{ Copyright (c) 1998-2002 by Florian Klaempfl This unit implements the base class for the register allocator This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } {$i fpcdefs.inc} { Allow duplicate allocations, can be used to get the .s file written } { $define ALLOWDUPREG} unit rgobj; interface uses cutils, cpubase, aasmbase,aasmtai,aasmcpu, cclasses,globtype,cgbase,cgutils, cpuinfo ; type { The interference bitmap contains of 2 layers: layer 1 - 256*256 blocks with pointers to layer 2 blocks layer 2 - blocks of 32*256 (32 bytes = 256 bits) } Tinterferencebitmap2 = array[byte] of set of byte; Pinterferencebitmap2 = ^Tinterferencebitmap2; Tinterferencebitmap1 = array[byte] of Pinterferencebitmap2; pinterferencebitmap1 = ^tinterferencebitmap1; Tinterferencebitmap=class private maxx1, maxy1 : byte; fbitmap : pinterferencebitmap1; function getbitmap(x,y:tsuperregister):boolean; procedure setbitmap(x,y:tsuperregister;b:boolean); public constructor create; destructor destroy;override; property bitmap[x,y:tsuperregister]:boolean read getbitmap write setbitmap;default; end; Tmovelistheader=record count, maxcount, sorted_until : cardinal; end; Tmovelist=record header : Tmovelistheader; data : array[tsuperregister] of Tlinkedlistitem; end; Pmovelist=^Tmovelist; {In the register allocator we keep track of move instructions. These instructions are moved between five linked lists. There is also a linked list per register to keep track about the moves it is associated with. Because we need to determine quickly in which of the five lists it is we add anu enumeradtion to each move instruction.} Tmoveset=(ms_coalesced_moves,ms_constrained_moves,ms_frozen_moves, ms_worklist_moves,ms_active_moves); Tmoveins=class(Tlinkedlistitem) moveset:Tmoveset; x,y:Tsuperregister; end; Treginfoflag=(ri_coalesced,ri_selected); Treginfoflagset=set of Treginfoflag; Treginfo=record live_start, live_end : Tai; subreg : tsubregister; alias : Tsuperregister; { The register allocator assigns each register a colour } colour : Tsuperregister; movelist : Pmovelist; adjlist : Psuperregisterworklist; degree : TSuperregister; flags : Treginfoflagset; end; Preginfo=^TReginfo; tspillreginfo = record spillreg : tregister; orgreg : tsuperregister; tempreg : tregister; regread,regwritten, mustbespilled: boolean; end; tspillregsinfo = array[0..2] of tspillreginfo; {#------------------------------------------------------------------ This class implements the default register allocator. It is used by the code generator to allocate and free registers which might be valid across nodes. It also contains utility routines related to registers. Some of the methods in this class should be overriden by cpu-specific implementations. --------------------------------------------------------------------} trgobj=class preserved_by_proc : tcpuregisterset; used_in_proc : tcpuregisterset; constructor create(Aregtype:Tregistertype; Adefaultsub:Tsubregister; const Ausable:array of tsuperregister; Afirst_imaginary:Tsuperregister; Apreserved_by_proc:Tcpuregisterset); destructor destroy;override; {# Allocate a register. An internalerror will be generated if there is no more free registers which can be allocated.} function getregister(list:Taasmoutput;subreg:Tsubregister):Tregister;virtual; {# Get the register specified.} procedure getcpuregister(list:Taasmoutput;r:Tregister);virtual; procedure ungetcpuregister(list:Taasmoutput;r:Tregister);virtual; {# Get multiple registers specified.} procedure alloccpuregisters(list:Taasmoutput;const r:Tcpuregisterset);virtual; {# Free multiple registers specified.} procedure dealloccpuregisters(list:Taasmoutput;const r:Tcpuregisterset);virtual; function uses_registers:boolean;virtual; procedure add_reg_instruction(instr:Tai;r:tregister); procedure add_move_instruction(instr:Taicpu); {# Do the register allocation.} procedure do_register_allocation(list:Taasmoutput;headertai:tai);virtual; { Adds an interference edge. don't move this to the protected section, the arm cg requires to access this (FK) } procedure add_edge(u,v:Tsuperregister); protected regtype : Tregistertype; { default subregister used } defaultsub : tsubregister; live_registers:Tsuperregisterworklist; { can be overriden to add cpu specific interferences } procedure add_cpu_interferences(p : tai);virtual; procedure add_constraints(reg:Tregister);virtual; function getregisterinline(list:Taasmoutput;subreg:Tsubregister):Tregister; procedure ungetregisterinline(list:Taasmoutput;r:Tregister); function get_spill_subreg(r : tregister) : tsubregister;virtual; function do_spill_replace(list:Taasmoutput;instr:taicpu;orgreg:tsuperregister;const spilltemp:treference):boolean;virtual; procedure do_spill_read(list:Taasmoutput;pos:tai;const spilltemp:treference;tempreg:tregister);virtual; procedure do_spill_written(list:Taasmoutput;pos:tai;const spilltemp:treference;tempreg:tregister);virtual; function instr_spill_register(list:Taasmoutput; instr:taicpu; const r:Tsuperregisterset; const spilltemplist:Tspill_temp_list): boolean;virtual; private do_extend_live_range_backwards: boolean; {# First imaginary register.} first_imaginary : Tsuperregister; {# Highest register allocated until now.