{ Copyright (c) 2006 by Florian Klaempfl Contains the base types for the AVR This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. **************************************************************************** } {# Base unit for processor information. This unit contains enumerations of registers, opcodes, sizes, and other such things which are processor specific. } unit cpubase; {$i fpcdefs.inc} interface uses cutils,cclasses, globtype,globals, cpuinfo, aasmbase, cgbase ; {***************************************************************************** Assembler Opcodes *****************************************************************************} type TAsmOp={$i z80op.inc} { This should define the array of instructions as string } op2strtable=array[tasmop] of string[4]; const { First value of opcode enumeration } firstop = low(tasmop); { Last value of opcode enumeration } lastop = high(tasmop); std_op2str:op2strtable={$i z80stdopnames.inc} { call/reg instructions are not considered as jmp instructions for the usage cases of this set } jmp_instructions = [A_JP,A_JR,A_JRJP,A_DJNZ]; call_jmp_instructions = [A_CALL]+jmp_instructions; { instructions that can have a condition } cond_instructions = [A_CALL,A_JP,A_JR,A_JRJP,A_RET]; {***************************************************************************** Registers *****************************************************************************} type { Number of registers used for indexing in tables } tregisterindex=0..{$i rz80nor.inc}-1; const { Available Superregisters } {$i rz80sup.inc} { No Subregisters } R_SUBWHOLE = R_SUBL; { Available Registers } {$i rz80con.inc} { Integer Super registers first and last } first_int_supreg = RS_A; first_int_imreg = $20; { Float Super register first and last } first_fpu_supreg = RS_INVALID; first_fpu_imreg = 0; { MM Super register first and last } first_mm_supreg = RS_INVALID; first_mm_imreg = 0; regnumber_count_bsstart = 32; regnumber_table : array[tregisterindex] of tregister = ( {$i rz80num.inc} ); regstabs_table : array[tregisterindex] of shortint = ( {$i rz80sta.inc} ); regdwarf_table : array[tregisterindex] of shortint = ( {$i rz80dwa.inc} ); { registers which may be destroyed by calls } VOLATILE_INTREGISTERS = [RS_A,RS_B,RS_C,RS_D,RS_E,RS_H,RS_L]; VOLATILE_FPUREGISTERS = []; type totherregisterset = set of tregisterindex; {***************************************************************************** Conditions *****************************************************************************} type TAsmCond=(C_None, C_NZ,C_Z,C_NC,C_C,C_PO,C_PE,C_P,C_M ); const cond2str : array[TAsmCond] of string[2]=('', 'nz','z','nc','c','po','pe','p','m' ); uppercond2str : array[TAsmCond] of string[2]=('', 'NZ','Z','NC','C','PO','PE','P','M' ); {***************************************************************************** Flags *****************************************************************************} type TResFlags = (F_NotPossible,F_NE,F_E,F_NC,F_C,F_PO,F_PE,F_P,F_M); {***************************************************************************** Constants *****************************************************************************} const max_operands = 2; maxintregs = 15; maxfpuregs = 0; maxaddrregs = 0; {***************************************************************************** Operand Sizes *****************************************************************************} type topsize = (S_NO, S_B,S_W,S_L,S_BW,S_BL,S_WL, S_IS,S_IL,S_IQ, S_FS,S_FL,S_FX,S_D,S_Q,S_FV,S_FXX ); {***************************************************************************** Constants *****************************************************************************} const firstsaveintreg = RS_INVALID; lastsaveintreg = RS_INVALID; firstsavefpureg = RS_INVALID; lastsavefpureg = RS_INVALID; firstsavemmreg = RS_INVALID; lastsavemmreg = RS_INVALID; {***************************************************************************** Default generic sizes *****************************************************************************} { Defines the default address size for a processor, } OS_ADDR = OS_16; { the