{ Copyright (c) 1998-2002 by Florian Klaempfl, Daniel Mantione Helpers for dealing with subroutine parameters during parsing This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } unit pparautl; {$i fpcdefs.inc} interface uses symconst,symdef; procedure insert_funcret_para(pd:tabstractprocdef); procedure insert_parentfp_para(pd:tabstractprocdef); procedure insert_self_and_vmt_para(pd:tabstractprocdef); procedure insert_funcret_local(pd:tprocdef); procedure insert_hidden_para(p:TObject;arg:pointer); procedure check_c_para(pd:Tabstractprocdef); procedure insert_struct_hidden_paras(astruct: tabstractrecorddef); type // flags of the *handle_calling_convention routines thccflag=( hcc_declaration, // declaration (as opposed to definition, i.e. interface rather than implementation) hcc_check, // perform checks and outup errors if found hcc_insert_hidden_paras // insert hidden parameters ); thccflags=set of thccflag; const hcc_default_actions_intf=[hcc_declaration,hcc_check,hcc_insert_hidden_paras]; hcc_default_actions_intf_struct=hcc_default_actions_intf-[hcc_insert_hidden_paras]; hcc_default_actions_impl=[hcc_check,hcc_insert_hidden_paras]; hcc_default_actions_parse=[hcc_check,hcc_insert_hidden_paras]; PD_VIRTUAL_MUTEXCLPO = [po_interrupt,po_exports,po_overridingmethod,po_inline,po_staticmethod]; procedure handle_calling_convention(pd:tabstractprocdef;flags:thccflags); function proc_add_definition(var currpd:tprocdef):boolean; { create "parent frame pointer" record skeleton for procdef, in which local variables and parameters from pd accessed from nested routines can be stored } procedure build_parentfpstruct(pd: tprocdef); implementation uses globals,globtype,cclasses,cutils,verbose,systems,fmodule, tokens, symtype,symbase,symsym,symtable,symutil,defutil,defcmp,blockutl, {$ifdef jvm} jvmdef, {$endif jvm} node,nbas, aasmbase, paramgr; procedure insert_funcret_para(pd:tabstractprocdef); var storepos : tfileposinfo; vs : tparavarsym; paranr : word; begin if not(pd.proctypeoption in [potype_constructor,potype_destructor]) and not is_void(pd.returndef) and not (df_generic in pd.defoptions) and paramanager.ret_in_param(pd.returndef,pd) then begin storepos:=current_tokenpos; if pd.typ=procdef then current_tokenpos:=tprocdef(pd).fileinfo; {$if defined(i386)} { For left to right add it at the end to be delphi compatible. In the case of safecalls with safecal-exceptions support the funcret-para is (from the 'c'-point of view) a normal parameter which has to be added to the end of the parameter-list } if (pd.proccalloption in (pushleftright_pocalls)) or ((tf_safecall_exceptions in target_info.flags) and (pd.proccalloption=pocall_safecall)) then paranr:=paranr_result_leftright else {$elseif defined(SUPPORT_SAFECALL)} if (tf_safecall_exceptions in target_info.flags) and (pd.proccalloption = pocall_safecall) then paranr:=paranr_result_leftright else {$endif} if is_managed_type(pd.returndef) then paranr:=paranr_result_managed else paranr:=paranr_result; { Generate result variable accessing function result } vs:=cparavarsym.create('$result',paranr,vs_var,pd.returndef,[vo_is_funcret,vo_is_hidden_para]); pd.parast.insert(vs); { Store this symbol as funcretsym for procedures } if pd.typ=procdef then tprocdef(pd).funcretsym:=vs; current_tokenpos:=storepos; end; end; procedure insert_parentfp_para(pd:tabstractprocdef); var storepos : tfileposinfo; vs : tparavarsym; paranr : longint; begin if pd.parast.symtablelevel>normal_function_level then begin storepos:=current_tokenpos; if pd.typ=procdef then current_tokenpos:=tprocdef(pd).fileinfo; { if no support for nested procvars is activated, use the old calling convention to pass the parent frame pointer for backwards compatibility } if not(m_nested_procvars in current_settings.modeswitches) then paranr:=paranr_parentfp { nested procvars require Delphi-style parentfp passing, see po_delphi_nested_cc declaration for more info } {$if defined(i386) or defined(i8086)} else if (pd.proccalloption in pushleftright_pocalls) then paranr:=paranr_parentfp_delphi_cc_leftright {$endif i386 or i8086} else paranr:=paranr_parentfp_delphi_cc; { Generate frame pointer. It can't be put in a register since it must be accessable from nested routines } if not(target_info.system in systems_fpnestedstruct) or { in case of errors or declared procvardef types, prevent invalid type cast and possible nil pointer dereference } not assigned(pd.owner.defowner) or (pd.owner.defowner.typ<>procdef) then begin vs:=cparavarsym.create('$parentfp',paranr,vs_value ,parentfpvoidpointertype,[vo_is_parentfp,vo_is_hidden_para]); end else begin if not assigned(tprocdef(pd.owner.defowner).parentfpstruct) then