara either contains nil if none is needed (which is ok, since } { then the next statement severes any possible links with other paras } { that sourcepara may have) or it contains the necessary size para and } { its right field is nil } sourcepara.right := sizepara; { create the call and assign the result to dest (val helpers are functions). Use a trick to prevent a type size mismatch warning to be generated by the assignment node. First convert implicitly to the resultdef. This will insert the range check. The Second conversion is done explicitly to hide the implicit conversion for the assignment node and therefor preventing the warning (PFV) The implicit conversion is avoided for enums because implicit conversion between longint (which is what fpc_val_enum_shortstr returns) and enumerations is not possible. (DM).} if destpara.resultdef.typ=enumdef then tc:=ccallnode.createintern(procname,newparas) else tc:=ctypeconvnode.create(ccallnode.createintern(procname,newparas),destpara.left.resultdef); addstatement(newstatement,cassignmentnode.create( destpara.left,ctypeconvnode.create_internal(tc,destpara.left.resultdef))); { dispose of the enclosing paranode of the destination } destpara.left := nil; destpara.right := nil; destpara.free; { check if we used a temp for code and whether we have to store } { it to the real code parameter } if assigned(orgcode) then addstatement(newstatement,cassignmentnode.create( orgcode, ctypeconvnode.create_internal( ctemprefnode.create(tempcode),orgcode.resultdef))); { release the temp if we allocated one } if assigned(tempcode) then addstatement(newstatement,ctempdeletenode.create(tempcode)); { free the errornode } result.free; { and return it } result := newblock; end; {$maxfpuregisters 0} function getpi : bestreal; begin {$ifdef x86} { x86 has pi in hardware } result:=pi; {$else x86} {$ifdef cpuextended} result:=MathPiExtended.Value; {$else cpuextended} result:=MathPi.Value; {$endif cpuextended} {$endif x86} end; function tinlinenode.pass_typecheck:tnode; function do_lowhigh(def:tdef) : tnode; var v : tconstexprint; enum : tenumsym; hp : tnode; begin case def.typ of orddef: begin set_varstate(left,vs_read,[]); if inlinenumber=in_low_x then v:=torddef(def).low else v:=torddef(def).high; hp:=cordconstnode.create(v,def,true); typecheckpass(hp); do_lowhigh:=hp; end; enumdef: begin set_varstate(left,vs_read,[]); enum:=tenumsym(tenumdef(def).firstenum); v:=tenumdef(def).maxval; if inlinenumber=in_high_x then while assigned(enum) and (enum.value <> v) do enum:=enum.nextenum; if not assigned(enum) then internalerror(309993) else hp:=genenumnode(enum); do_lowhigh:=hp; end; else internalerror(87); end; end; function getconstrealvalue : bestreal; begin case left.nodetype of ordconstn: getconstrealvalue:=tordconstnode(left).value; realconstn: getconstrealvalue:=trealconstnode(left).value_real; else internalerror(309992); end; end; procedure setconstrealvalue(r : bestreal); begin result:=crealconstnode.create(r,pbestrealtype^); end; function handle_ln_const(r : bestreal) : tnode; begin if r<=0.0 then if (cs_check_range in current_settings.localswitches) or (cs_check_overflow in current_settings.localswitches) then begin result:=crealconstnode.create(0,pbestrealtype^); CGMessage(type_e_wrong_math_argument) end else begin if r=0.0 then result:=crealconstnode.create(MathQNaN.Value,pbestrealtype^) else result:=crealconstnode.create(MathNegInf.Value,pbestrealtype^) end else result:=crealconstnode.create(ln(r),pbestrealtype^) end; function handle_sqrt_const(r : bestreal) : tnode; begin if r<0.0 then if (cs_check_range in current_settings.localswitches) or (cs_check_overflow in current_settings.localswitches) then begin result:=crealconstnode.create(0,pbestrealtype^); CGMessage(type_e_wrong_math_argument) end else result:=crealconstnode.create(MathQNaN.Value,pbestrealtype^) else result:=crealconstnode.create(sqrt(r),pbestrealtype^) end; procedure setfloatresultdef; begin if (left.resultdef.typ=floatdef) and (tfloatdef(left.resultdef).floattype in [s32real,s64real,s80real,s128real]) then resultdef:=left.resultdef else begin inserttypeconv(left,pbestrealtype^); resultdef:=pbestrealtype^; end; end; procedure handle_pack_unpack; var source, target, index: tcallparanode; unpackedarraydef, packedarraydef: tarraydef; tempindex: TConstExprInt; begin resultdef:=voidtype; unpackedarraydef := nil; packedarraydef := nil; source := tcallparanode(left); if (inlinenumber = in_unpack_x_y_z) then begin target := tcallparanode(source.right); index := tcallparanode(target.right); { source must be a packed array } if not is_packed_array(source.left.resultdef) then CGMessagePos2(source.left.fileinfo,type_e_got_expected_packed_array,'1',source.left.resultdef.GetTypeName) else packedarraydef := tarraydef(source.left.resultdef); { target can be any kind of array, as long as it's not packed } if (target.left.resultdef.typ <> arraydef) or is_packed_array(target.left.resultdef) then CGMessagePos2(target.left.fileinfo,type_e_got_expected_unpacked_array,'2',target.left.resultdef.GetTypeName) else unpackedarraydef := tarraydef(target.left.resultdef); end else begin index := tcallparanode(source.right); target := tcallparanode(index.right); { source can be any kind of array, as long as it's not packed } if (source.left.resultdef.typ <> arraydef) or is_packed_array(source.left.resultdef) then CGMessagePos2(source.left.fileinfo,type_e_got_expected_unpacked_array,'1',source.left.resultdef.GetTypeName) else unpackedarraydef := tarraydef(source.left.resultdef); { target must be a packed array } if not is_packed_array(target.left.resultdef) then CGMessagePos2(target.left.fileinfo,type_e_got_expected_packed_array,'3',target.left.resultdef.GetTypeName) else packedarraydef := tarraydef(target.left.resultdef); end; if assigned(unpackedarraydef) then begin { index must be compatible with the unpacked array's indextype } inserttypeconv(index.left,unpackedarraydef.rangedef); { range check at compile time if possible } if assigned(packedarraydef) and (index.left.nodetype = ordconstn) and not is_special_array(unpackedarraydef) then begin testrange(unpackedarraydef,tordconstnode(index.left).value,false); tempindex := tordconstnode(index.left).value + packedarraydef.highrange-packedarraydef.lowrange; testrange(unpackedarraydef,tempindex,false); end; end; { source array is read and must be valid } set_varstate(source.left,vs_read,[vsf_must_be_valid]); { target array is written } valid_for_assignment(target.left,true); set_varstate(target.left,vs_written,[]); { index in the unpacked array is read and must be valid } set_varstate(index.left,vs_read,[vsf_must_be_valid]); { if the size of the arrays is 0 (array of empty records), } { do nothing } if (source.resultdef.size = 0) then result:=cnothingnode.create; end; var vl,vl2 : TConstExprInt; vr : bestreal; hightree, hp : tnode; checkrange : boolean; label myexit; begin result:=nil; { if we handle writeln; left contains no valid address } if assigned(left) then begin if left.nodetype=callparan then tcallparanode(left).get_paratype else typecheckpass(left); end; inc(parsing_para_level); { handle intern constant functions in separate case } if nf_inlineconst in flags then begin { no parameters? } if not assigned(left) then internalerror(200501231) else begin vl:=0; vl2:=0; { second parameter Ex: ptr(vl,vl2) } case left.nodetype of realconstn : begin { Real functions are all handled with internproc below } CGMessage1(type_e_integer_expr_expected,left.resultdef.typename) end; ordconstn : vl:=tordconstnode(left).value; callparan : begin { both exists, else it was not generated } vl:=tordconstnode(tcallparanode(left).left).value; vl2:=tordconstnode(tcallparanode(tcallparanode(left).right).left).value; end; else CGMessage(parser_e_illegal_expression); end; case inlinenumber of in_const_abs : if vl.signed then hp:=genintconstnode(abs(vl.svalue)) else hp:=genintconstnode(vl.uvalue); in_const_sqr: if vl.signed then hp:=genintconstnode(sqr(vl.svalue)) else hp:=genintconstnode(sqr(vl.uvalue)); in_const_odd : hp:=cordconstnode.create(qword(odd(int64(vl))),booltype,true); in_const_swap_word : hp:=cordconstnode.create((vl and $ff) shl 8+(vl shr 8),left.resultdef,true); in_const_swap_long : hp:=cordconstnode.create((vl and $ffff) shl 16+(vl shr 16),left.resultdef,true); in_const_swap_qword : hp:=cordconstnode.create((vl and $ffff) shl 32+(vl shr 32),left.resultdef,true); in_const_ptr: begin {Don't construct pointers from negative values.} if (vl.signed and (vl.svalue<0)) or (vl2.signed and (vl2.svalue<0)) then cgmessage(parser_e_range_check_error); hp:=cpointerconstnode.create((vl2.uvalue shl 4)+vl.uvalue,voidfarpointertype); end else internalerror(88); end; end; if hp=nil then hp:=cerrornode.create; result:=hp; goto myexit; end else begin case inlinenumber of in_lo_long, in_hi_long, in_lo_qword, in_hi_qword, in_lo_word, in_hi_word : begin { give warning for incompatibility with tp and delphi } if (inlinenumber in [in_lo_long,in_hi_long,in_lo_qword,in_hi_qword]) and ((m_tp7 in current_settings.modeswitches) or (m_delphi in current_settings.modeswitches)) then CGMessage(type_w_maybe_wrong_hi_lo); { constant folding } if left.nodetype=ordconstn then begin case inlinenumber of in_lo_word : hp:=cordconstnode.create(tordconstnode(left).value and $ff,left.resultdef,true); in_hi_word : hp:=cordconstnode.create(tordconstnode(left).value shr 8,left.resultdef,true); in_lo_long : hp:=cordconstnode.create(tordconstnode(left).value and $ffff,left.resultdef,true); in_hi_long : hp:=cordconstnode.create(tordconstnode(left).value shr 16,left.resultdef,true); in_lo_qword : hp:=cordconstnode.create(tordconstnode(left).value and $ffffffff,left.resultdef,true); in_hi_qword : hp:=cordconstnode.create(tordconstnode(left).value shr 32,left.resultdef,true); end; result:=hp; goto myexit; end; set_varstate(left,vs_read,[vsf_must_be_valid]); if not is_integer(left.resultdef) then CGMessage1(type_e_integer_expr_expected,left.resultdef.typename); case inlinenumber of in_lo_word, in_hi_word : resultdef:=u8inttype; in_lo_long, in_hi_long : resultdef:=u16inttype; in_lo_qword, in_hi_qword : resultdef:=u32inttype; end; end; in_sizeof_x: begin set_varstate(left,vs_read,[]); if paramanager.push_high_param(vs_value,left.resultdef,current_procinfo.procdef.proccalloption) then begin