{ Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman Contains the base types for the i8086, i386 and x86-64 architecture * This code was inspired by the NASM sources The Netwide Assembler is Copyright (c) 1996 Simon Tatham and Julian Hall. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } {# Base unit for processor information. This unit contains enumerations of registers, opcodes, sizes, and other such things which are processor specific. } unit cpubase; {$i fpcdefs.inc} interface uses globals, cgbase ; {***************************************************************************** Assembler Opcodes *****************************************************************************} type {$if defined(x86_64)} TAsmOp={$i x8664op.inc} {$elseif defined(i386)} TAsmOp={$i i386op.inc} {$elseif defined(i8086)} TAsmOp={$i i8086op.inc} {$endif} { This should define the array of instructions as string } op2strtable=array[tasmop] of string[16]; {$ifdef i8086} ImmInt = SmallInt; {$else i8086} ImmInt = Longint; {$endif i8086} const { First value of opcode enumeration } firstop = low(tasmop); { Last value of opcode enumeration } lastop = high(tasmop); {***************************************************************************** Registers *****************************************************************************} const { Integer Super registers } RS_NO = $ffffffff; RS_RAX = $00; {EAX} RS_RCX = $01; {ECX} RS_RDX = $02; {EDX} RS_RBX = $03; {EBX} RS_RSI = $04; {ESI} RS_RDI = $05; {EDI} RS_RBP = $06; {EBP} RS_RSP = $07; {ESP} RS_R8 = $08; {R8} RS_R9 = $09; {R9} RS_R10 = $0a; {R10} RS_R11 = $0b; {R11} RS_R12 = $0c; {R12} RS_R13 = $0d; {R13} RS_R14 = $0e; {R14} RS_R15 = $0f; {R15} { create aliases to allow code sharing between x86-64 and i386 } RS_EAX = RS_RAX; RS_EBX = RS_RBX; RS_ECX = RS_RCX; RS_EDX = RS_RDX; RS_ESI = RS_RSI; RS_EDI = RS_RDI; RS_EBP = RS_RBP; RS_ESP = RS_RSP; { create aliases to allow code sharing between i386 and i8086 } RS_AX = RS_RAX; RS_BX = RS_RBX; RS_CX = RS_RCX; RS_DX = RS_RDX; RS_SI = RS_RSI; RS_DI = RS_RDI; RS_BP = RS_RBP; RS_SP = RS_RSP; { Number of first imaginary register } first_int_imreg = $10; { Float Super registers } RS_ST0 = $00; RS_ST1 = $01; RS_ST2 = $02; RS_ST3 = $03; RS_ST4 = $04; RS_ST5 = $05; RS_ST6 = $06; RS_ST7 = $07; RS_ST = $08; { Number of first imaginary register } first_fpu_imreg = $09; { MM Super registers } RS_XMM0 = $00; RS_XMM1 = $01; RS_XMM2 = $02; RS_XMM3 = $03; RS_XMM4 = $04; RS_XMM5 = $05; RS_XMM6 = $06; RS_XMM7 = $07; RS_XMM8 = $08; RS_XMM9 = $09; RS_XMM10 = $0a; RS_XMM11 = $0b; RS_XMM12 = $0c; RS_XMM13 = $0d; RS_XMM14 = $0e; RS_XMM15 = $0f; RS_XMM16 = $10; RS_XMM17 = $11; RS_XMM18 = $12; RS_XMM19 = $13; RS_XMM20 = $14; RS_XMM21 = $15; RS_XMM22 = $16; RS_XMM23 = $17; RS_XMM24 = $18; RS_XMM25 = $19; RS_XMM26 = $1a; RS_XMM27 = $1b; RS_XMM28 = $1c; RS_XMM29 = $1d; RS_XMM30 = $1e; RS_XMM31 = $1f; {$if defined(x86_64)} RS_RFLAGS = $06; {$elseif defined(i386)} RS_EFLAGS = $06; {$elseif defined(i8086)} RS_FLAGS = $06; {$endif} { Number of first imaginary register } {$ifdef x86_64} first_mm_imreg = $10; {$else x86_64} first_mm_imreg = $08; {$endif x86_64} { The subregister that specifies the entire register and an address } {$if defined(x86_64)} { Hammer } R_SUBWHOLE = R_SUBQ; R_SUBADDR = R_SUBQ; {$elseif defined(i386)} { i386 } R_SUBWHOLE = R_SUBD; R_SUBADDR = R_SUBD; {$elseif defined(i8086)} { i8086 } R_SUBWHOLE = R_SUBW; R_SUBADDR = R_SUBW; {$endif} { Available Registers } {$if defined(x86_64)} {$i r8664con.inc} {$elseif defined(i386)} {$i r386con.inc} {$elseif defined(i8086)} {$i r8086con.inc} {$endif} type { Number of registers used for indexing in tables } {$if defined(x86_64)} tregisterindex=0..