build_parentfpstruct(tprocdef(pd.owner.defowner)); vs:=cparavarsym.create('$parentfp',paranr,vs_value, tprocdef(pd.owner.defowner).parentfpstructptrtype,[vo_is_parentfp,vo_is_hidden_para]); end; pd.parast.insert(vs); current_tokenpos:=storepos; end; end; procedure insert_self_and_vmt_para(pd:tabstractprocdef); var storepos : tfileposinfo; vs : tparavarsym; hdef : tdef; selfdef : tdef; vsp : tvarspez; aliasvs : tabsolutevarsym; sl : tpropaccesslist; begin if (pd.typ=procdef) and is_objc_class_or_protocol(tprocdef(pd).struct) and (pd.parast.symtablelevel=normal_function_level) then begin { insert Objective-C self and selector parameters } vs:=cparavarsym.create('$_cmd',paranr_objc_cmd,vs_value,objc_seltype,[vo_is_msgsel,vo_is_hidden_para]); pd.parast.insert(vs); { make accessible to code } sl:=tpropaccesslist.create; sl.addsym(sl_load,vs); aliasvs:=cabsolutevarsym.create_ref('_CMD',objc_seltype,sl); include(aliasvs.varoptions,vo_is_msgsel); tlocalsymtable(tprocdef(pd).localst).insert(aliasvs); if (po_classmethod in pd.procoptions) then { compatible with what gcc does } hdef:=objc_idtype else hdef:=tprocdef(pd).struct; vs:=cparavarsym.create('$self',paranr_objc_self,vs_value,hdef,[vo_is_self,vo_is_hidden_para]); pd.parast.insert(vs); end else if (pd.typ=procvardef) and pd.is_methodpointer then begin { Generate self variable } vs:=cparavarsym.create('$self',paranr_self,vs_value,voidpointertype,[vo_is_self,vo_is_hidden_para]); pd.parast.insert(vs); end { while only procvardefs of this type can be declared in Pascal code, internally we also generate procdefs of this type when creating block wrappers } else if (po_is_block in pd.procoptions) then begin { generate the first hidden parameter, which is a so-called "block literal" describing the block and containing its invocation procedure } hdef:=cpointerdef.getreusable(get_block_literal_type_for_proc(pd)); { mark as vo_is_parentfp so that proc2procvar comparisons will succeed when assigning arbitrary routines to the block } vs:=cparavarsym.create('$_block_literal',paranr_blockselfpara,vs_value, hdef,[vo_is_hidden_para,vo_is_parentfp] ); pd.parast.insert(vs); if pd.typ=procdef then begin { make accessible to code } sl:=tpropaccesslist.create; sl.addsym(sl_load,vs); aliasvs:=cabsolutevarsym.create_ref('FPC_BLOCK_SELF',hdef,sl); include(aliasvs.varoptions,vo_is_parentfp); tlocalsymtable(tprocdef(pd).localst).insert(aliasvs); end; end else begin if (pd.typ=procdef) and assigned(tprocdef(pd).struct) and (pd.parast.symtablelevel=normal_function_level) then begin { static class methods have no hidden self/vmt pointer } if pd.no_self_node then exit; storepos:=current_tokenpos; current_tokenpos:=tprocdef(pd).fileinfo; { Generate VMT variable for constructor/destructor } if (pd.proctypeoption in [potype_constructor,potype_destructor]) and not(is_cppclass(tprocdef(pd).struct) or is_record(tprocdef(pd).struct) or is_javaclass(tprocdef(pd).struct) or ( { no vmt for record/type helper constructors } is_objectpascal_helper(tprocdef(pd).struct) and (tobjectdef(tprocdef(pd).struct).extendeddef.typ<>objectdef) )) then begin vs:=cparavarsym.create('$vmt',paranr_vmt,vs_value,cclassrefdef.create(tprocdef(pd).struct),[vo_is_vmt,vo_is_hidden_para]); pd.parast.insert(vs); end; { for helpers the type of Self is equivalent to the extended type or equal to an instance of it } if is_objectpascal_helper(tprocdef(pd).struct) then selfdef:=tobjectdef(tprocdef(pd).struct).extendeddef else if is_objccategory(tprocdef(pd).struct) then selfdef:=tobjectdef(tprocdef(pd).struct).childof else selfdef:=tprocdef(pd).struct; { Generate self variable, for classes we need to use the generic voidpointer to be compatible with methodpointers } vsp:=vs_value; if (po_staticmethod in pd.procoptions) or (po_classmethod in pd.procoptions) then hdef:=cclassrefdef.create(selfdef) else begin if is_object(selfdef) or (selfdef.typ<>objectdef) then vsp:=vs_var; hdef:=selfdef; end; vs:=cparavarsym.create('$self',paranr_self,vsp,hdef,[vo_is_self,vo_is_hidden_para]); pd.parast.insert(vs); current_tokenpos:=storepos; end; end; end; procedure insert_funcret_local(pd:tprocdef); var storepos : tfileposinfo; vs : tlocalvarsym; aliasvs : tabsolutevarsym; sl : tpropaccesslist; hs : string; begin storepos:=current_tokenpos; current_tokenpos:=pd.fileinfo; { The result from constructors and destructors can't be accessed directly } if not(pd.proctypeoption in [potype_constructor,potype_destructor]) and not is_void(pd.returndef) and (not(po_assembler in pd.procoptions) or paramanager.asm_result_var(pd.returndef,pd)) then begin { We need to insert a varsym for the result in the localst when it is returning in a register } { we also need to do this for a generic procdef as we didn't allow the creation of a result symbol in insert_funcret_para, but we need a valid funcretsym } if (df_generic in pd.defoptions) or not paramanager.ret_in_param(pd.returndef,pd) then begin vs:=clocalvarsym.create('$result',vs_value,pd.returndef,[vo_is_funcret]); pd.localst.insert(vs); pd.funcretsym:=vs; end; { insert the name of the procedure as alias for the function result, we can't use realname because that will not work for compilerprocs as the name is lowercase and unreachable from the code } if (pd.proctypeoption<>potype_operator) or assigned(pd.resultname) then begin if assigned(pd.resultname) then hs:=pd.resultname^ else hs:=pd.procsym.name; sl:=tpropaccesslist.create; sl.addsym(sl_load,pd.funcretsym); aliasvs:=cabsolutevarsym.create_ref(hs,pd.returndef,sl); include(aliasvs.varoptions,vo_is_funcret); tlocalsymtable(pd.localst).insert(aliasvs); end; { insert result also if support is on } if (m_result in current_settings.modeswitches) then begin sl:=tpropaccesslist.create; sl.addsym(sl_load,pd.funcretsym); aliasvs:=cabsolutevarsym.create_ref('RESULT',pd.returndef,sl); include(aliasvs.varoptions,vo_is_funcret); include(aliasvs.varoptions,vo_is_result); tlocalsymtable(pd.localst).insert(aliasvs); end; end; if pd.generate_safecall_wrapper then begin { vo_is_funcret is necessary so the local only gets freed after we loaded its value into the return register } vs:=clocalvarsym.create('$safecallresult',vs_value,search_system_type('HRESULT').typedef,[vo_is_funcret]); { do not put this variable in a register. The register which will be bound to this symbol will not be allocated automatically. Which means it will be re-used wich breaks the code. Besides this it is questionable if it is an optimization if one of the registers is kept allocated during the complete function, without ever using it. (It would be better to re-write the safecall-support in such a way that this variable it not needed at all, but that the HRESULT is set when the method is finalized) } vs.varregable:=vr_none; pd.localst.insert(vs); end; current_tokenpos:=storepos; end; procedure insert_hidden_para(p:TObject;arg:pointer); var hvs : tparavarsym; pd : tabstractprocdef absolute arg; begin if (tsym(p).typ<>paravarsym) then exit; with tparavarsym(p) do begin { We need a local copy for a value parameter when only the address is pushed. Open arrays and Array of Const are an exception because they are allocated at runtime and the address that is pushed is patched. Arrays passed to cdecl routines are special: they are pointers in C and hence must be passed as such. Due to historical reasons, if a cdecl routine is implemented in Pascal, we still make a copy on the callee side. Do this the same on platforms that normally must make a copy on the caller side, as otherwise the behaviour will be different (and less perfomant) for routines implemented in C } if (varspez=vs_value) and paramanager.push_addr_param(varspez,vardef,pd.proccalloption) and not(is_open_array(vardef) or is_array_of_const(vardef)) and (not(target_info.system in systems_caller_copy_addr_value_para) or ((pd.proccalloption in cdecl_pocalls) and (vardef.typ=arraydef))) then include(varoptions,vo_has_local_copy); { needs high parameter ? } if paramanager.push_high_param(varspez,vardef,pd.proccalloption) then begin hvs:=cparavarsym.create('$high'+name,paranr+1,vs_const,sizesinttype,[vo_is_high_para,vo_is_hidden_para]); hvs.symoptions:=[]; owner.insert(hvs); { don't place to register if it will be accessed from implicit finally block } if (varspez=vs_value) and is_open_array(vardef) and is_managed_type(vardef) then hvs.varregable:=vr_none; end else begin { Give a warning that cdecl routines does not include high() support } if (pd.proccalloption in cdecl_pocalls) and paramanager.push_high_param(varspez,vardef,pocall_default) then begin if is_open_string(vardef) then MessagePos(fileinfo,parser_w_cdecl_no_openstring); if not(po_external in pd.procoptions) and (pd.typ<>procvardef) and not is_objc_class_or_protocol(tprocdef(pd).struct) then if is_array_of_const(vardef) then MessagePos(fileinfo,parser_e_varargs_need_cdecl_and_external) else MessagePos(fileinfo,parser_w_cdecl_has_no_high); end; if (vardef.typ=formaldef) and (Tformaldef(vardef).typed) then begin hvs:=cparavarsym.create('$typinfo'+name,paranr+1,vs_const,voidpointertype, [vo_is_typinfo_para,vo_is_hidden_para]); owner.insert(hvs); end; end; end; end; procedure check_c_para(pd:Tabstractprocdef); var i, lastparaidx : longint; sym : TSym; begin lastparaidx:=pd.parast.SymList.Count-1; for i:=0 to pd.parast.SymList.Count-1 do begin sym:=tsym(pd.parast.SymList[i]); if (sym.typ=paravarsym) and (tparavarsym(sym).vardef.typ=arraydef) then begin if not is_variant_array(tparavarsym(sym).vardef) and not is_array_of_const(tparavarsym(sym).vardef) and (tparavarsym(sym).varspez<>vs_var) then