hightree:=load_high_value_node(tparavarsym(tloadnode(left).symtableentry)); if assigned(hightree) then begin hp:=caddnode.create(addn,hightree, cordconstnode.create(1,sinttype,false)); if (left.resultdef.typ=arraydef) then if not is_packed_array(tarraydef(left.resultdef)) then begin if (tarraydef(left.resultdef).elesize<>1) then hp:=caddnode.create(muln,hp,cordconstnode.create(tarraydef( left.resultdef).elesize,sinttype,true)); end else if (tarraydef(left.resultdef).elepackedbitsize <> 8) then begin { no packed open array support yet } if (hp.nodetype <> ordconstn) then internalerror(2006081511); hp.free; hp := cordconstnode.create(left.resultdef.size,sinttype,true); { hp:= ctypeconvnode.create_explicit(sinttype, cmoddivnode.create(divn, caddnode.create(addn, caddnode.create(muln,hp,cordconstnode.create(tarraydef( left.resultdef).elepackedbitsize,s64inttype,true)), cordconstnode.create(a,s64inttype,true)), cordconstnode.create(8,s64inttype,true)), sinttype); } end; result:=hp; end; end else resultdef:=sinttype; end; in_typeof_x: begin set_varstate(left,vs_read,[]); resultdef:=voidpointertype; end; in_ord_x: begin if (left.nodetype=ordconstn) then begin hp:=cordconstnode.create( tordconstnode(left).value,sinttype,true); result:=hp; goto myexit; end; set_varstate(left,vs_read,[vsf_must_be_valid]); case left.resultdef.typ of orddef : begin case torddef(left.resultdef).ordtype of bool8bit, uchar: begin { change to byte() } hp:=ctypeconvnode.create_internal(left,u8inttype); left:=nil; result:=hp; end; bool16bit, uwidechar : begin { change to word() } hp:=ctypeconvnode.create_internal(left,u16inttype); left:=nil; result:=hp; end; bool32bit : begin { change to dword() } hp:=ctypeconvnode.create_internal(left,u32inttype); left:=nil; result:=hp; end; bool64bit : begin { change to qword() } hp:=ctypeconvnode.create_internal(left,u64inttype); left:=nil; result:=hp; end; uvoid : CGMessage1(type_e_ordinal_expr_expected,left.resultdef.typename); else begin { all other orddef need no transformation } hp:=left; left:=nil; result:=hp; end; end; end; enumdef : begin hp:=ctypeconvnode.create_internal(left,s32inttype); left:=nil; result:=hp; end; pointerdef : begin if m_mac in current_settings.modeswitches then begin hp:=ctypeconvnode.create_internal(left,ptruinttype); left:=nil; result:=hp; end else CGMessage1(type_e_ordinal_expr_expected,left.resultdef.typename); end else CGMessage1(type_e_ordinal_expr_expected,left.resultdef.typename); end; end; in_chr_byte: begin { convert to explicit char() } set_varstate(left,vs_read,[vsf_must_be_valid]); hp:=ctypeconvnode.create_internal(left,cchartype); left:=nil; result:=hp; end; in_length_x: begin if ((left.resultdef.typ=arraydef) and (not is_special_array(left.resultdef) or is_open_array(left.resultdef))) or (left.resultdef.typ=orddef) then set_varstate(left,vs_read,[]) else set_varstate(left,vs_read,[vsf_must_be_valid]); case left.resultdef.typ of variantdef: begin inserttypeconv(left,cansistringtype); end; stringdef : begin { we don't need string convertions here } if (left.nodetype=typeconvn) and (ttypeconvnode(left).left.resultdef.typ=stringdef) then begin hp:=ttypeconvnode(left).left; ttypeconvnode(left).left:=nil; left.free; left:=hp; end; { evaluates length of constant strings direct } if (left.nodetype=stringconstn) then begin hp:=cordconstnode.create( tstringconstnode(left).len,s32inttype,true); result:=hp; goto myexit; end; end; orddef : begin { length of char is one allways } if is_char(left.resultdef) or is_widechar(left.resultdef) then begin hp:=cordconstnode.create(1,s32inttype,false); result:=hp; goto myexit; end else CGMessage(type_e_mismatch); end; pointerdef : begin if is_pchar(left.resultdef) then begin hp := ccallparanode.create(left,nil); result := ccallnode.createintern('fpc_pchar_length',hp); { make sure the left node doesn't get disposed, since it's } { reused in the new node (JM) } left:=nil; goto myexit; end else if is_pwidechar(left.resultdef) then begin hp := ccallparanode.create(left,nil); result := ccallnode.createintern('fpc_pwidechar_length',hp); { make sure the left node doesn't get disposed, since it's } { reused in the new node (JM) } left:=nil; goto myexit; end else CGMessage(type_e_mismatch); end; arraydef : begin if is_open_array(left.resultdef) or is_array_of_const(left.resultdef) then begin hightree:=load_high_value_node(tparavarsym(tloadnode(left).symtableentry)); if assigned(hightree) then begin hp:=caddnode.create(addn,hightree, cordconstnode.create(1,s32inttype,false)); result:=hp; end; goto myexit; end else if not is_dynamic_array(left.resultdef) then begin hp:=cordconstnode.create(tarraydef(left.resultdef).highrange- tarraydef(left.resultdef).lowrange+1, s32inttype,true); result:=hp; goto myexit; end else begin hp := ccallparanode.create(ctypeconvnode.create_internal(left,voidpointertype),nil); result := ccallnode.createintern('fpc_dynarray_length',hp); { make sure the left node doesn't get disposed, since it's } { reused in the new node (JM) } left:=nil; goto myexit; end; end; else CGMessage(type_e_mismatch); end; { shortstring return an 8 bit value as the length is the first byte of the string } if