} reginfo : PReginfo; maxreginfo, maxreginfoinc, maxreg : Tsuperregister; usable_registers_cnt : word; usable_registers : array[0..maxcpuregister-1] of tsuperregister; ibitmap : Tinterferencebitmap; spillednodes, simplifyworklist, freezeworklist, spillworklist, coalescednodes, selectstack : tsuperregisterworklist; worklist_moves, active_moves, frozen_moves, coalesced_moves, constrained_moves : Tlinkedlist; extended_backwards, backwards_was_first : tsuperregisterset; {$ifdef EXTDEBUG} procedure writegraph(loopidx:longint); {$endif EXTDEBUG} {# Disposes of the reginfo array.} procedure dispose_reginfo; {# Prepare the register colouring.} procedure prepare_colouring; {# Clean up after register colouring.} procedure epilogue_colouring; {# Colour the registers; that is do the register allocation.} procedure colour_registers; procedure insert_regalloc_info(list:Taasmoutput;u:tsuperregister); procedure insert_regalloc_info_all(list:Taasmoutput); procedure generate_interference_graph(list:Taasmoutput;headertai:tai); procedure translate_registers(list:Taasmoutput); function spill_registers(list:Taasmoutput;headertai:tai):boolean;virtual; function getnewreg(subreg:tsubregister):tsuperregister; procedure add_edges_used(u:Tsuperregister); procedure add_to_movelist(u:Tsuperregister;data:Tlinkedlistitem); function move_related(n:Tsuperregister):boolean; procedure make_work_list; procedure sort_simplify_worklist; procedure enable_moves(n:Tsuperregister); procedure decrement_degree(m:Tsuperregister); procedure simplify; function get_alias(n:Tsuperregister):Tsuperregister; procedure add_worklist(u:Tsuperregister); function adjacent_ok(u,v:Tsuperregister):boolean; function conservative(u,v:Tsuperregister):boolean; procedure combine(u,v:Tsuperregister); procedure coalesce; procedure freeze_moves(u:Tsuperregister); procedure freeze; procedure select_spill; procedure assign_colours; procedure clear_interferences(u:Tsuperregister); procedure set_live_range_backwards(b: boolean); public property extend_live_range_backwards: boolean read do_extend_live_range_backwards write set_live_range_backwards; end; const first_reg = 0; last_reg = high(tsuperregister)-1; maxspillingcounter = 20; implementation uses systems, globals,verbose,tgobj,procinfo; procedure sort_movelist(ml:Pmovelist); {Ok, sorting pointers is silly, but it does the job to make Trgobj.combine faster.} var h,i,p:word; t:Tlinkedlistitem; begin with ml^ do begin if header.count<2 then exit; p:=1; while 2*p0 do begin for h:=p to header.count-1 do begin i:=h; t:=data[i]; repeat if ptrint(data[i-p])<=ptrint(t) then break; data[i]:=data[i-p]; dec(i,p); until imaxx1) then exit; page:=fbitmap[x shr 8,y shr 8]; result:=assigned(page) and ((x and $ff) in page^[y and $ff]); end; procedure tinterferencebitmap.setbitmap(x,y:tsuperregister;b:boolean); var x1,y1 : byte; begin x1:=x shr 8; y1:=y shr 8; if x1>maxx1 then begin reallocmem(fbitmap,sizeof(tinterferencebitmap1)*(x1+1)); fillchar(fbitmap[maxx1+1],sizeof(tinterferencebitmap1)*(x1-maxx1),0); maxx1:=x1; end; if not assigned(fbitmap[x1,y1]) then begin if y1>maxy1 then maxy1:=y1; new(fbitmap[x1,y1]); fillchar(fbitmap[x1,y1]^,sizeof(tinterferencebitmap2),0); end; if b then include(fbitmap[x1,y1]^[y and $ff],(x and $ff)) else exclude(fbitmap[x1,y1]^[y and $ff],(x and $ff)); end; {****************************************************************************** trgobj ******************************************************************************} constructor trgobj.create(Aregtype:Tregistertype; Adefaultsub:Tsubregister; const Ausable:array of tsuperregister; Afirst_imaginary:Tsuperregister; Apreserved_by_proc:Tcpuregisterset); var i : Tsuperregister; begin { empty super register sets can cause very strange problems } if high(Ausable)=0 then internalerror(200210181); extend_live_range_backwards := false; first_imaginary:=Afirst_imaginary; maxreg:=Afirst_imaginary; regtype:=Aregtype; defaultsub:=Adefaultsub; preserved_by_proc:=Apreserved_by_proc; used_in_proc:=[]; live_registers.init; { Get reginfo for CPU registers } maxreginfo:=first_imaginary; maxreginfoinc:=16; worklist_moves:=Tlinkedlist.create; reginfo:=allocmem(first_imaginary*sizeof(treginfo)); for i:=0 to first_imaginary-1 do begin reginfo[i].degree:=high(tsuperregister); reginfo[i].alias:=RS_INVALID; end; { Usable registers } fillchar(usable_registers,sizeof(usable_registers),0); for i:=low(Ausable) to high(Ausable) do usable_registers[i]:=Ausable[i]; usable_registers_cnt:=high(Ausable)+1; { Initialize Worklists } spillednodes.init; simplifyworklist.init; freezeworklist.init; spillworklist.init; coalescednodes.init; selectstack.init; end; destructor trgobj.destroy; begin spillednodes.done; simplifyworklist.done; freezeworklist.done; spillworklist.done; coalescednodes.done; selectstack.done; live_registers.done; worklist_moves.free; dispose_reginfo; end; procedure Trgobj.dispose_reginfo; var i:Tsuperregister; begin if reginfo<>nil then begin for i:=0 to maxreg-1 do with reginfo[i] do begin if adjlist<>nil then dispose(adjlist,done); if movelist<>nil then dispose(movelist); end; freemem(reginfo); reginfo:=nil; end; end; function