MessagePos(tparavarsym(sym).fileinfo,parser_h_c_arrays_are_references); if is_array_of_const(tparavarsym(sym).vardef) and (iprocdef then continue; current_filepos:=tprocdef(pd).fileinfo; handle_calling_convention(tprocdef(pd),[hcc_declaration,hcc_insert_hidden_paras]); end; current_filepos:=oldpos; end; procedure set_addr_param_regable(p:TObject;arg:pointer); begin if (tsym(p).typ<>paravarsym) then exit; with tparavarsym(p) do begin if (not needs_finalization) and paramanager.push_addr_param(varspez,vardef,tprocdef(arg).proccalloption) then varregable:=vr_addr; end; end; procedure handle_calling_convention(pd:tabstractprocdef;flags:thccflags); begin if hcc_check in flags then begin { set the default calling convention if none provided } if (pd.typ=procdef) and (is_objc_class_or_protocol(tprocdef(pd).struct) or is_cppclass(tprocdef(pd).struct)) then begin { none of the explicit calling conventions should be allowed } if (po_hascallingconvention in pd.procoptions) then internalerror(2009032501); if is_cppclass(tprocdef(pd).struct) then pd.proccalloption:=pocall_cppdecl else pd.proccalloption:=pocall_cdecl; end else if not(po_hascallingconvention in pd.procoptions) then pd.proccalloption:=current_settings.defproccall else begin if pd.proccalloption=pocall_none then internalerror(200309081); end; { handle proccall specific settings } case pd.proccalloption of pocall_cdecl, pocall_cppdecl, pocall_sysv_abi_cdecl, pocall_ms_abi_cdecl: begin { check C cdecl para types } check_c_para(pd); end; pocall_far16 : begin { Temporary stub, must be rewritten to support OS/2 far16 } Message1(parser_w_proc_directive_ignored,'FAR16'); end; else ; end; { Inlining is enabled and supported? } if (po_inline in pd.procoptions) and not(cs_do_inline in current_settings.localswitches) then begin { Give an error if inline is not supported by the compiler mode, otherwise only give a hint that this procedure will not be inlined } if not(m_default_inline in current_settings.modeswitches) then Message(parser_e_proc_inline_not_supported) else Message(parser_h_inlining_disabled); exclude(pd.procoptions,po_inline); end; { For varargs directive also cdecl and external must be defined } if (po_varargs in pd.procoptions) then begin { check first for external in the interface, if available there then the cdecl must also be there since there is no implementation available to contain it } if hcc_declaration in flags then begin { if external is available, then cdecl must also be available, procvars don't need external } if not((po_external in pd.procoptions) or (pd.typ=procvardef) or { for objcclasses this is checked later, because the entire class may be external. } is_objc_class_or_protocol(tprocdef(pd).struct)) and not(pd.proccalloption in (cdecl_pocalls + [pocall_stdcall])) then Message(parser_e_varargs_need_cdecl_and_external); end else begin { both must be defined now } if not((po_external in pd.procoptions) or (pd.typ=procvardef)) or not(pd.proccalloption in (cdecl_pocalls + [pocall_stdcall])) then Message(parser_e_varargs_need_cdecl_and_external); end; end; end; if hcc_insert_hidden_paras in flags then begin { If the paraloc info has been calculated already, it will be missing for the new parameters we add below. This should never be necessary before we add them, as users of this information would not process these extra parameters in that case } if pd.has_paraloc_info<>callnoside then internalerror(2019031610); { insert hidden high parameters } pd.parast.SymList.ForEachCall(@insert_hidden_para,pd); { insert hidden self parameter } insert_self_and_vmt_para(pd); { insert funcret parameter if required } insert_funcret_para(pd); { Make var parameters regable, this must be done after the calling convention is set. } { this must be done before parentfp is insert, because getting all cases where parentfp must be in a memory location isn't catched properly so we put parentfp never in a register } pd.parast.SymList.ForEachCall(@set_addr_param_regable,pd); { insert parentfp parameter if required } insert_parentfp_para(pd); end; { Calculate parameter tlist } pd.calcparas; end; function proc_add_definition(var currpd:tprocdef):boolean; function check_generic_parameters(fwpd,currpd:tprocdef):boolean; var i : longint; fwsym, currsym : tsym; currtype : ttypesym absolute currsym; fileinfo : tfileposinfo; begin result:=true; if fwpd.genericparas.count<>currpd.genericparas.count then internalerror(2018090101); for i:=0 to fwpd.genericparas.count-1 do begin fwsym:=tsym(fwpd.genericparas[i]); currsym:=tsym(currpd.genericparas[i]); if fwsym.name<>currsym.name then begin messagepos1(currsym.fileinfo,sym_e_generic_type_param_mismatch,currsym.realname); messagepos1(fwsym.fileinfo,sym_e_generic_type_param_decl,fwsym.realname); result:=false; end; if (fwpd.interfacedef or assigned(fwpd.struct)) and ( ((currsym.typ=typesym) and (df_genconstraint in currtype.typedef.defoptions)) or (currsym.typ=constsym) ) then begin if currsym.typ=constsym then fileinfo:=currsym.fileinfo else fileinfo:=tstoreddef(currtype.typedef).genconstraintdata.fileinfo; messagepos(fileinfo,parser_e_generic_constraints_not_allowed_here); result:=false; end; if not fwpd.interfacedef and not assigned(fwpd.struct) and (fwsym.typ=constsym) then begin { without modeswitch RepeatForward we need to check here if the type of the constants match } if (currsym.typ<>constsym) or not equal_defs(tconstsym(fwsym).constdef,tconstsym(currsym).constdef) then begin messagepos1(currpd.fileinfo,parser_e_header_dont_match_forward,currpd.fullprocname(false)); result:=false; end; end; end; end; function equal_generic_procdefs(fwpd,currpd:tprocdef;out sameparas,sameret:boolean):boolean; var i : longint; fwsym, currsym : tsym; currtype : ttypesym absolute currsym; convdummy: tconverttype; pddummy: tprocdef; begin result:=false; sameparas:=false; sameret:=false; if fwpd.genericparas.count<>currpd.genericparas.count then exit; { comparing generic declarations is a bit more cumbersome as the defs of the generic parameter types are not equal, especially if the declaration contains constraints; essentially we have two cases: - proc declared in interface of unit (or in class/record/object) and defined in implementation; here the fwpd might contain constraints while currpd must only contain undefineddefs - forward declaration in implementation: here constraints must be repeated } for i:=0 to fwpd.genericparas.count-1 do begin fwsym:=tsym(fwpd.genericparas[i]); currsym:=tsym(currpd.genericparas[i]); { if the type in the currpd isn't a pure undefineddef (thus there are constraints and the fwpd was declared in the interface, then we can stop right there } if fwpd.interfacedef and ( (currsym.typ=constsym) or ((currsym.typ=typesym) and ( (currtype.typedef.typ<>undefineddef) or (df_genconstraint in currtype.typedef.defoptions) ) ) )then exit; if not fwpd.interfacedef then begin if (fwsym.typ=constsym) and (currsym.typ=constsym) then begin { check whether the constant type for forward functions match } if not equal_defs(tconstsym(fwsym).constdef,tconstsym(currsym).constdef) then exit; end else if (fwsym.typ=constsym) then { if the forward sym is a constant, the implementation needs to be one as well } exit; end; end; if compare_paras(fwpd.paras,currpd.paras,cp_none,[cpo_ignorehidden,cpo_openequalisexact,cpo_ignoreuniv,cpo_generic])<>te_exact then exit; sameparas:=true; if (df_specialization in tstoreddef(fwpd.returndef).defoptions) and (df_specialization in tstoreddef(currpd.returndef).defoptions) then { for specializations we're happy with equal defs instead of exactly the same defs } result:=equal_defs(fwpd.returndef,currpd.returndef) else begin { strictly compare defs using compare_defs_ext, but allow non exactly equal undefineddefs } convdummy:=tc_none; pddummy:=nil; result:=(compare_defs_ext(fwpd.returndef,currpd.returndef,nothingn,convdummy,pddummy,[cdo_allow_variant,cdo_strict_undefined_check])=te_exact) or equal_genfunc_paradefs(fwpd.returndef,currpd.returndef,fwpd.parast,currpd.parast); end; { the result variable is only set depending on the return type, so we can simply use "result" } sameret:=result; end; function equal_signature(fwpd,currpd:tprocdef;out sameparas,sameret:boolean):boolean; begin sameparas:=compare_paras(fwpd.paras,currpd.paras,cp_none,[cpo_ignorehidden,cpo_openequalisexact,cpo_ignoreuniv])=te_exact; sameret:=compare_defs(fwpd.returndef,currpd.returndef,nothingn)=te_exact; result:=sameparas and sameret; end; { Add definition aprocdef to the overloaded definitions of aprocsym. If a forwarddef is found and reused it returns true } var fwpd : tprocdef; currparasym, fwparasym : tsym; currparacnt, fwparacnt, curridx, fwidx, i : longint; po_comp : tprocoptions; paracompopt: tcompare_paras_options; sameparasfound, gensameparas, gensameret, sameparas, sameret, forwardfound : boolean; symentry: TSymEntry; item : tlinkedlistitem; tmpidx: Integer; begin forwardfound:=false; if assigned(currpd.struct) and (currpd.struct.symtable.moduleid<>current_module.moduleid) and not (df_specialization in currpd.defoptions) then begin result:=false; exit; end; sameparasfound:=false; fwpd:=nil; { check overloaded functions if the same function already exists } for i:=0 to tprocsym(currpd.procsym).ProcdefList.Count-1 do begin fwpd:=tprocdef(tprocsym(currpd.procsym).ProcdefList[i]); { can happen for internally generated routines } if (fwpd=currpd) then begin result:=true; exit; end; { Skip overloaded definitions that are declared in other units } if fwpd.procsym<>currpd.procsym