{$i r8664nor.inc}-1; {$elseif defined(i386)} tregisterindex=0..{$i r386nor.inc}-1; {$elseif defined(i8086)} tregisterindex=0..{$i r8086nor.inc}-1; {$endif} const regnumber_table : array[tregisterindex] of tregister = ( {$if defined(x86_64)} {$i r8664num.inc} {$elseif defined(i386)} {$i r386num.inc} {$elseif defined(i8086)} {$i r8086num.inc} {$endif} ); regstabs_table : array[tregisterindex] of shortint = ( {$if defined(x86_64)} {$i r8664stab.inc} {$elseif defined(i386)} {$i r386stab.inc} {$elseif defined(i8086)} {$i r8086stab.inc} {$endif} ); regdwarf_table : array[tregisterindex] of shortint = ( {$if defined(x86_64)} {$i r8664dwrf.inc} {$elseif defined(i386)} {$i r386dwrf.inc} {$elseif defined(i8086)} {$i r8086dwrf.inc} {$endif} ); {$if defined(x86_64)} RS_DEFAULTFLAGS = RS_RFLAGS; NR_DEFAULTFLAGS = NR_RFLAGS; {$elseif defined(i386)} RS_DEFAULTFLAGS = RS_EFLAGS; NR_DEFAULTFLAGS = NR_EFLAGS; {$elseif defined(i8086)} RS_DEFAULTFLAGS = RS_FLAGS; NR_DEFAULTFLAGS = NR_FLAGS; {$endif} {***************************************************************************** Conditions *****************************************************************************} type TAsmCond=(C_None, C_A,C_AE,C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_NA,C_NAE, C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_NO,C_NP, C_NS,C_NZ,C_O,C_P,C_PE,C_PO,C_S,C_Z ); const cond2str:array[TAsmCond] of string[3]=('', 'a','ae','b','be','c','e','g','ge','l','le','na','nae', 'nb','nbe','nc','ne','ng','nge','nl','nle','no','np', 'ns','nz','o','p','pe','po','s','z' ); {***************************************************************************** Flags *****************************************************************************} type TResFlags = (F_E,F_NE,F_G,F_L,F_GE,F_LE,F_C,F_NC, F_A,F_AE,F_B,F_BE, F_S,F_NS,F_O,F_NO, { For IEEE-compliant floating-point compares, same as normal counterparts but additionally check PF } F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE); const FPUFlags = [F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE]; FPUFlags2Flags: array[F_FE..F_FBE] of TResFlags = ( F_E,F_NE,F_A,F_AE,F_B,F_BE ); {***************************************************************************** Constants *****************************************************************************} const { declare aliases } LOC_SSEREGISTER = LOC_MMREGISTER; LOC_CSSEREGISTER = LOC_CMMREGISTER; max_operands = 4; maxfpuregs = 8; {***************************************************************************** CPU Dependent Constants *****************************************************************************} {$i cpubase.inc} const {$ifdef x86_64} topsize2memsize: array[topsize] of integer = (0, 8,16,32,64,8,8,16,8,16,32, 16,32,64, 16,32,64,0,0, 64, 0,0,0, 80, 128, 256, 512 ); {$else} topsize2memsize: array[topsize] of integer = (0, 8,16,32,64,8,8,16, 16,32,64, 16,32,64,0,0, 64, 0,0,0, 80, 128, 256, 512 ); {$endif} {***************************************************************************** Helpers *****************************************************************************} function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister; function