trgobj.getnewreg(subreg:tsubregister):tsuperregister; var oldmaxreginfo : tsuperregister; begin result:=maxreg; inc(maxreg); if maxreg>=last_reg then Message(parser_f_too_complex_proc); if maxreg>=maxreginfo then begin oldmaxreginfo:=maxreginfo; { Prevent overflow } if maxreginfoinc>last_reg-maxreginfo then maxreginfo:=last_reg else begin inc(maxreginfo,maxreginfoinc); if maxreginfoinc<256 then maxreginfoinc:=maxreginfoinc*2; end; reallocmem(reginfo,maxreginfo*sizeof(treginfo)); { Do we really need it to clear it ? At least for 1.0.x (PFV) } fillchar(reginfo[oldmaxreginfo],(maxreginfo-oldmaxreginfo)*sizeof(treginfo),0); end; reginfo[result].subreg:=subreg; end; function trgobj.getregister(list:Taasmoutput;subreg:Tsubregister):Tregister; begin {$ifdef EXTDEBUG} if reginfo=nil then InternalError(2004020901); {$endif EXTDEBUG} if defaultsub=R_SUBNONE then result:=newreg(regtype,getnewreg(R_SUBNONE),R_SUBNONE) else result:=newreg(regtype,getnewreg(subreg),subreg); end; function trgobj.uses_registers:boolean; begin result:=(maxreg>first_imaginary); end; procedure trgobj.ungetcpuregister(list:Taasmoutput;r:Tregister); begin if (getsupreg(r)>=first_imaginary) then InternalError(2004020901); list.concat(Tai_regalloc.dealloc(r,nil)); end; procedure trgobj.getcpuregister(list:Taasmoutput;r:Tregister); var supreg:Tsuperregister; begin supreg:=getsupreg(r); if supreg>=first_imaginary then internalerror(2003121503); include(used_in_proc,supreg); list.concat(Tai_regalloc.alloc(r,nil)); end; procedure trgobj.alloccpuregisters(list:Taasmoutput;const r:Tcpuregisterset); var i:Tsuperregister; begin for i:=0 to first_imaginary-1 do if i in r then getcpuregister(list,newreg(regtype,i,defaultsub)); end; procedure trgobj.dealloccpuregisters(list:Taasmoutput;const r:Tcpuregisterset); var i:Tsuperregister; begin for i:=0 to first_imaginary-1 do if i in r then ungetcpuregister(list,newreg(regtype,i,defaultsub)); end; procedure trgobj.do_register_allocation(list:Taasmoutput;headertai:tai); var spillingcounter:byte; endspill:boolean; begin { Insert regalloc info for imaginary registers } insert_regalloc_info_all(list); ibitmap:=tinterferencebitmap.create; generate_interference_graph(list,headertai); { Don't do the real allocation when -sr is passed } if (cs_no_regalloc in aktglobalswitches) then exit; {Do register allocation.} spillingcounter:=0; repeat prepare_colouring; colour_registers; epilogue_colouring; endspill:=true; if spillednodes.length<>0 then begin inc(spillingcounter); if spillingcounter>maxspillingcounter then begin {$ifdef EXTDEBUG} { Only exit here so the .s file is still generated. Assembling the file will still trigger an error } exit; {$else} internalerror(200309041); {$endif} end; endspill:=not spill_registers(list,headertai); end; until endspill; ibitmap.free; translate_registers(list); dispose_reginfo; end; procedure trgobj.add_constraints(reg:Tregister); begin end; procedure trgobj.add_edge(u,v:Tsuperregister); {This procedure will add an edge to the virtual interference graph.} procedure addadj(u,v:Tsuperregister); begin with reginfo[u] do begin if adjlist=nil then new(adjlist,init); adjlist^.add(v); end; end; begin if (u<>v) and not(ibitmap[v,u]) then begin ibitmap[v,u]:=true; ibitmap[u,v]:=true; {Precoloured nodes are not stored in the interference graph.} if (u>=first_imaginary) then addadj(u,v); if (v>=first_imaginary) then addadj(v,u); end; end; procedure trgobj.add_edges_used(u:Tsuperregister); var i:word; begin with live_registers do if length>0 then for i:=0 to length-1 do add_edge(u,get_alias(buf^[i])); end; {$ifdef EXTDEBUG} procedure trgobj.writegraph(loopidx:longint); {This procedure writes out the current interference graph in the register allocator.} var f:text; i,j:Tsuperregister; begin assign(f,'igraph'+tostr(loopidx)); rewrite(f); writeln(f,'Interference graph'); writeln(f); write(f,' '); for i:=0 to 15 do for j:=0 to 15 do write(f,hexstr(i,1)); writeln(f); write(f,' '); for i:=0 to 15 do write(f,'0123456789ABCDEF'); writeln(f); for i:=0 to maxreg-1 do begin write(f,hexstr(i,2):4); for j:=0 to maxreg-1 do if ibitmap[i,j] then write(f,'*') else write(f,'-'); writeln(f); end; close(f); end; {$endif EXTDEBUG} procedure trgobj.add_to_movelist(u:Tsuperregister;data:Tlinkedlistitem); begin with reginfo[u] do begin if movelist=nil then begin getmem(movelist,sizeof(tmovelistheader)+60*sizeof(pointer)); movelist^.header.maxcount:=60; movelist^.header.count:=0; movelist^.header.sorted_until:=0; end else begin if movelist^.header.count>=movelist^.header.maxcount then begin movelist^.header.maxcount:=movelist^.header.maxcount*2; reallocmem(movelist,sizeof(tmovelistheader)+movelist^.header.maxcount*sizeof(pointer)); end; end; movelist^.data[movelist^.header.count]:=data; inc(movelist^.header.count); end; end; procedure trgobj.set_live_range_backwards(b: boolean); begin if (b) then begin { new registers may be allocated } supregset_reset(extended_backwards,false,high(tsuperregister)); supregset_reset(backwards_was_first,false,high(tsuperregister)); do_extend_live_range_backwards := true; end else do_extend_live_range_backwards := false; end; procedure trgobj.add_reg_instruction(instr:Tai;r:tregister); var