then continue; gensameparas:=false; gensameret:=false; sameparas:=false; sameret:=false; { check the parameters, for delphi/tp it is possible to leave the parameters away in the implementation (forwarddef=false). But for an overload declared function this is not allowed } if { check if empty implementation arguments match is allowed } ( not(m_repeat_forward in current_settings.modeswitches) and not(currpd.forwarddef) and is_bareprocdef(currpd) and not(po_overload in fwpd.procoptions) ) or ( fwpd.is_generic and currpd.is_generic and equal_generic_procdefs(fwpd,currpd,gensameparas,gensameret) ) or { check arguments, we need to check only the user visible parameters. The hidden parameters can be in a different location because of the calling convention, eg. L-R vs. R-L order (PFV) don't check default values here, because routines that are the same except for their default values should be reported as mismatches (since you can't overload based on different default parameter values) } ( not fwpd.is_generic and not currpd.is_generic and equal_signature(fwpd,currpd,sameparas,sameret) ) then begin { Check if we've found the forwarddef, if found then we need to update the forward def with the current implementation settings } if fwpd.forwarddef then begin forwardfound:=true; if not(m_repeat_forward in current_settings.modeswitches) and (fwpd.proccalloption<>currpd.proccalloption) then paracompopt:=[cpo_ignorehidden,cpo_comparedefaultvalue,cpo_openequalisexact,cpo_ignoreuniv] else paracompopt:=[cpo_comparedefaultvalue,cpo_openequalisexact,cpo_ignoreuniv]; { Check calling convention } if (fwpd.proccalloption<>currpd.proccalloption) then begin { In delphi it is possible to specify the calling convention in the interface or implementation if there was no convention specified in the other part } if (m_delphi in current_settings.modeswitches) then begin if not(po_hascallingconvention in currpd.procoptions) then currpd.proccalloption:=fwpd.proccalloption else if not(po_hascallingconvention in fwpd.procoptions) then fwpd.proccalloption:=currpd.proccalloption else begin MessagePos(currpd.fileinfo,parser_e_call_convention_dont_match_forward); tprocsym(currpd.procsym).write_parameter_lists(currpd); { restore interface settings } currpd.proccalloption:=fwpd.proccalloption; end; end else begin MessagePos(currpd.fileinfo,parser_e_call_convention_dont_match_forward); tprocsym(currpd.procsym).write_parameter_lists(currpd); { restore interface settings } currpd.proccalloption:=fwpd.proccalloption; end; end; { Check static } if (po_staticmethod in fwpd.procoptions) then begin if not (po_staticmethod in currpd.procoptions) then begin include(currpd.procoptions, po_staticmethod); if (po_classmethod in currpd.procoptions) then begin { remove self from the hidden paras } symentry:=currpd.parast.Find('self'); if symentry<>nil then begin currpd.parast.Delete(symentry); currpd.calcparas; end; end; end; end; { Check if the procedure type and return type are correct, also the parameters must match also with the type and that if the implementation has default parameters, the interface also has them and that if they both have them, that they have the same value } if ((m_repeat_forward in current_settings.modeswitches) or not is_bareprocdef(currpd)) and ( ( fwpd.is_generic and currpd.is_generic and not equal_generic_procdefs(fwpd,currpd,sameparas,sameret) ) or ( ( not fwpd.is_generic or not currpd.is_generic ) and ( (compare_paras(fwpd.paras,currpd.paras,cp_all,paracompopt)<>te_exact) or (compare_defs(fwpd.returndef,currpd.returndef,nothingn)<>te_exact) ) ) ) then begin MessagePos1(currpd.fileinfo,parser_e_header_dont_match_forward, fwpd.fullprocname(false)); tprocsym(currpd.procsym).write_parameter_lists(currpd); break; end; { Check if both are declared forward } if fwpd.forwarddef and currpd.forwarddef then begin MessagePos1(currpd.fileinfo,parser_e_function_already_declared_public_forward, currpd.fullprocname(false)); end; { internconst or internproc only need to be defined once } if (fwpd.proccalloption=pocall_internproc) then currpd.proccalloption:=fwpd.proccalloption else if (currpd.proccalloption=pocall_internproc) then fwpd.proccalloption:=currpd.proccalloption; { Check procedure options, Delphi requires that class is repeated in the implementation for class methods } if (m_fpc in current_settings.modeswitches) then po_comp:=[po_classmethod,po_varargs,po_methodpointer,po_interrupt] else po_comp:=[po_classmethod,po_methodpointer]; if ((po_comp * fwpd.procoptions)<>(po_comp * currpd.procoptions)) or (fwpd.proctypeoption <> currpd.proctypeoption) or { if the implementation version has an "overload" modifier, the interface version must also have it (otherwise we can get annoying crashes due