reg2opsize(r:Tregister):topsize; function reg_cgsize(const reg: tregister): tcgsize; function is_calljmp(o:tasmop):boolean; procedure inverse_flags(var f: TResFlags); function flags_to_cond(const f: TResFlags) : TAsmCond; function is_segment_reg(r:tregister):boolean; function findreg_by_number(r:Tregister):tregisterindex; function std_regnum_search(const s:string):Tregister; function std_regname(r:Tregister):string; function dwarf_reg(r:tregister):shortint; function dwarf_reg_no_error(r:tregister):shortint; function eh_return_data_regno(nr: longint): longint; function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE} function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE} { Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" } function condition_in(const Subset, c: TAsmCond): Boolean; { checks whether two segment registers are normally equal in the current memory model } function segment_regs_equal(r1,r2:tregister):boolean; { checks whether the specified op is an x86 string instruction (e.g. cmpsb, movsd, scasw, etc.) } function is_x86_string_op(op: TAsmOp): boolean; { checks whether the specified op is an x86 parameterless string instruction (e.g. returns true for movsb, cmpsw, etc, but returns false for movs, cmps, etc.) } function is_x86_parameterless_string_op(op: TAsmOp): boolean; { checks whether the specified op is an x86 parameterized string instruction (e.g. returns true for movs, cmps, etc, but returns false for movsb, cmpsb, etc.) } function is_x86_parameterized_string_op(op: TAsmOp): boolean; function x86_parameterized_string_op_param_count(op: TAsmOp): shortint; function x86_param2paramless_string_op(op: TAsmOp): TAsmOp; function get_x86_string_op_size(op: TAsmOp): TOpSize; { returns the 0-based operand number (intel syntax) of the ds:[si] param of a x86 string instruction } function get_x86_string_op_si_param(op: TAsmOp):shortint; { returns the 0-based operand number (intel syntax) of the es:[di] param of a x86 string instruction } function get_x86_string_op_di_param(op: TAsmOp):shortint; {$ifdef i8086} { return whether we need to add an extra FWAIT instruction before the given instruction, when we're targeting the i8087. This includes almost all x87 instructions, but certain ones, which always have or have not a built in FWAIT prefix are excluded (e.g. FINIT,FNINIT,etc.). } function requires_fwait_on_8087(op: TAsmOp): boolean; {$endif i8086} implementation uses globtype, rgbase,verbose; const {$if defined(x86_64)} std_regname_table : TRegNameTable = ( {$i r8664std.inc} ); regnumber_index : array[tregisterindex] of tregisterindex = ( {$i r8664rni.inc} ); std_regname_index : array[tregisterindex] of tregisterindex = ( {$i r8664sri.inc} ); {$elseif defined(i386)} std_regname_table : TRegNameTable = ( {$i r386std.inc} ); regnumber_index : array[tregisterindex] of tregisterindex = ( {$i r386rni.inc} ); std_regname_index : array[tregisterindex] of tregisterindex = ( {$i r386sri.inc} ); {$elseif defined(i8086)} std_regname_table : TRegNameTable = ( {$i r8086std.inc} ); regnumber_index : array[tregisterindex] of tregisterindex = ( {$i r8086rni.inc} ); std_regname_index : array[tregisterindex] of tregisterindex = ( {$i r8086sri.inc} ); {$endif} {***************************************************************************** Helpers *****************************************************************************} function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister; begin case s of OS_8,OS_S8: cgsize2subreg:=R_SUBL; OS_16,OS_S16: cgsize2subreg:=R_SUBW; OS_32,OS_S32: cgsize2subreg:=R_SUBD; OS_64,OS_S64: cgsize2subreg:=R_SUBQ; OS_M64: cgsize2subreg:=R_SUBNONE; OS_F32,OS_F64,OS_C64: case regtype of R_FPUREGISTER: cgsize2subreg:=R_SUBWHOLE; R_MMREGISTER: case s of OS_F32: cgsize2subreg:=R_SUBMMS; OS_F64: cgsize2subreg:=R_SUBMMD; else internalerror(2009071901); end; else internalerror(2009071902); end; OS_M128: cgsize2subreg:=R_SUBMMX; OS_M256: cgsize2subreg:=R_SUBMMY; OS_M512: cgsize2subreg:=R_SUBMMZ; OS_NO: { error message should have been thrown already before, so avoid only an internal error } cgsize2subreg:=R_SUBNONE; else internalerror(200301231); end; end; function reg_cgsize(const reg: tregister): tcgsize; const subreg2cgsize:array[Tsubregister] of Tcgsize = (OS_NO,OS_8,OS_8,OS_16,OS_32,OS_64,OS_NO,OS_NO,OS_NO,OS_F32,OS_F64,OS_NO,OS_M128,OS_M256,OS_M512,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO); begin case getregtype(reg) of R_INTREGISTER : reg_cgsize:=subreg2cgsize[getsubreg(reg)]; R_FPUREGISTER : reg_cgsize:=OS_F80; R_MMXREGISTER: reg_cgsize:=OS_M64; R_MMREGISTER: reg_cgsize:=subreg2cgsize[getsubreg(reg)]; R_SPECIALREGISTER : case reg of NR_CS,NR_DS,NR_ES,NR_SS,NR_FS,NR_GS: reg_cgsize:=OS_16; {$ifdef x86_64} NR_DR0..NR_TR7: reg_cgsize:=OS_64; {$endif x86_64} else reg_cgsize:=OS_32 end; R_ADDRESSREGISTER: case reg of NR_K0..NR_K7: reg_cgsize:=OS_64; else internalerror(2003031801); end; else internalerror(2003031801); end; end; function reg2opsize(r:Tregister):topsize; const subreg2opsize : array[tsubregister] of topsize = (S_NO,S_B,S_B,S_W,S_L,S_Q,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO); begin reg2opsize:=S_L; case getregtype(r) of R_INTREGISTER : reg2opsize:=subreg2opsize[getsubreg(r)]; R_FPUREGISTER : reg2opsize:=S_FL; R_MMXREGISTER, R_MMREGISTER : reg2opsize:=S_MD; R_SPECIALREGISTER : begin case r of NR_CS,NR_DS,NR_ES, NR_SS,NR_FS,NR_GS : reg2opsize:=S_W; else ; end; end; else internalerror(200303181); end; end; function is_calljmp(o:tasmop):boolean; begin case o of A_CALL, {$if defined(i386) or defined(i8086)} A_JCXZ, {$endif defined(i386) or defined(i8086)} A_JECXZ, {$ifdef x86_64} A_JRCXZ, {$endif x86_64} A_JMP, A_LOOP, A_LOOPE, A_LOOPNE, A_LOOPNZ, A_LOOPZ, A_LCALL, A_LJMP, A_Jcc : is_calljmp:=true; else is_calljmp:=false; end; end; procedure inverse_flags(var f: TResFlags); const inv_flags: array[TResFlags] of TResFlags = (F_NE,F_E,F_LE,F_GE,F_L,F_G,F_NC,F_C, F_BE,F_B,F_AE,F_A, F_NS,F_S,F_NO,F_O, F_FNE,F_FE,F_FBE,F_FB,F_FAE,F_FA); begin f:=inv_flags[f]; end; function flags_to_cond(const f: TResFlags) : TAsmCond; const flags_2_cond : array[TResFlags] of TAsmCond = (C_E,C_NE,C_G,C_L,C_GE,C_LE,C_C,C_NC,C_A,C_AE,C_B,C_BE,C_S,C_NS,C_O,C_NO, C_None,C_None,C_None,C_None,C_None,C_None); begin result := flags_2_cond[f]; if (result=C_None) then InternalError(2014041301); end; function is_segment_reg(r:tregister):boolean; begin case r of NR_CS,NR_DS,NR_ES, NR_SS,NR_FS,NR_GS : result:=true; else result:=false; end; end; function findreg_by_number(r:Tregister):tregisterindex; var hr : tregister; begin { for the name the sub reg doesn't matter } hr:=r; if (getregtype(hr)=R_MMREGISTER) and (getsubreg(hr)<>R_SUBMMY) and (getsubreg(hr)<>R_SUBMMZ) then setsubreg(hr,R_SUBMMX); //// TG TODO check //if (getregtype(hr)=R_MMREGISTER) then // case getsubreg(hr) of // R_SUBMMX: setsubreg(hr,R_SUBMMX); // R_SUBMMY: setsubreg(hr,R_SUBMMY); // R_SUBMMZ: setsubreg(hr,R_SUBMMZ); // else setsubreg(hr,R_SUBMMX); // end; result:=findreg_by_number_table(hr,regnumber_index); end; function std_regnum_search(const s:string):Tregister; begin result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)]; end; function std_regname(r:Tregister):string; var p : tregisterindex; begin if (getregtype(r)=R_MMXREGISTER) or ((getregtype(r)=R_MMREGISTER) and not(getsubreg(r) in [R_SUBMMX,R_SUBMMY])) then r:=newreg(getregtype(r),getsupreg(r),R_SUBNONE); p:=findreg_by_number(r); if p<>0 then result:=std_regname_table[p] else result:=generic_regname(r); end; function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE} const inverse: array[TAsmCond] of TAsmCond=(C_None, C_NA,C_NAE,C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_A,C_AE, C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_O,C_P, C_S,C_Z,C_NO,C_NP,C_NP,C_P,C_NS,C_NZ ); begin result := inverse[c]; end; function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE} begin result := c1 = c2; end; { Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" } function condition_in(const Subset, c: TAsmCond): Boolean; begin Result := (c = C_None) or conditions_equal(Subset, c); if not Result then case Subset of C_A, C_NBE: Result := (c in [C_A, C_AE, C_NB, C_NBE]); C_AE, C_NB: Result := (c in [C_AE, C_NB]); C_B, C_NAE: Result := (c in [C_B, C_BE, C_C, C_NA, C_NAE]); C_BE, C_NA: Result := (c in [C_BE, C_NA]); C_C: { C_B / C_NAE: CF = 1 C_BE / C_NA: CF = 1 or ZF = 1 } Result := (c in [C_B, C_BE, C_NA, C_NAE]); C_E, C_Z: Result := (c in [C_AE, C_BE, C_E, C_NA, C_NB, C_NG, C_NL]); C_G, C_NLE: Result := (c in [C_G, C_GE, C_NL, C_NLE]); C_GE, C_NL: Result := (c in [C_GE, C_NL]); C_L, C_NGE: Result := (c in [C_L, C_LE, C_NG, C_NGE]); C_LE, C_NG: Result := (c in [C_LE, C_NG]); C_NC: { C_A / C_NBE: CF = 0 and ZF = 0; not a subset because ZF has to be zero as well C_AE / C_NB: CF = 0 } Result := (c in [C_AE, C_NB]); C_NE, C_NZ: Result := (c in [C_NE, C_NZ, C_A, C_B, C_NAE,C_NBE,C_L, C_G, C_NLE,C_NGE]); C_NP, C_PO: Result := (c in [C_NP, C_PO]); C_P, C_PE: Result := (c in [C_P, C_PE]); else Result := False; end; end; function dwarf_reg(r:tregister):shortint; begin result:=regdwarf_table[findreg_by_number(r)]; if result=-1 then internalerror(200603251); end; function dwarf_reg_no_error(r:tregister):shortint; begin result:=regdwarf_table[findreg_by_number(r)]; end; function eh_return_data_regno(nr: longint): longint; begin case nr of 0: result:=0; {$ifdef x86_64} 1: result:=1; {$else} 1: result:=2; {$endif} else result:=-1; end; end; function segment_regs_equal(r1, r2: tregister): boolean; begin if not is_segment_reg(r1) or not is_segment_reg(r2) then internalerror(2013062301); { every segment register is equal to itself } if r1=r2 then exit(true); {$if defined(i8086)} case current_settings.x86memorymodel of mm_tiny: begin { CS=DS=SS } if ((r1=NR_CS) or (r1=NR_DS) or (r1=NR_SS)) and ((r2=NR_CS) or (r2=NR_DS) or (r2=NR_SS)) then exit(true); { the remaining are distinct from each other } exit(false); end; mm_small,mm_medium: begin { DS=SS } if ((r1=NR_DS) or (r1=NR_SS)) and ((r2=NR_DS) or (r2=NR_SS)) then exit(true); { the remaining are distinct from each other } exit(false); end; mm_compact,mm_large,mm_huge: { all segment registers are different in these models } exit(false); end; {$elseif defined(i386) or defined(x86_64)} { DS=SS=ES } if ((r1=NR_DS) or (r1=NR_SS) or (r1=NR_ES)) and ((r2=NR_DS) or (r2=NR_SS) or (r2=NR_ES)) then exit(true); { the remaining are distinct from each other } exit(false); {$endif} end; function is_x86_string_op(op: TAsmOp): boolean; begin case op of {$ifdef x86_64} A_MOVSQ, A_CMPSQ, A_SCASQ, A_LODSQ, A_STOSQ, {$endif x86_64} A_MOVSB,A_MOVSW,A_MOVSD, A_CMPSB,A_CMPSW,A_CMPSD, A_SCASB,A_SCASW,A_SCASD, A_LODSB,A_LODSW,A_LODSD, A_STOSB,A_STOSW,A_STOSD, A_INSB, A_INSW, A_INSD, A_OUTSB,A_OUTSW,A_OUTSD, A_MOVS,A_CMPS,A_SCAS,A_LODS,A_STOS,A_INS,A_OUTS: result:=true; else result:=false; end; end; function is_x86_parameterless_string_op(op: TAsmOp): boolean; begin case op of {$ifdef x86_64} A_MOVSQ, A_CMPSQ, A_SCASQ, A_LODSQ, A_STOSQ, {$endif x86_64} A_MOVSB,A_MOVSW,A_MOVSD, A_CMPSB,A_CMPSW,A_CMPSD, A_SCASB,A_SCASW,A_SCASD, A_LODSB,A_LODSW,A_LODSD, A_STOSB,A_STOSW,A_STOSD, A_INSB, A_INSW, A_INSD, A_OUTSB,A_OUTSW,A_OUTSD: result:=true; else result:=false; end; end; function is_x86_parameterized_string_op(op: TAsmOp): boolean; begin case op of A_MOVS,A_CMPS,A_SCAS,A_LODS,A_STOS,A_INS,A_OUTS: result:=true; else result:=false; end; end; function x86_parameterized_string_op_param_count(op: TAsmOp): shortint; begin case op of A_MOVS,A_CMPS,A_INS,A_OUTS: result:=2; A_SCAS,A_LODS,A_STOS: result:=1; else internalerror(2017101203); end; end; function x86_param2paramless_string_op(op: TAsmOp): TAsmOp; begin case op of A_MOVSB,A_MOVSW,A_MOVSD{$ifdef x86_64},A_MOVSQ{$endif}: result:=A_MOVS; A_CMPSB,A_CMPSW,A_CMPSD{$ifdef x86_64},A_CMPSQ{$endif}: result:=A_CMPS; A_SCASB,A_SCASW,A_SCASD{$ifdef x86_64},A_SCASQ{$endif}: result:=A_SCAS; A_LODSB,A_LODSW,A_LODSD{$ifdef x86_64},A_LODSQ{$endif}: result:=A_LODS; A_STOSB,A_STOSW,A_STOSD{$ifdef x86_64},A_STOSQ{$endif}: result:=A_STOS; A_INSB, A_INSW, A_INSD: result:=A_INS; A_OUTSB,A_OUTSW,A_OUTSD: result:=A_OUTS; else internalerror(2017101201); end; end; function get_x86_string_op_size(op: TAsmOp): TOpSize; begin case op of A_MOVSB,A_CMPSB,A_SCASB,A_LODSB,A_STOSB,A_INSB,A_OUTSB: result:=S_B; A_MOVSW,A_CMPSW,A_SCASW,A_LODSW,A_STOSW,A_INSW,A_OUTSW: result:=S_W; A_MOVSD,A_CMPSD,A_SCASD,A_LODSD,A_STOSD,A_INSD,A_OUTSD: result:=S_L; {$ifdef x86_64} A_MOVSQ,A_CMPSQ,A_SCASQ,A_LODSQ,A_STOSQ: result:=S_Q; {$endif x86_64} else internalerror(2017101202); end; end; function get_x86_string_op_si_param(op: TAsmOp):shortint; begin case op of A_MOVS,A_OUTS: result:=1; A_CMPS,A_LODS: result:=0; A_SCAS,A_STOS,A_INS: result:=-1; else internalerror(2017101102); end; end; function get_x86_string_op_di_param(op: TAsmOp):shortint; begin case op of A_MOVS,A_SCAS,A_STOS,A_INS: result:=0; A_CMPS: result:=1; A_LODS,A_OUTS: result:=-1; else internalerror(2017101204); end; end; {$ifdef i8086} function requires_fwait_on_8087(op: TAsmOp): boolean; begin case op of A_F2XM1,A_FABS,A_FADD,A_FADDP,A_FBLD,A_FBSTP,A_FCHS,A_FCOM,A_FCOMP, A_FCOMPP,A_FDECSTP,A_FDIV,A_FDIVP,A_FDIVR,A_FDIVRP, A_FFREE,A_FIADD,A_FICOM,A_FICOMP,A_FIDIV,A_FIDIVR,A_FILD, A_FIMUL,A_FINCSTP,A_FIST,A_FISTP,A_FISUB,A_FISUBR,A_FLD,A_FLD1, A_FLDCW,A_FLDENV,A_FLDL2E,A_FLDL2T,A_FLDLG2,A_FLDLN2,A_FLDPI,A_FLDZ, A_FMUL,A_FMULP,A_FNOP,A_FPATAN,A_FPREM,A_FPTAN,A_FRNDINT, A_FRSTOR,A_FSCALE,A_FSQRT,A_FST, A_FSTP,A_FSUB,A_FSUBP,A_FSUBR,A_FSUBRP,A_FTST, A_FXAM,A_FXCH,A_FXTRACT,A_FYL2X,A_FYL2XP1: result:=true; else result:=false; end; end; {$endif i8086} end.