is_shortstring(left.resultdef) then resultdef:=u8inttype else resultdef:=sinttype; end; in_typeinfo_x: begin set_varstate(left,vs_read,[vsf_must_be_valid]); resultdef:=voidpointertype; end; in_assigned_x: begin { the parser has already made sure the expression is valid } { handle constant expressions } if is_constnode(tcallparanode(left).left) or (tcallparanode(left).left.nodetype = pointerconstn) then begin { let an add node figure it out } result := caddnode.create(unequaln,tcallparanode(left).left,cnilnode.create); tcallparanode(left).left := nil; { free left, because otherwise some code at 'myexit' tries } { to run get_paratype for it, which crashes since left.left } { is now nil } left.free; left := nil; goto myexit; end; { otherwise handle separately, because there could be a procvar, which } { is 2*sizeof(pointer), while we must only check the first pointer } set_varstate(tcallparanode(left).left,vs_read,[vsf_must_be_valid]); resultdef:=booltype; end; in_ofs_x : internalerror(2000101001); in_seg_x : begin set_varstate(left,vs_read,[]); result:=cordconstnode.create(0,s32inttype,false); goto myexit; end; in_pred_x, in_succ_x: begin set_varstate(left,vs_read,[vsf_must_be_valid]); resultdef:=left.resultdef; if not is_ordinal(resultdef) then CGMessage(type_e_ordinal_expr_expected) else begin if (resultdef.typ=enumdef) and (tenumdef(resultdef).has_jumps) and not(m_delphi in current_settings.modeswitches) then CGMessage(type_e_succ_and_pred_enums_with_assign_not_possible); end; { only if the result is an enum do we do range checking } if (resultdef.typ=enumdef) then checkrange := true else checkrange := false; { do constant folding after check for jumps } if left.nodetype=ordconstn then begin if inlinenumber=in_succ_x then result:=cordconstnode.create(tordconstnode(left).value+1,left.resultdef,checkrange) else result:=cordconstnode.create(tordconstnode(left).value-1,left.resultdef,checkrange); end; end; in_initialize_x, in_finalize_x, in_setlength_x: begin { inlined from pinline } internalerror(200204231); end; in_inc_x, in_dec_x: begin resultdef:=voidtype; if assigned(left) then begin { first param must be var } valid_for_var(tcallparanode(left).left,true); set_varstate(tcallparanode(left).left,vs_readwritten,[vsf_must_be_valid]); if (left.resultdef.typ in [enumdef,pointerdef]) or is_ordinal(left.resultdef) or is_currency(left.resultdef) then begin { value of left gets changed -> must be unique } set_unique(tcallparanode(left).left); { two paras ? } if assigned(tcallparanode(left).right) then begin if is_integer(tcallparanode(left).right.resultdef) then begin set_varstate(tcallparanode(tcallparanode(left).right).left,vs_read,[vsf_must_be_valid]); inserttypeconv_internal(tcallparanode(tcallparanode(left).right).left,tcallparanode(left).left.resultdef); if assigned(tcallparanode(tcallparanode(left).right).right) then { should be handled in the parser (JM) } internalerror(2006020901); end else CGMessagePos(tcallparanode(left).right.fileinfo,type_e_ordinal_expr_expected); end; end else CGMessagePos(left.fileinfo,type_e_ordinal_expr_expected); end else CGMessagePos(fileinfo,type_e_mismatch); end; in_read_x, in_readln_x, in_readstr_x, in_write_x, in_writeln_x, in_writestr_x : begin result := handle_read_write; end; in_settextbuf_file_x : begin resultdef:=voidtype; { now we know the type of buffer } hp:=ccallparanode.create(cordconstnode.create( tcallparanode(left).left.resultdef.size,s32inttype,true),left); result:=ccallnode.createintern('SETTEXTBUF',hp); left:=nil; end; { the firstpass of the arg has been done in firstcalln ? } in_reset_typedfile, in_rewrite_typedfile : begin result := handle_reset_rewrite_typed; end; in_str_x_string : begin result := handle_str; end; in_val_x : begin result := handle_val; end; in_include_x_y, in_exclude_x_y: begin resultdef:=voidtype; { the parser already checks whether we have two (and exactly two) } { parameters (JM) } { first param must be var } valid_for_var(tcallparanode(left).left,true); set_varstate(tcallparanode(left).left,vs_readwritten,[vsf_must_be_valid]); { check type } if (left.resultdef.typ=setdef) then begin { insert a type conversion } { to the type of the set elements } set_varstate(tcallparanode(tcallparanode(left).right).left,vs_read,[vsf_must_be_valid]); inserttypeconv(tcallparanode(tcallparanode(left).right).left, tsetdef(left.resultdef).elementdef); end else CGMessage(type_e_mismatch); end; in_pack_x_y_z, in_unpack_x_y_z : begin handle_pack_unpack; end; in_slice_x: begin result:=nil; resultdef:=tcallparanode(left).left.resultdef; if (resultdef.typ <> arraydef) then CGMessagePos(left.fileinfo,type_e_mismatch) else if is_packed_array(resultdef) then CGMessagePos2(left.fileinfo,type_e_got_expected_unpacked_array,'1',resultdef.typename); if not(is_integer(tcallparanode(tcallparanode(left).right).left.resultdef)) then CGMessagePos1(tcallparanode(left).right.fileinfo, type_e_integer_expr_expected, tcallparanode(tcallparanode(left).right).left.resultdef.typename); end; in_low_x, in_high_x: begin case left.resultdef.typ of orddef, enumdef: begin result:=do_lowhigh(left.resultdef); end; setdef: begin result:=do_lowhigh(tsetdef(left.resultdef).elementdef); end; arraydef: begin if inlinenumber=in_low_x then begin set_varstate(left,vs_read,[]); result:=cordconstnode.create(int64(tarraydef( left.resultdef).lowrange),tarraydef(left.resultdef).rangedef,true); end else begin if is_open_array(left.resultdef) or is_array_of_const(left.resultdef) then begin set_varstate(left,vs_read,[]); result:=load_high_value_node(tparavarsym(tloadnode(left).symtableentry)); end else if is_dynamic_array(left.resultdef) then begin set_varstate(left,vs_read,[vsf_must_be_valid]); { can't use inserttypeconv because we need } { an explicit type conversion (JM) } hp := ccallparanode.create(ctypeconvnode.create_internal(left,voidpointertype),nil); result := ccallnode.createintern('fpc_dynarray_high',hp); { make sure the left node doesn't get disposed, since it's } { reused in the new node (JM) } left:=nil; end else begin set_varstate(left,vs_read,[]); result:=cordconstnode.create(int64(tarraydef( left.resultdef).highrange),tarraydef(left.resultdef).rangedef,true); end; end; end; stringdef: begin if inlinenumber=in_low_x then begin result:=cordconstnode.create(0,u8inttype,false); end else begin if is_open_string(left.resultdef) then begin set_varstate(left,vs_read,[]); result:=load_high_value_node(tparavarsym(tloadnode(left).symtableentry)) end else result:=cordconstnode.create(tstringdef(left.resultdef).len,u8inttype,true); end; end; else CGMessage(type_e_mismatch); end; end; in_exp_real : begin if left.nodetype in [ordconstn,realconstn] then begin result:=crealconstnode.create(exp(getconstrealvalue),pbestrealtype^); if (trealconstnode(result).value_real=MathInf.Value) and ((cs_check_range in current_settings.localswitches) or (cs_check_overflow in current_settings.localswitches)) then begin result:=crealconstnode.create(0,pbestrealtype^); CGMessage(parser_e_range_check_error); end; end else begin set_varstate(left,vs_read,[vsf_must_be_valid]); inserttypeconv(left,pbestrealtype^); resultdef:=pbestrealtype^; end; end; in_trunc_real : begin if left.nodetype in [ordconstn,realconstn] then begin vr:=getconstrealvalue; if (vr>=9223372036854775807.5) or (vr<=-9223372036854775808.5) then begin CGMessage(parser_e_range_check_error); result:=cordconstnode.create(1,s64inttype,false) end else result:=cordconstnode.create(trunc(vr),s64inttype,true) end else begin set_varstate(left,vs_read,[vsf_must_be_valid]); { for direct float rounding, no best real type cast should be necessary } if not((left.resultdef.typ=floatdef) and (tfloatdef(left.resultdef).floattype in [s32real,s64real,s80real,s128real])) then inserttypeconv(left,pbestrealtype^); resultdef:=s64inttype; end; end; in_round_real : begin if left.nodetype in [ordconstn,realconstn] then begin vr:=getconstrealvalue; if (vr>=9223372036854775807.5) or (vr<=-9223372036854775808.5) then begin CGMessage(parser_e_range_check_error); result:=cordconstnode.create(1,s64inttype,false) end else result:=cordconstnode.create(round(vr),s64inttype,true) end else begin set_varstate(left,vs_read,[vsf_must_be_valid]); { for direct float rounding, no best real type cast should be necessary } if not((left.resultdef.typ=floatdef) and (tfloatdef(left.resultdef).floattype in [s32real,s64real,s80real,s128real])) then inserttypeconv(left,pbestrealtype^); resultdef:=s64inttype; end; end; in_frac_real : begin if left.nodetype in [ordconstn,realconstn] then setconstrealvalue(frac(getconstrealvalue)) else begin set_varstate(left,vs_read,[vsf_must_be_valid]); inserttypeconv(left,pbestrealtype^); resultdef:=pbestrealtype^; end; end; in_int_real : begin if left.nodetype in [ordconstn,realconstn] then setconstrealvalue(int(getconstrealvalue)) else begin set_varstate(left,vs_read,[vsf_must_be_valid]); inserttypeconv(left,pbestrealtype^); resultdef:=pbestrealtype^; end; end; in_pi_real : begin if block_type=bt_const then setconstrealvalue(getpi) else resultdef:=pbestrealtype^; end; in_cos_real : begin if left.nodetype in [ordconstn,realconstn] then setconstrealvalue(cos(getconstrealvalue)) else begin set_varstate(left,vs_read,[vsf_must_be_valid]); inserttypeconv(left,pbestrealtype^); resultdef:=pbestrealtype^; end; end; in_sin_real : begin if left.nodetype in [ordconstn,realconstn] then setconstrealvalue(sin(getconstrealvalue)) else begin set_varstate(left,vs_read,[vsf_must_be_valid]); inserttypeconv(left,pbestrealtype^); resultdef:=pbestrealtype^; end; end; in_arctan_real : begin if left.nodetype in [ordconstn,realconstn] then setconstrealvalue(arctan(getconstrealvalue)) else begin set_varstate(left,vs_read,[vsf_must_be_valid]); inserttypeconv(left,pbestrealtype^); resultdef:=pbestrealtype^; end; end; in_abs_real : begin if left.nodetype in [ordconstn,realconstn] then setconstrealvalue(abs(getconstrealvalue)) else begin set_varstate(left,vs_read,[vsf_must_be_valid]); inserttypeconv(left,pbestrealtype^); resultdef:=pbestrealtype^; end; end; in_sqr_real : begin if left.nodetype in [ordconstn,realconstn] then setconstrealvalue(sqr(getconstrealvalue)) else begin set_varstate(left,vs_read,[vsf_must_be_valid]); setfloatresultdef; end; end; in_sqrt_real : begin if left.nodetype in [ordconstn,realconstn] then begin vr:=getconstrealvalue; if