to interface crc changes) } (not(po_overload in fwpd.procoptions) and (po_overload in currpd.procoptions)) or { same with noreturn } (not(po_noreturn in fwpd.procoptions) and (po_noreturn in currpd.procoptions)) then begin MessagePos1(currpd.fileinfo,parser_e_header_dont_match_forward, fwpd.fullprocname(false)); tprocsym(fwpd.procsym).write_parameter_lists(fwpd); { This error is non-fatal, we can recover } end; { Forward declaration is external? } if (po_external in fwpd.procoptions) then MessagePos(currpd.fileinfo,parser_e_proc_already_external); { check for conflicts with "virtual" if this is a virtual method, as "virtual" cannot be repeated in the implementation and hence does not get checked against } if (po_virtualmethod in fwpd.procoptions) then begin po_comp:=currpd.procoptions*PD_VIRTUAL_MUTEXCLPO; if po_comp<>[] then MessagePos2(currpd.fileinfo,parser_e_proc_dir_conflict,tokeninfo^[_VIRTUAL].str,get_first_proc_str(po_comp)); end; { Check parameters } if (m_repeat_forward in current_settings.modeswitches) or (currpd.minparacount>0) then begin { If mangled names are equal then they have the same amount of arguments } { We can check the names of the arguments } { both symtables are in the same order from left to right } curridx:=0; fwidx:=0; currparacnt:=currpd.parast.SymList.Count; fwparacnt:=fwpd.parast.SymList.Count; repeat { skip default parameter constsyms } while (curridxparavarsym) do inc(curridx); while (fwidxparavarsym) do inc(fwidx); { stop when one of the two lists is at the end } if (fwidx>=fwparacnt) or (curridx>=currparacnt) then break; { compare names of parameters, ignore implictly renamed parameters } currparasym:=tsym(currpd.parast.SymList[curridx]); fwparasym:=tsym(fwpd.parast.SymList[fwidx]); if not(sp_implicitrename in currparasym.symoptions) and not(sp_implicitrename in fwparasym.symoptions) then begin if (currparasym.name<>fwparasym.name) then begin MessagePos3(currpd.fileinfo,parser_e_header_different_var_names, tprocsym(currpd.procsym).realname,fwparasym.realname,currparasym.realname); break; end; end; { next parameter } inc(curridx); inc(fwidx); until false; end; { check that the type parameter names for generic methods match; we check this here and not in equal_generic_procdefs as the defs might still be different due to their parameters, so we'd generate errors without any need } if currpd.is_generic and fwpd.is_generic then { an error here is recoverable, so we simply continue } check_generic_parameters(fwpd,currpd); { Everything is checked, now we can update the forward declaration with the new data from the implementation } fwpd.forwarddef:=currpd.forwarddef; fwpd.hasforward:=true; fwpd.procoptions:=fwpd.procoptions+currpd.procoptions; { marked as local but exported from unit? } if (po_kylixlocal in fwpd.procoptions) and (fwpd.owner.symtabletype=globalsymtable) then MessagePos(fwpd.fileinfo,type_e_cant_export_local); if fwpd.extnumber=$ffff then fwpd.extnumber:=currpd.extnumber; while not currpd.aliasnames.empty do fwpd.aliasnames.insert(currpd.aliasnames.getfirst); { update fileinfo so position references the implementation, also update funcretsym if it is already generated } fwpd.fileinfo:=currpd.fileinfo; if assigned(fwpd.funcretsym) then fwpd.funcretsym.fileinfo:=currpd.fileinfo; if assigned(currpd.deprecatedmsg) then begin stringdispose(fwpd.deprecatedmsg); fwpd.deprecatedmsg:=stringdup(currpd.deprecatedmsg^); end; { import names } if assigned(currpd.import_dll) then begin stringdispose(fwpd.import_dll); fwpd.import_dll:=stringdup(currpd.import_dll^); end; if assigned(currpd.import_name) then begin stringdispose(fwpd.import_name); fwpd.import_name:=stringdup(currpd.import_name^); end; fwpd.import_nr:=currpd.import_nr; { for compilerproc defines we need to rename and update the symbolname to lowercase so users can' access it (can't do it immediately, because then the implementation symbol won't be matched) } if po_compilerproc in fwpd.procoptions then begin fwpd.setcompilerprocname; current_module.add_public_asmsym(fwpd.procsym.realname,AB_GLOBAL,AT_FUNCTION); end; if po_public in fwpd.procoptions then begin item:=fwpd.aliasnames.first; while assigned(item) do begin current_module.add_public_asmsym(TCmdStrListItem(item).str,AB_GLOBAL,AT_FUNCTION); item:=item.next; end; end; { Release current procdef } currpd.owner.deletedef(currpd); { this prevents a dangling pointer and use after free } tmpidx:=current_module.deflist.IndexOfItem(currpd,FromEnd); if tmpidx<>-1 then current_module.deflist[tmpidx]:=nil; currpd:=fwpd; end else begin { abstract methods aren't forward defined, but this } { needs another error message } if (po_abstractmethod in fwpd.procoptions) then MessagePos(currpd.fileinfo,parser_e_abstract_no_definition) else begin