supreg : tsuperregister; begin supreg:=getsupreg(r); {$ifdef extdebug} if supreg>=maxreginfo then internalerror(200411061); {$endif extdebug} if supreg>=first_imaginary then with reginfo[supreg] do begin if not(extend_live_range_backwards) then begin if not assigned(live_start) then live_start:=instr; live_end:=instr; end else begin if not supregset_in(extended_backwards,supreg) then begin supregset_include(extended_backwards,supreg); live_start := instr; if not assigned(live_end) then begin supregset_include(backwards_was_first,supreg); live_end := instr; end; end else begin if supregset_in(backwards_was_first,supreg) then live_end := instr; end end end; end; procedure trgobj.add_move_instruction(instr:Taicpu); {This procedure notifies a certain as a move instruction so the register allocator can try to eliminate it.} var i:Tmoveins; ssupreg,dsupreg:Tsuperregister; begin {$ifdef extdebug} if (instr.oper[O_MOV_SOURCE]^.typ<>top_reg) or (instr.oper[O_MOV_DEST]^.typ<>top_reg) then internalerror(200311291); {$endif} i:=Tmoveins.create; i.moveset:=ms_worklist_moves; worklist_moves.insert(i); ssupreg:=getsupreg(instr.oper[O_MOV_SOURCE]^.reg); add_to_movelist(ssupreg,i); dsupreg:=getsupreg(instr.oper[O_MOV_DEST]^.reg); if ssupreg<>dsupreg then {Avoid adding the same move instruction twice to a single register.} add_to_movelist(dsupreg,i); i.x:=ssupreg; i.y:=dsupreg; end; function trgobj.move_related(n:Tsuperregister):boolean; var i:cardinal; begin move_related:=false; with reginfo[n] do if movelist<>nil then with movelist^ do for i:=0 to header.count-1 do if Tmoveins(data[i]).moveset in [ms_worklist_moves,ms_active_moves] then begin move_related:=true; break; end; end; procedure Trgobj.sort_simplify_worklist; {Sorts the simplifyworklist by the number of interferences the registers in it cause. This allows simplify to execute in constant time.} var p,h,i,leni,lent:word; t:Tsuperregister; adji,adjt:Psuperregisterworklist; begin with simplifyworklist do begin if length<2 then exit; p:=1; while 2*p0 do begin for h:=p to length-1 do begin i:=h; t:=buf^[i]; adjt:=reginfo[buf^[i]].adjlist; lent:=0; if adjt<>nil then lent:=adjt^.length; repeat adji:=reginfo[buf^[i-p]].adjlist; leni:=0; if adji<>nil then leni:=adji^.length; if leni<=lent then break; buf^[i]:=buf^[i-p]; dec(i,p) until i=usable_registers_cnt then spillworklist.add(n) else if move_related(n) then freezeworklist.add(n) else simplifyworklist.add(n); end; sort_simplify_worklist; end; procedure trgobj.prepare_colouring; begin make_work_list; active_moves:=Tlinkedlist.create; frozen_moves:=Tlinkedlist.create; coalesced_moves:=Tlinkedlist.create; constrained_moves:=Tlinkedlist.create; selectstack.clear; end; procedure trgobj.enable_moves(n:Tsuperregister); var m:Tlinkedlistitem; i:cardinal; begin with reginfo[n] do if movelist<>nil then for i:=0 to movelist^.header.count-1 do begin m:=movelist^.data[i]; if Tmoveins(m).moveset in [ms_worklist_moves,ms_active_moves] then if Tmoveins(m).moveset=ms_active_moves then begin {Move m from the set active_moves to the set worklist_moves.} active_moves.remove(m); Tmoveins(m).moveset:=ms_worklist_moves; worklist_moves.concat(m); end; end; end; procedure Trgobj.decrement_degree(m:Tsuperregister); var adj : Psuperregisterworklist; n : tsuperregister; d,i : word; begin with reginfo[m] do begin d:=degree; if d=0 then internalerror(200312151); dec(degree); if d=usable_registers_cnt then begin {Enable moves for m.} enable_moves(m); {Enable moves for adjacent.} adj:=adjlist; if adj<>nil then for i:=1 to adj^.length do begin n:=adj^.buf^[i-1]; if reginfo[n].flags*[ri_selected,ri_coalesced]<>[] then enable_moves(n); end; {Remove the node from the spillworklist.} if not spillworklist.delete(m) then internalerror(200310145); if move_related(m) then freezeworklist.add(m) else simplifyworklist.add(m); end; end; end; procedure trgobj.simplify; var adj : Psuperregisterworklist; m,n : Tsuperregister; i : word; begin {We take the element with the least interferences out of the simplifyworklist. Since the simplifyworklist is now sorted, we no longer need to search, but we can simply take the first element.} m:=simplifyworklist.get; {Push it on the selectstack.} selectstack.add(m); with reginfo[m] do begin include(flags,ri_selected); adj:=adjlist; end; if adj<>nil then for i:=1 to adj^.length do begin n:=adj^.buf^[i-1]; if (n>=first_imaginary) and (reginfo[n].flags*[ri_selected,ri_coalesced]=[]) then decrement_degree(n); end; end; function trgobj.get_alias(n:Tsuperregister):Tsuperregister; begin while ri_coalesced in reginfo[n].flags do n:=reginfo[n].alias; get_alias:=n; end; procedure trgobj.add_worklist(u:Tsuperregister); begin if (u>=first_imaginary) and (not move_related(u)) and (reginfo[u].degreenil then for i:=1 to adj^.length do begin n:=adj^.buf^[i-1]; if (flags*[ri_coalesced,ri_selected]=[]) and not ok(n,u) then begin adjacent_ok:=false; break; end; end; end; end; function trgobj.conservative(u,v:Tsuperregister):boolean; var adj : Psuperregisterworklist; done : Tsuperregisterset; {To prevent that we count nodes twice.