vr<0.0 then result:=handle_sqrt_const(vr) else setconstrealvalue(sqrt(vr)); end else begin set_varstate(left,vs_read,[vsf_must_be_valid]); setfloatresultdef; end; end; in_ln_real : begin if left.nodetype in [ordconstn,realconstn] then begin vr:=getconstrealvalue; if vr<=0.0 then result:=handle_ln_const(vr) else setconstrealvalue(ln(vr)); end else begin set_varstate(left,vs_read,[vsf_must_be_valid]); inserttypeconv(left,pbestrealtype^); resultdef:=pbestrealtype^; end; end; {$ifdef SUPPORT_MMX} in_mmx_pcmpeqb..in_mmx_pcmpgtw: begin end; {$endif SUPPORT_MMX} in_prefetch_var: begin resultdef:=voidtype; end; {$ifdef SUPPORT_UNALIGNED} in_unaligned_x: begin resultdef:=left.resultdef; end; {$endif SUPPORT_UNALIGNED} in_assert_x_y : begin resultdef:=voidtype; if assigned(left) then begin set_varstate(tcallparanode(left).left,vs_read,[vsf_must_be_valid]); { check type } if is_boolean(left.resultdef) then begin set_varstate(tcallparanode(tcallparanode(left).right).left,vs_read,[vsf_must_be_valid]); { must always be a string } inserttypeconv(tcallparanode(tcallparanode(left).right).left,cshortstringtype); end else CGMessage1(type_e_boolean_expr_expected,left.resultdef.typename); end else CGMessage(type_e_mismatch); { We've checked the whole statement for correctness, now we can remove it if assertions are off } if not(cs_do_assertion in current_settings.localswitches) then begin { we need a valid node, so insert a nothingn } result:=cnothingnode.create; end else include(current_procinfo.flags,pi_do_call); end; in_get_frame, in_get_caller_frame, in_get_caller_addr: begin resultdef:=voidpointertype; end; else internalerror(8); end; end; myexit: { Run get_paratype again to update maybe inserted typeconvs } if not codegenerror then begin if assigned(left) and (left.nodetype=callparan) then tcallparanode(left).get_paratype; end; dec(parsing_para_level); end; function tinlinenode.pass_1 : tnode; var hp,hpp,resultnode : tnode; shiftconst: longint; tempnode: ttempcreatenode; newstatement: tstatementnode; newblock: tblocknode; begin result:=nil; { if we handle writeln; left contains no valid address } if assigned(left) then begin if left.nodetype=callparan then tcallparanode(left).firstcallparan else firstpass(left); left_max; end; inc(parsing_para_level); { intern const should already be handled } if nf_inlineconst in flags then internalerror(200104044); case inlinenumber of in_lo_qword, in_hi_qword, in_lo_long, in_hi_long, in_lo_word, in_hi_word: begin shiftconst := 0; case inlinenumber of in_hi_qword: shiftconst := 32; in_hi_long: shiftconst := 16; in_hi_word: shiftconst := 8; end; if shiftconst <> 0 then result := ctypeconvnode.create_internal(cshlshrnode.create(shrn,left, cordconstnode.create(shiftconst,u32inttype,false)),resultdef) else result := ctypeconvnode.create_internal(left,resultdef); left := nil; firstpass(result); end; in_sizeof_x: begin if registersint<1 then registersint:=1; expectloc:=LOC_REGISTER; end; in_typeof_x: begin if registersint<1 then registersint:=1; expectloc:=LOC_REGISTER; end; in_length_x: begin if is_shortstring(left.resultdef) then expectloc:=left.expectloc else begin { ansi/wide string } if registersint<1 then registersint:=1; expectloc:=LOC_REGISTER; end; end; in_typeinfo_x: begin expectloc:=LOC_REGISTER; registersint:=1; end; in_assigned_x: begin expectloc := LOC_JUMP; registersint:=1; end; in_pred_x, in_succ_x: begin if is_64bit(resultdef) then begin if (registersint<2) then registersint:=2 end else begin if (registersint<1) then registersint:=1; end; expectloc:=LOC_REGISTER; end; in_setlength_x, in_initialize_x, in_finalize_x: begin expectloc:=LOC_VOID; end; in_inc_x, in_dec_x: begin expectloc:=LOC_VOID; { range/overflow checking doesn't work properly } { with the inc/dec code that's generated (JM) } if (current_settings.localswitches * [cs_check_overflow,cs_check_range] <> []) and { No overflow check for pointer operations, because inc(pointer,-1) will always trigger an overflow. For uint32 it works because then the operation is done in 64bit. Range checking is not applicable to pointers either } (tcallparanode(left).left.resultdef.typ<>pointerdef) then { convert to simple add (JM) } begin newblock := internalstatements(newstatement); { extra parameter? } if assigned(tcallparanode(left).right) then begin { Yes, use for add node } hpp := tcallparanode(tcallparanode(left).right).left; tcallparanode(tcallparanode(left).right).left := nil; if assigned(tcallparanode(tcallparanode(left).right).right) then CGMessage(parser_e_illegal_expression); end else begin { no, create constant 1 } hpp := cordconstnode.create(1,tcallparanode(left).left.resultdef,false); end; typecheckpass(hpp); if not((hpp.resultdef.typ=orddef) and {$ifndef cpu64bit} (torddef(hpp.resultdef).ordtype<>u32bit)) then {$else not cpu64bit} (torddef(hpp.resultdef).ordtype<>u64bit)) then {$endif not cpu64bit} inserttypeconv_internal(hpp,sinttype); { make sure we don't call functions part of the left node twice (and generally } { optimize the code generation) } if node_complexity(tcallparanode(left).left) > 1 then begin tempnode := ctempcreatenode.create(voidpointertype,voidpointertype.size,tt_persistent,true); addstatement(newstatement,tempnode); addstatement(newstatement,cassignmentnode.create(ctemprefnode.create(tempnode), caddrnode.create_internal(tcallparanode(left).left.getcopy))); hp := cderefnode.create(ctemprefnode.create(tempnode)); inserttypeconv_internal(hp,tcallparanode(left).left.resultdef); end else begin hp := tcallparanode(left).left.getcopy; tempnode := nil; end; resultnode := hp.getcopy; { avoid type errors from the addn/subn } if not is_integer(resultnode.resultdef) then begin inserttypeconv_internal(hp,sinttype); inserttypeconv_internal(hpp,sinttype); end; { addition/substraction depending on inc/dec } if inlinenumber = in_inc_x then hpp := caddnode.create(addn,hp,hpp) else hpp := caddnode.create(subn,hp,hpp); { assign result of addition } if not(is_integer(resultnode.resultdef)) then inserttypeconv(hpp,torddef.create( {$ifdef cpu64bit} s64bit, {$else cpu64bit} s32bit, {$endif cpu64bit} get_min_value(resultnode.resultdef), get_max_value(resultnode.resultdef))) else inserttypeconv(hpp,resultnode.resultdef); { avoid any possible warnings } inserttypeconv_internal(hpp,resultnode.resultdef); addstatement(newstatement,cassignmentnode.create(resultnode,hpp)); { deallocate the temp } if assigned(tempnode) then addstatement(newstatement,ctempdeletenode.create(tempnode)); { firstpass it } firstpass(newblock); { return new node } result := newblock; end else if (left.resultdef.typ in [enumdef,pointerdef]) or is_ordinal(left.resultdef) then begin { two paras ? } if assigned(tcallparanode(left).right) then begin { need we an additional register ? } if not(is_constintnode(tcallparanode(tcallparanode(left).right).left)) and (tcallparanode(tcallparanode(left).right).left.expectloc in [LOC_CREFERENCE,LOC_REFERENCE]) and (tcallparanode(tcallparanode(left).right).left.registersint<=1) then inc(registersint); { do we need an additional register to restore the first parameter? } if tcallparanode(tcallparanode(left).right).left.registersint>=registersint then inc(registersint); end; end; end; in_include_x_y, in_exclude_x_y: begin expectloc:=LOC_VOID; registersint:=left.registersint; registersfpu:=left.registersfpu; {$ifdef SUPPORT_MMX} registersmmx:=left.registersmmx; {$endif SUPPORT_MMX} end; in_pack_x_y_z, in_unpack_x_y_z: begin result:=first_pack_unpack; end; in_exp_real: begin result:= first_exp_real; end; in_round_real: begin result:= first_round_real; end; in_trunc_real: begin result:= first_trunc_real; end; in_int_real: begin result:= first_int_real; end; in_frac_real: begin result:= first_frac_real; end; in_cos_real: begin result:= first_cos_real; end; in_sin_real: begin result := first_sin_real; end; in_arctan_real: begin result := first_arctan_real; end; in_pi_real : begin result := first_pi; end; in_abs_real: begin result := first_abs_real; end; in_sqr_real: begin result := first_sqr_real; end; in_sqrt_real: begin result := first_sqrt_real; end; in_ln_real: begin result := first_ln_real; end; {$ifdef SUPPORT_MMX} in_mmx_pcmpeqb..in_mmx_pcmpgtw: begin end; {$endif SUPPORT_MMX} in_assert_x_y : begin expectloc:=LOC_VOID; registersint:=left.registersint; registersfpu:=left.registersfpu; {$ifdef SUPPORT_MMX} registersmmx:=left.registersmmx; {$endif SUPPORT_MMX} end; in_low_x, in_high_x: internalerror(200104047); in_slice_x: internalerror(2005101501); in_ord_x, in_chr_byte: begin { should not happend as it's converted to typeconv } internalerror(200104045); end; in_ofs_x : internalerror(2000101001); in_seg_x : internalerror(200104046); in_settextbuf_file_x, in_reset_typedfile, in_rewrite_typedfile, in_str_x_string, in_val_x, in_read_x, in_readln_x, in_write_x, in_writeln_x : begin { should be handled by pass_typecheck } internalerror(200108234); end; in_get_frame: begin include(current_procinfo.flags,pi_needs_stackframe); expectloc:=LOC_CREGISTER; end; in_get_caller_frame: begin expectloc:=LOC_REGISTER; registersint:=1; end; in_get_caller_addr: begin expectloc:=LOC_REGISTER; registersint:=1; end; in_prefetch_var: begin expectloc:=LOC_VOID; end; {$ifdef SUPPORT_UNALIGNED} in_unaligned_x: begin expectloc:=tcallparanode(left).left.expectloc; end; {$endif SUPPORT_UNALIGNED} else internalerror(89); end; dec(parsing_para_level); end; {$maxfpuregisters default} function tinlinenode.docompare(p: tnode): boolean; begin docompare := inherited docompare(p) and (inlinenumber = tinlinenode(p).inlinenumber); end; function tinlinenode.first_pi : tnode; begin result:=crealconstnode.create(getpi,pbestrealtype^); end; function tinlinenode.first_arctan_real : tnode; begin { create the call to the helper } { on entry left node contains the parameter } first_arctan_real := ccallnode.createintern('fpc_arctan_real', ccallparanode.create(left,nil)); left := nil; end; function tinlinenode.first_abs_real : tnode; begin { create the call to the helper } { on entry left node contains the parameter } first_abs_real := ccallnode.createintern('fpc_abs_real', ccallparanode.create(left,nil)); left := nil; end; function tinlinenode.first_sqr_real : tnode; begin { create the call to the helper } { on entry left node contains the parameter } first_sqr_real := ctypeconvnode.create(ccallnode.createintern('fpc_sqr_real', ccallparanode.create(left,nil)),resultdef); left := nil; end; function tinlinenode.first_sqrt_real : tnode; begin { create the call to the helper } { on entry left node contains the parameter } first_sqrt_real := ctypeconvnode.create(ccallnode.createintern('fpc_sqrt_real', ccallparanode.create(left,nil)),resultdef); left := nil; end; function tinlinenode.first_ln_real : tnode; begin { create the call to the helper } { on entry left node contains the parameter } first_ln_real := ccallnode.createintern('fpc_ln_real', ccallparanode.create(left,nil)); left := nil; end; function tinlinenode.first_cos_real : tnode; begin { create the call to the helper } { on entry left node contains the parameter } first_cos_real := ccallnode.createintern('fpc_cos_real', ccallparanode.create(left,nil)); left := nil; end; function tinlinenode.first_sin_real : tnode; begin { create the call to the helper } { on entry left node contains the parameter } first_sin_real := ccallnode.createintern('fpc_sin_real', ccallparanode.create(left,nil)); left := nil; end; function tinlinenode.first_exp_real : tnode; begin { create the call to the helper } { on entry left node contains the parameter } result := ccallnode.createintern('fpc_exp_real',ccallparanode.create(left,nil)); left := nil; end; function tinlinenode.first_int_real : tnode; begin { create the call to the helper } { on entry left node contains the parameter } result := ccallnode.createintern('fpc_int_real',ccallparanode.create(left,nil)); left := nil; end; function tinlinenode.first_frac_real : tnode; begin { create the call to the helper } { on entry left node contains the parameter } result := ccallnode.createintern('fpc_frac_real',ccallparanode.create(left,nil)); left := nil; end; function tinlinenode.first_round_real : tnode; begin { create the call to the helper } { on entry left node contains the parameter } result := ccallnode.createintern('fpc_round_real',ccallparanode.create(left,nil)); left := nil; end; function tinlinenode.first_trunc_real : tnode; begin { create the call to the helper } { on entry left node contains the parameter } result := ccallnode.createintern('fpc_trunc_real',ccallparanode.create(left,nil)); left := nil; end; function tinlinenode.first_pack_unpack: tnode; var loopstatement : tstatementnode; loop : tblocknode; loopvar : ttempcreatenode; tempnode, source, target, index, unpackednode, packednode, sourcevecindex, targetvecindex, loopbody : tnode; temprangedef : tdef; ulorange, uhirange, plorange, phirange : TConstExprInt; begin { transform into a for loop which assigns the data of the (un)packed } { array to the other one } source := left; if (inlinenumber = in_unpack_x_y_z) then begin target := tcallparanode(source).right; index := tcallparanode(target).right; packednode := tcallparanode(source).left; unpackednode := tcallparanode(target).left; end else begin index := tcallparanode(source).right; target := tcallparanode(index).right; packednode := tcallparanode(target).left; unpackednode := tcallparanode(source).left; end; source := tcallparanode(source).left; target := tcallparanode(target).left; index := tcallparanode(index).left; loop := internalstatements(loopstatement); loopvar := ctempcreatenode.create( tarraydef(packednode.resultdef).rangedef, tarraydef(packednode.resultdef).rangedef.size, tt_persistent,true); addstatement(loopstatement,loopvar); { For range checking: we have to convert to an integer type (in case the index type } { is an enum), add the index and loop variable together, convert the result } { implicitly to an orddef with range equal to the rangedef to get range checking } { and finally convert it explicitly back to the actual rangedef to avoid type } { errors } temprangedef:=nil; getrange(unpackednode.resultdef,ulorange,uhirange); getrange(packednode.resultdef,plorange,phirange); temprangedef:=torddef.create(torddef(sinttype).ordtype,ulorange,uhirange); sourcevecindex := ctemprefnode.create(loopvar); targetvecindex := ctypeconvnode.create_internal(index.getcopy,sinttype); targetvecindex := caddnode.create(subn,targetvecindex,cordconstnode.create(plorange,sinttype,true)); targetvecindex := caddnode.create(addn,targetvecindex,ctemprefnode.create(loopvar)); targetvecindex := ctypeconvnode.create(targetvecindex,temprangedef); targetvecindex := ctypeconvnode.create_explicit(targetvecindex,tarraydef(unpackednode.resultdef).rangedef); if (inlinenumber = in_pack_x_y_z) then begin { swap source and target vec indices } tempnode := sourcevecindex; sourcevecindex := targetvecindex; targetvecindex := tempnode; end; { create the assignment in the loop body } loopbody := cassignmentnode.create( cvecnode.create(target.getcopy,targetvecindex), cvecnode.create(source.getcopy,sourcevecindex) ); { create the actual for loop } tempnode := cfornode.create( ctemprefnode.create(loopvar), cinlinenode.create(in_low_x,false,packednode.getcopy), cinlinenode.create(in_high_x,false,packednode.getcopy), loopbody, false); addstatement(loopstatement,tempnode); { free the loop counter } addstatement(loopstatement,ctempdeletenode.create(loopvar)); result := loop; end; begin cinlinenode:=tinlinenode; end.