MessagePos(currpd.fileinfo,parser_e_overloaded_have_same_parameters); tprocsym(currpd.procsym).write_parameter_lists(currpd); end; end; { we found one proc with the same arguments, there are no others so we can stop } break; end; { check for allowing overload directive } if not(m_fpc in current_settings.modeswitches) then begin { overload directive turns on overloading } if ((po_overload in currpd.procoptions) or (po_overload in fwpd.procoptions)) then begin { check if all procs have overloading, but not if the proc is a method or already declared forward, then the check is already done } if not(fwpd.hasforward or assigned(currpd.struct) or (currpd.forwarddef<>fwpd.forwarddef) or ((po_overload in currpd.procoptions) and (po_overload in fwpd.procoptions))) then begin MessagePos1(currpd.fileinfo,parser_e_no_overload_for_all_procs,currpd.procsym.realname); break; end end else begin if not(fwpd.forwarddef) then begin if (m_tp7 in current_settings.modeswitches) then MessagePos(currpd.fileinfo,parser_e_procedure_overloading_is_off) else MessagePos1(currpd.fileinfo,parser_e_no_overload_for_all_procs,currpd.procsym.realname); break; end; end; end; { equal arguments } { we found a match with the same parameter signature, but mismatching return types; complain about that, but only once we've checked for a forward to improve error recovery } if (sameparas and not sameret and { ensure that specifiers are the same as well } (compare_paras(fwpd.paras,currpd.paras,cp_all,[cpo_ignorehidden,cpo_openequalisexact,cpo_ignoreuniv])=te_exact) ) or (gensameparas and not gensameret) then sameparasfound:=true; end; if sameparasfound and not (currpd.proctypeoption=potype_operator) and ( { allow overloads with different result types for external java classes as Java supports covariant return types when implementing interfaces and e.g. AbstractStringBuilder uses that } not assigned(currpd.struct) or not is_java_class_or_interface(currpd.struct) or not (oo_is_external in tobjectdef(currpd.struct).objectoptions) ) then begin MessagePos(currpd.fileinfo,parser_e_overloaded_have_same_parameters); tprocsym(currpd.procsym).write_parameter_lists(currpd); end; { if we didn't reuse a forwarddef then we add the procdef to the overloaded list } if not forwardfound then begin { can happen in Delphi mode } if (currpd.proctypeoption = potype_function) and is_void(currpd.returndef) then MessagePos1(currpd.fileinfo,parser_e_no_funcret_specified,currpd.procsym.realname); tprocsym(currpd.procsym).ProcdefList.Add(currpd); if not currpd.forwarddef and (po_public in currpd.procoptions) then begin item:=currpd.aliasnames.first; while assigned(item) do begin current_module.add_public_asmsym(TCmdStrListItem(item).str,AB_GLOBAL,AT_FUNCTION); item:=item.next; end; end; end; proc_add_definition:=forwardfound; end; procedure build_parentfpstruct(pd: tprocdef); var nestedvars: tsym; nestedvarsst: tsymtable; pnestedvarsdef, nestedvarsdef: tdef; old_symtablestack: tsymtablestack; begin { make sure the defs are not registered in the current symtablestack, because they may be for a parent procdef (changeowner does remove a def from the symtable in which it was originally created, so that by itself is not enough) } old_symtablestack:=symtablestack; symtablestack:=old_symtablestack.getcopyuntil(current_module.localsymtable); { create struct to hold local variables and parameters that are accessed from within nested routines (start with extra dollar to prevent the JVM from thinking this is a nested class in the unit) } nestedvarsst:=trecordsymtable.create('$'+current_module.realmodulename^+'$$_fpc_nestedvars$'+pd.unique_id_str, current_settings.alignment.localalignmax,current_settings.alignment.localalignmin); nestedvarsdef:=crecorddef.create(nestedvarsst.name^,nestedvarsst); {$ifdef jvm} maybe_guarantee_record_typesym(nestedvarsdef,nestedvarsdef.owner); { don't add clone/FpcDeepCopy, because the field names are not all representable in source form and we don't need them anyway } symtablestack.push(trecorddef(nestedvarsdef).symtable); maybe_add_public_default_java_constructor(trecorddef(nestedvarsdef)); insert_struct_hidden_paras(trecorddef(nestedvarsdef)); symtablestack.pop(trecorddef(nestedvarsdef).symtable); {$endif} symtablestack.free; symtablestack:=old_symtablestack.getcopyuntil(pd.localst); pnestedvarsdef:=cpointerdef.getreusable(nestedvarsdef); if not(po_assembler in pd.procoptions) then begin nestedvars:=clocalvarsym.create('$nestedvars',vs_var,nestedvarsdef,[]); include(nestedvars.symoptions,sp_internal); pd.localst.insert(nestedvars); pd.parentfpstruct:=nestedvars; pd.parentfpinitblock:=cblocknode.create(nil); end; symtablestack.free; pd.parentfpstructptrtype:=pnestedvarsdef; symtablestack:=old_symtablestack; end; end.