} i,k:word; n : tsuperregister; begin k:=0; supregset_reset(done,false,maxreg); with reginfo[u] do begin adj:=adjlist; if adj<>nil then for i:=1 to adj^.length do begin n:=adj^.buf^[i-1]; if flags*[ri_coalesced,ri_selected]=[] then begin supregset_include(done,n); if reginfo[n].degree>=usable_registers_cnt then inc(k); end; end; end; adj:=reginfo[v].adjlist; if adj<>nil then for i:=1 to adj^.length do begin n:=adj^.buf^[i-1]; if not supregset_in(done,n) and (reginfo[n].degree>=usable_registers_cnt) and (reginfo[u].flags*[ri_coalesced,ri_selected]=[]) then inc(k); end; conservative:=(k0 then repeat i:=(p+q) shr 1; if ptrint(searched)>ptrint(reginfo[u].movelist^.data[i]) then p:=i+1 else q:=i; until p=q; with reginfo[u].movelist^ do if searched<>data[i] then begin {Linear search the unsorted part of the list.} for i:=header.sorted_until+1 to header.count-1 do if searched=data[i] then goto l1; {Not found -> add} add_to_movelist(u,searched); l1: end; end; end; end; enable_moves(v); adj:=reginfo[v].adjlist; if adj<>nil then for i:=1 to adj^.length do begin t:=adj^.buf^[i-1]; with reginfo[t] do if not(ri_coalesced in flags) then begin {t has a connection to v. Since we are adding v to u, we need to connect t to u. However, beware if t was already connected to u...} if (ibitmap[t,u]) and not (ri_selected in flags) then {... because in that case, we are actually removing an edge and the degree of t decreases.} decrement_degree(t) else begin add_edge(t,u); {We have added an edge to t and u. So their degree increases. However, v is added to u. That means its neighbours will no longer point to v, but to u instead. Therefore, only the degree of u increases.} if (u>=first_imaginary) and not (ri_selected in flags) then inc(reginfo[u].degree); end; end; end; if (reginfo[u].degree>=usable_registers_cnt) and freezeworklist.delete(u) then spillworklist.add(u); end; procedure trgobj.coalesce; var m:Tmoveins; x,y,u,v:Tsuperregister; begin m:=Tmoveins(worklist_moves.getfirst); x:=get_alias(m.x); y:=get_alias(m.y); if (y=first_imaginary) and conservative(u,v)) then begin m.moveset:=ms_coalesced_moves; {Move coalesced!} coalesced_moves.insert(m); combine(u,v); add_worklist(u); end else begin m.moveset:=ms_active_moves; active_moves.insert(m); end; end; procedure trgobj.freeze_moves(u:Tsuperregister); var i:cardinal; m:Tlinkedlistitem; v,x,y:Tsuperregister; begin if reginfo[u].movelist<>nil then for i:=0 to reginfo[u].movelist^.header.count-1 do begin m:=reginfo[u].movelist^.data[i]; if Tmoveins(m).moveset in [ms_worklist_moves,ms_active_moves] then begin x:=Tmoveins(m).x; y:=Tmoveins(m).y; if get_alias(y)=get_alias(u) then v:=get_alias(x) else v:=get_alias(y); {Move m from active_moves/worklist_moves to frozen_moves.} if Tmoveins(m).moveset=ms_active_moves then active_moves.remove(m) else worklist_moves.remove(m); Tmoveins(m).moveset:=ms_frozen_moves; frozen_moves.insert(m); if (v>=first_imaginary) and not(move_related(v)) and (reginfo[v].degree0} for i:=0 to length-1 do begin adj:=reginfo[buf^[i]].adjlist; if assigned(adj) and (adj^.length>max) then begin p:=i; max:=adj^.length; end; end; n:=buf^[p]; deleteidx(p); end; simplifyworklist.add(n); freeze_moves(n); end; procedure trgobj.assign_colours; {Assign_colours assigns the actual colours to the registers.} var adj : Psuperregisterworklist; i,j,k : word; n,a,c : Tsuperregister; colourednodes : Tsuperregisterset; adj_colours:set of 0..255; found : boolean; begin spillednodes.clear; {Reset colours} for n:=0 to maxreg-1 do reginfo[n].colour:=n; {Colour the cpu registers...} supregset_reset(colourednodes,false,maxreg); for n:=0 to first_imaginary-1 do supregset_include(colourednodes,n); {Now colour the imaginary registers on the select-stack.} for i:=selectstack.length downto 1 do begin n:=selectstack.buf^[i-1]; {Create a list of colours that we cannot assign to n.} adj_colours:=[]; adj:=reginfo[n].adjlist; if adj<>nil then for j:=0 to adj^.length-1 do begin a:=get_alias(adj^.buf^[j]); if supregset_in(colourednodes,a) and (reginfo[a].colour<=255) then include(adj_colours,reginfo[a].colour); end; if regtype=R_INTREGISTER then include(adj_colours,RS_STACK_POINTER_REG); {Assume a spill by default...} found:=false; {Search for a colour not in this list.} for k:=0 to usable_registers_cnt-1 do begin c:=usable_registers[k]; if not(c in adj_colours) then begin reginfo[n].colour:=c; found:=true; supregset_include(colourednodes,n); include(used_in_proc,c); break; end; end; if not found then spillednodes.add(n); end; {Finally colour the nodes that were coalesced.} for i:=1 to coalescednodes.length do begin n:=coalescednodes.buf^[i-1]; k:=get_alias(n); reginfo[n].colour:=reginfo[k].colour; if reginfo[k].colour0 then simplify else if not(worklist_moves.empty) then coalesce else if freezeworklist.length<>0 then freeze else if spillworklist.length<>0 then select_spill; until (simplifyworklist.length=0) and worklist_moves.empty and (freezeworklist.length=0) and (spillworklist.length=0); assign_colours; end; procedure trgobj.epilogue_colouring; var i : Tsuperregister; begin worklist_moves.clear; active_moves.destroy; active_moves:=nil; frozen_moves.destroy; frozen_moves:=nil; coalesced_moves.destroy; coalesced_moves:=nil; constrained_moves.destroy; constrained_moves:=nil; for i:=0 to maxreg-1 do with reginfo[i] do if movelist<>nil then begin dispose(movelist); movelist:=nil; end; end; procedure trgobj.clear_interferences(u:Tsuperregister); {Remove node u from the interference graph and remove all collected move instructions it is associated with.} var i : word; v : Tsuperregister; adj,adj2 : Psuperregisterworklist; begin adj:=reginfo[u].adjlist; if adj<>nil then begin for i:=1 to adj^.length do begin v:=adj^.buf^[i-1]; {Remove (u,v) and (v,u) from bitmap.} ibitmap[u,v]:=false; ibitmap[v,u]:=false; {Remove (v,u) from adjacency list.} adj2:=reginfo[v].adjlist; if adj2<>nil then begin adj2^.delete(u); if adj2^.length=0 then begin dispose(adj2,done); reginfo[v].adjlist:=nil; end; end; end; {Remove ( u,* ) from adjacency list.} dispose(adj,done); reginfo[u].adjlist:=nil; end; end; function trgobj.getregisterinline(list:Taasmoutput;subreg:Tsubregister):Tregister; var p : Tsuperregister; begin p:=getnewreg(subreg); live_registers.add(p); result:=newreg(regtype,p,subreg); add_edges_used(p); add_constraints(result); end; procedure trgobj.ungetregisterinline(list:Taasmoutput;r:Tregister); var supreg:Tsuperregister; begin supreg:=getsupreg(r); live_registers.delete(supreg); insert_regalloc_info(list,supreg); end; procedure trgobj.insert_regalloc_info(list:Taasmoutput;u:tsuperregister); var p : tai; r : tregister; palloc, pdealloc : tai_regalloc; begin { Insert regallocs for all imaginary registers } with reginfo[u] do begin r:=newreg(regtype,u,subreg); if assigned(live_start) then begin { Generate regalloc and bind it to an instruction, this is needed to find all live registers belonging to an instruction during the spilling } if live_start.typ=ait_instruction then palloc:=tai_regalloc.alloc(r,live_start) else palloc:=tai_regalloc.alloc(r,nil); if live_end.typ=ait_instruction then pdealloc:=tai_regalloc.dealloc(r,live_end) else pdealloc:=tai_regalloc.dealloc(r,nil); { Insert live start allocation before the instruction/reg_a_sync } list.insertbefore(palloc,live_start); { Insert live end deallocation before reg allocations to reduce conflicts } p:=live_end; while assigned(p) and assigned(p.previous) and (tai(p.previous).typ=ait_regalloc) and (tai_regalloc(p.previous).ratype=ra_alloc) and (tai_regalloc(p.previous).reg<>r) do p:=tai(p.previous); { , but add release after a reg_a_sync } if assigned(p) and (p.typ=ait_regalloc) and (tai_regalloc(p).ratype=ra_sync) then p:=tai(p.next); if assigned(p) then list.insertbefore(pdealloc,p) else list.concat(pdealloc); end {$ifdef EXTDEBUG} else Comment(V_Warning,'Register '+std_regname(r)+' not used'); {$endif EXTDEBUG} end; end; procedure trgobj.insert_regalloc_info_all(list:Taasmoutput); var supreg : tsuperregister; begin { Insert regallocs for all imaginary registers } for supreg:=first_imaginary to maxreg-1 do insert_regalloc_info(list,supreg); end; procedure trgobj.add_cpu_interferences(p : tai); begin end; procedure trgobj.generate_interference_graph(list:Taasmoutput;headertai:tai); var p : tai; {$ifdef EXTDEBUG} i : integer; {$endif EXTDEBUG} supreg : tsuperregister; begin { All allocations are available. Now we can generate the interference graph. Walk through all instructions, we can start with the headertai, because before the header tai is only symbols. } live_registers.clear; p:=headertai; while assigned(p) do begin if p.typ=ait_regalloc then with Tai_regalloc(p) do begin if (getregtype(reg)=regtype) then begin supreg:=getsupreg(reg); case ratype of ra_alloc : begin live_registers.add(supreg); add_edges_used(supreg); end; ra_dealloc : begin live_registers.delete(supreg); add_edges_used(supreg); end; end; { constraints needs always to be updated } add_constraints(reg); end; end; add_cpu_interferences(p); p:=Tai(p.next); end; {$ifdef EXTDEBUG} if live_registers.length>0 then begin for i:=0 to live_registers.length-1 do begin { Only report for imaginary registers } if live_registers.buf^[i]>=first_imaginary then Comment(V_Warning,'Register '+std_regname(newreg(R_INTREGISTER,live_registers.buf^[i],defaultsub))+' not released'); end; end; {$endif} end; procedure Trgobj.translate_registers(list:taasmoutput); var hp,p,q:Tai; i:shortint; {$ifdef arm} so:pshifterop; {$endif arm} begin { Leave when no imaginary registers are used } if maxreg<=first_imaginary then exit; p:=Tai(list.first); while assigned(p) do begin case p.typ of ait_regalloc: with Tai_regalloc(p) do begin if (getregtype(reg)=regtype) then begin { Only alloc/dealloc is needed for the optimizer, remove other regalloc } if not(ratype in [ra_alloc,ra_dealloc]) then begin q:=Tai(next); list.remove(p); p.free; p:=q; continue; end else begin setsupreg(reg,reginfo[getsupreg(reg)].colour); { Remove sequences of release and allocation of the same register like. Other combinations of release/allocate need to stay in the list. # Register X released # Register X allocated } if assigned(previous) and (ratype=ra_alloc) and (Tai(previous).typ=ait_regalloc) and (Tai_regalloc(previous).reg=reg) and (Tai_regalloc(previous).ratype=ra_dealloc) then begin q:=Tai(next); hp:=tai(previous); list.remove(hp); hp.free; list.remove(p); p.free; p:=q; continue; end; end; end; end; ait_instruction: with Taicpu(p) do begin aktfilepos:=fileinfo; for i:=0 to ops-1 do with oper[i]^ do case typ of Top_reg: if (getregtype(reg)=regtype) then setsupreg(reg,reginfo[getsupreg(reg)].colour); Top_ref: begin if regtype in [R_INTREGISTER,R_ADDRESSREGISTER] then with ref^ do begin if base<>NR_NO then setsupreg(base,reginfo[getsupreg(base)].colour); if index<>NR_NO then setsupreg(index,reginfo[getsupreg(index)].colour); end; end; {$ifdef arm} Top_shifterop: begin if regtype=R_INTREGISTER then begin so:=shifterop; if so^.rs<>NR_NO then setsupreg(so^.rs,reginfo[getsupreg(so^.rs)].colour); end; end; {$endif arm} end; { Maybe the operation can be removed when it is a move and both arguments are the same } if is_same_reg_move(regtype) then begin q:=Tai(p.next); list.remove(p); p.free; p:=q; continue; end; end; end; p:=Tai(p.next); end; aktfilepos:=current_procinfo.exitpos; end; function trgobj.spill_registers(list:Taasmoutput;headertai:tai):boolean; { Returns true if any help registers have been used } var i : word; t : tsuperregister; p,q : Tai; regs_to_spill_set:Tsuperregisterset; spill_temps : ^Tspill_temp_list; supreg : tsuperregister; templist : taasmoutput; begin spill_registers:=false; live_registers.clear; for i:=first_imaginary to maxreg-1 do exclude(reginfo[i].flags,ri_selected); spill_temps:=allocmem(sizeof(treference)*maxreg); supregset_reset(regs_to_spill_set,false,$ffff); { Allocate temps and insert in front of the list } templist:=taasmoutput.create; {Safe: this procedure is only called if there are spilled nodes.} with spillednodes do for i:=0 to length-1 do begin t:=buf^[i]; {Alternative representation.} supregset_include(regs_to_spill_set,t); {Clear all interferences of the spilled register.} clear_interferences(t); {Get a temp for the spilled register, the size must at least equal a complete register, take also care of the fact that subreg can be larger than a single register like doubles that occupy 2 registers } tg.gettemp(templist, max(tcgsize2size[reg_cgsize(newreg(regtype,t,R_SUBWHOLE))], tcgsize2size[reg_cgsize(newreg(regtype,t,reginfo[t].subreg))]), tt_noreuse,spill_temps^[t]); end; list.insertlistafter(headertai,templist); templist.free; { Walk through all instructions, we can start with the headertai, because before the header tai is only symbols } p:=headertai; while assigned(p) do begin case p.typ of ait_regalloc: with Tai_regalloc(p) do begin if (getregtype(reg)=regtype) then begin {A register allocation of a spilled register can be removed.} supreg:=getsupreg(reg); if supregset_in(regs_to_spill_set,supreg) then begin q:=Tai(p.next); list.remove(p); p.free; p:=q; continue; end else begin case ratype of ra_alloc : live_registers.add(supreg); ra_dealloc : live_registers.delete(supreg); end; end; end; end; ait_instruction: with Taicpu(p) do begin aktfilepos:=fileinfo; if instr_spill_register(list,taicpu(p),regs_to_spill_set,spill_temps^) then spill_registers:=true; end; end; p:=Tai(p.next); end; aktfilepos:=current_procinfo.exitpos; {Safe: this procedure is only called if there are spilled nodes.} with spillednodes do for i:=0 to length-1 do tg.ungettemp(list,spill_temps^[buf^[i]]); freemem(spill_temps); end; function trgobj.do_spill_replace(list:Taasmoutput;instr:taicpu;orgreg:tsuperregister;const spilltemp:treference):boolean; begin result:=false; end; procedure Trgobj.do_spill_read(list:Taasmoutput;pos:tai;const spilltemp:treference;tempreg:tregister); begin list.insertafter(spilling_create_load(spilltemp,tempreg),pos); end; procedure Trgobj.do_spill_written(list:Taasmoutput;pos:tai;const spilltemp:treference;tempreg:tregister); begin list.insertafter(spilling_create_store(tempreg,spilltemp),pos); end; function trgobj.get_spill_subreg(r : tregister) : tsubregister; begin result:=defaultsub; end; function trgobj.instr_spill_register(list:Taasmoutput; instr:taicpu; const r:Tsuperregisterset; const spilltemplist:Tspill_temp_list): boolean; var counter, regindex: longint; regs: tspillregsinfo; spilled: boolean; procedure addreginfo(reg: tregister; operation: topertype); var i, tmpindex: longint; supreg : tsuperregister; begin tmpindex := regindex; supreg:=getsupreg(reg); { did we already encounter this register? } for i := 0 to pred(regindex) do if (regs[i].orgreg = supreg) then begin tmpindex := i; break; end; if tmpindex > high(regs) then internalerror(2003120301); regs[tmpindex].orgreg := supreg; regs[tmpindex].spillreg:=reg; if supregset_in(r,supreg) then begin { add/update info on this register } regs[tmpindex].mustbespilled := true; case operation of operand_read: regs[tmpindex].regread := true; operand_write: regs[tmpindex].regwritten := true; operand_readwrite: begin regs[tmpindex].regread := true; regs[tmpindex].regwritten := true; end; end; spilled := true; end; inc(regindex,ord(regindex=tmpindex)); end; procedure tryreplacereg(var reg: tregister); var i: longint; supreg: tsuperregister; begin supreg:=getsupreg(reg); for i:=0 to pred(regindex) do if (regs[i].mustbespilled) and (regs[i].orgreg=supreg) then begin { Only replace supreg } setsupreg(reg,getsupreg(regs[i].tempreg)); break; end; end; var loadpos, storepos : tai; oldlive_registers : tsuperregisterworklist; begin result := false; fillchar(regs,sizeof(regs),0); for counter := low(regs) to high(regs) do regs[counter].orgreg := RS_INVALID; spilled := false; regindex := 0; { check whether and if so which and how (read/written) this instructions contains registers that must be spilled } for counter := 0 to instr.ops-1 do with instr.oper[counter]^ do begin case typ of top_reg: begin if (getregtype(reg) = regtype) then addreginfo(reg,instr.spilling_get_operation_type(counter)); end; top_ref: begin if regtype in [R_INTREGISTER,R_ADDRESSREGISTER] then with ref^ do begin if (base <> NR_NO) then addreginfo(base,instr.spilling_get_operation_type_ref(counter,base)); if (index <> NR_NO) then addreginfo(index,instr.spilling_get_operation_type_ref(counter,index)); end; end; {$ifdef ARM} top_shifterop: begin if regtype in [R_INTREGISTER,R_ADDRESSREGISTER] then if shifterop^.rs<>NR_NO then addreginfo(shifterop^.rs,operand_read); end; {$endif ARM} end; end; { if no spilling for this instruction we can leave } if not spilled then exit; {$ifdef x86} { Try replacing the register with the spilltemp. This is usefull only for the i386,x86_64 that support memory locations for several instructions } for counter := 0 to pred(regindex) do with regs[counter] do begin if mustbespilled then begin if do_spill_replace(list,instr,orgreg,spilltemplist[orgreg]) then mustbespilled:=false; end; end; {$endif x86} { There are registers that need are spilled. We generate the following code for it. The used positions where code need to be inserted are marked using #. Note that code is always inserted before the positions using pos.previous. This way the position is always the same since pos doesn't change, but pos.previous is modified everytime new code is inserted. [ - reg_allocs load spills - load spills ] [#loadpos - reg_deallocs - reg_allocs ] [ - reg_deallocs for load-only spills - reg_allocs for store-only spills ] [#instr - original instruction ] [ - store spills - reg_deallocs store spills ] [#storepos ] } result := true; oldlive_registers.copyfrom(live_registers); { Process all tai_regallocs belonging to this instruction, ignore explicit inserted regallocs. These can happend for example in i386: mov ref,ireg26 lea [ireg26+ireg17],edi All released registers are also added to the live_registers because they can't be used during the spilling } loadpos:=tai(instr.previous); while assigned(loadpos) and (loadpos.typ=ait_regalloc) and ((tai_regalloc(loadpos).instr=nil) or (tai_regalloc(loadpos).instr=instr)) do begin { Only add deallocs belonging to the instruction. Explicit inserted deallocs belong to the previous instruction and not the current instruction } if (tai_regalloc(loadpos).instr=instr) and (tai_regalloc(loadpos).ratype=ra_dealloc) then live_registers.add(getsupreg(tai_regalloc(loadpos).reg)); loadpos:=tai(loadpos.previous); end; loadpos:=tai(loadpos.next); { Load the spilled registers } for counter := 0 to pred(regindex) do with regs[counter] do begin if mustbespilled and regread then begin tempreg:=getregisterinline(list,get_spill_subreg(regs[counter].spillreg)); do_spill_read(list,tai(loadpos.previous),spilltemplist[orgreg],tempreg); end; end; { Release temp registers of read-only registers, and add reference of the instruction to the reginfo } for counter := 0 to pred(regindex) do with regs[counter] do begin if mustbespilled and regread and (not regwritten) then begin { The original instruction will be the next that uses this register } add_reg_instruction(instr,tempreg); ungetregisterinline(list,tempreg); end; end; { Allocate temp registers of write-only registers, and add reference of the instruction to the reginfo } for counter := 0 to pred(regindex) do with regs[counter] do begin if mustbespilled and regwritten then begin { When the register is also loaded there is already a register assigned } if (not regread) then tempreg:=getregisterinline(list,get_spill_subreg(regs[counter].spillreg)); { The original instruction will be the next that uses this register, this also needs to be done for read-write registers } add_reg_instruction(instr,tempreg); end; end; { store the spilled registers } storepos:=tai(instr.next); for counter := 0 to pred(regindex) do with regs[counter] do begin if mustbespilled and regwritten then begin do_spill_written(list,tai(storepos.previous),spilltemplist[orgreg],tempreg); ungetregisterinline(list,tempreg); end; end; { now all spilling code is generated we can restore the live registers. This must be done after the store because the store can need an extra register that also needs to conflict with the registers of the instruction } live_registers.done; live_registers:=oldlive_registers; { substitute registers } for counter:=0 to instr.ops-1 do with instr.oper[counter]^ do begin case typ of top_reg: begin if (getregtype(reg) = regtype) then tryreplacereg(reg); end; top_ref: begin if regtype in [R_INTREGISTER,R_ADDRESSREGISTER] then begin tryreplacereg(ref^.base); tryreplacereg(ref^.index); end; end; {$ifdef ARM} top_shifterop: begin if regtype in [R_INTREGISTER,R_ADDRESSREGISTER] then tryreplacereg(shifterop^.rs); end; {$endif ARM} end; end; end; end.