natural int size for a processor, has to match osuinttype/ossinttype as initialized in psystem, initially, this was OS_16/OS_S16 on avr, but experience has proven that it is better to make it 8 Bit thus having the same size as a register. } OS_INT = OS_8; OS_SINT = OS_S8; { the maximum float size for a processor, } OS_FLOAT = OS_F64; { the size of a vector register for a processor } OS_VECTOR = OS_M32; {***************************************************************************** Generic Register names *****************************************************************************} { Stack pointer register } NR_STACK_POINTER_REG = NR_SP; RS_STACK_POINTER_REG = RS_SP; { Frame pointer register } RS_FRAME_POINTER_REG = RS_IX; NR_FRAME_POINTER_REG = NR_IX; { Register for addressing absolute data in a position independant way, such as in PIC code. The exact meaning is ABI specific. For further information look at GCC source : PIC_OFFSET_TABLE_REGNUM } NR_PIC_OFFSET_REG = NR_INVALID; { Results are returned in this register (32-bit values) } NR_FUNCTION_RETURN_REG = NR_L; RS_FUNCTION_RETURN_REG = RS_L; { Low part of 64bit return value } NR_FUNCTION_RETURN64_LOW_REG = NR_L; RS_FUNCTION_RETURN64_LOW_REG = RS_L; { High part of 64bit return value } NR_FUNCTION_RETURN64_HIGH_REG = NR_C; RS_FUNCTION_RETURN64_HIGH_REG = RS_C; { The value returned from a function is available in this register } NR_FUNCTION_RESULT_REG = NR_FUNCTION_RETURN_REG; RS_FUNCTION_RESULT_REG = RS_FUNCTION_RETURN_REG; { The lowh part of 64bit value returned from a function } NR_FUNCTION_RESULT64_LOW_REG = NR_FUNCTION_RETURN64_LOW_REG; RS_FUNCTION_RESULT64_LOW_REG = RS_FUNCTION_RETURN64_LOW_REG; { The high part of 64bit value returned from a function } NR_FUNCTION_RESULT64_HIGH_REG = NR_FUNCTION_RETURN64_HIGH_REG; RS_FUNCTION_RESULT64_HIGH_REG = RS_FUNCTION_RETURN64_HIGH_REG; NR_FPU_RESULT_REG = NR_NO; NR_MM_RESULT_REG = NR_NO; NR_RETURN_ADDRESS_REG = NR_FUNCTION_RETURN_REG; { Offset where the parent framepointer is pushed } PARENT_FRAMEPOINTER_OFFSET = 0; NR_DEFAULTFLAGS = NR_F; RS_DEFAULTFLAGS = RS_F; {***************************************************************************** GCC /ABI linking information *****************************************************************************} const { Registers which must be saved when calling a routine declared as cppdecl, cdecl, stdcall, safecall, palmossyscall. The registers saved should be the ones as defined in the target ABI and / or GCC. This value can be deduced from the CALLED_USED_REGISTERS array in the GCC source. } { on avr, gen_entry/gen_exit code saves/restores registers, so we don't need this array } saved_standard_registers : array[0..0] of tsuperregister = (RS_INVALID); { Required parameter alignment when calling a routine declared as stdcall and cdecl. The alignment value should be the one defined by GCC or the target ABI. The value of this constant is equal to the constant PARM_BOUNDARY / BITS_PER_UNIT in the GCC source. } std_param_align = 4; saved_address_registers : array[0..0] of tsuperregister = (RS_INVALID); saved_mm_registers : array[0..0] of tsuperregister = (RS_INVALID); {***************************************************************************** Helpers *****************************************************************************} { Returns the tcgsize corresponding with the size of reg.} function reg_cgsize(const reg: tregister) : tcgsize; function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister; procedure inverse_flags(var f: TResFlags); function flags_to_cond(const f: TResFlags) : TAsmCond; function findreg_by_number(r:Tregister):tregisterindex; function std_regnum_search(const s:string):Tregister; function std_regname(r:Tregister):string; function is_regpair(r:Tregister):boolean; procedure split_regpair(regpair:Tregister;out reglo,reghi:Tregister); { Checks if sreg is a subset of reg (e.g. NR_H is a subset of NR_HL } function register_in(sreg,reg:Tregister):boolean; function super_registers_equal(reg1,reg2 : TRegister) : Boolean; function registers_interfere(reg1,reg2: TRegister) : Boolean; function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE} function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE} { Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" } function condition_in(const Subset, c: TAsmCond): Boolean; function dwarf_reg(r:tregister):byte; function dwarf_reg_no_error(r:tregister):shortint; function eh_return_data_regno(nr: longint): longint; function is_calljmp(o:tasmop):boolean;{$ifdef USEINLINE}inline;{$endif USEINLINE} implementation uses rgBase,verbose; const std_regname_table : TRegNameTable = ( {$i rz80std.inc} ); regnumber_index : array[tregisterindex] of tregisterindex = ( {$i rz80rni.inc} ); std_regname_index : array[tregisterindex] of tregisterindex = ( {$i rz80sri.inc} ); function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister; begin case s of OS_8,OS_S8: cgsize2subreg:=R_SUBL; OS_16,OS_S16: cgsize2subreg:=R_SUBW; OS_32,OS_S32: cgsize2subreg:=R_SUBD; OS_64,OS_S64: cgsize2subreg:=R_SUBQ; OS_NO: { error message should have been thrown already before, so avoid only an internal error } cgsize2subreg:=R_SUBNONE; else internalerror(200301231); end; end; function reg_cgsize(const reg: tregister): tcgsize; begin case getregtype(reg) of R_INTREGISTER, R_SPECIALREGISTER: case getsubreg(reg) of R_SUBL, R_SUBH: reg_cgsize:=OS_8; R_SUBW: reg_cgsize:=OS_16; else internalerror(2020041901); end; else internalerror(2011021905); end; end; procedure inverse_flags(var f: TResFlags); const inv_flags: array[TResFlags] of TResFlags = (F_NotPossible,F_E,F_NE,F_C,F_NC,F_PE,F_PO,F_M,F_P); begin f:=inv_flags[f]; end; function flags_to_cond(const f: TResFlags) : TAsmCond; const flag_2_cond: array[F_NE..F_M] of TAsmCond = (C_NZ,C_Z,C_NC,C_C,C_PO,C_PE,C_P,C_M); begin if f=F_NotPossible then internalerror(2011022101); if f>high(flag_2_cond) then internalerror(200112301); result:=flag_2_cond[f]; end; function findreg_by_number(r:Tregister):tregisterindex; begin result:=rgBase.findreg_by_number_table(r,regnumber_index); end; function std_regnum_search(const s:string):Tregister; begin result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)]; end; function std_regname(r:Tregister):string; var p : tregisterindex; begin p:=findreg_by_number_table(r,regnumber_index); if p<>0 then result:=std_regname_table[p] else result:=generic_regname(r); end; function is_regpair(r: Tregister): boolean; begin result:=(r=NR_AF) or (r=NR_BC) or (r=NR_DE) or (r=NR_HL); end; procedure split_regpair(regpair: Tregister; out reglo, reghi: Tregister); begin case regpair of NR_AF: begin reglo:=NR_F; reghi:=NR_A; end; NR_BC: begin reglo:=NR_C; reghi:=NR_B; end; NR_DE: begin reglo:=NR_E; reghi:=NR_D; end; NR_HL: begin reglo:=NR_L; reghi:=NR_H; end; else internalerror(2020042804); end; end; function register_in(sreg,reg: Tregister):boolean; var tmpreg1, tmpreg2: Tregister; begin if sreg=reg then result:=true else if is_regpair(reg) then begin split_regpair(reg,tmpreg1,tmpreg2); result:=(sreg=tmpreg1) or (sreg=tmpreg2); end else result:=false; end; function super_registers_equal(reg1, reg2: TRegister): Boolean; begin case reg1 of NR_A,NR_F,NR_AF,NR_CARRYFLAG,NR_ADDSUBTRACTFLAG,NR_PARITYOVERFLOWFLAG,NR_HALFCARRYFLAG,NR_ZEROFLAG,NR_SIGNFLAG: result:=(reg2=NR_A) or (reg2=NR_F) or (reg2=NR_AF) or (reg2=NR_CARRYFLAG) or (reg2=NR_ADDSUBTRACTFLAG) or (reg2=NR_PARITYOVERFLOWFLAG) or (reg2=NR_HALFCARRYFLAG) or (reg2=NR_ZEROFLAG) or (reg2=NR_SIGNFLAG); NR_B,NR_C,NR_BC: result:=(reg2=NR_B) or (reg2=NR_C) or (reg2=NR_BC); NR_D,NR_E,NR_DE: result:=(reg2=NR_D) or (reg2=NR_E) or (reg2=NR_DE); NR_H,NR_L,NR_HL: result:=(reg2=NR_H) or (reg2=NR_L) or (reg2=NR_HL); NR_A_,NR_F_,NR_AF_,NR_CARRYFLAG_,NR_ADDSUBTRACTFLAG_,NR_PARITYOVERFLOWFLAG_,NR_HALFCARRYFLAG_,NR_ZEROFLAG_,NR_SIGNFLAG_: result:=(reg2=NR_A_) or (reg2=NR_F_) or (reg2=NR_AF_) or (reg2=NR_CARRYFLAG_) or (reg2=NR_ADDSUBTRACTFLAG_) or (reg2=NR_PARITYOVERFLOWFLAG_) or (reg2=NR_HALFCARRYFLAG_) or (reg2=NR_ZEROFLAG_) or (reg2=NR_SIGNFLAG_); NR_B_,NR_C_,NR_BC_: result:=(reg2=NR_B_) or (reg2=NR_C_) or (reg2=NR_BC_); NR_D_,NR_E_,NR_DE_: result:=(reg2=NR_D_) or (reg2=NR_E_) or (reg2=NR_DE_); NR_H_,NR_L_,NR_HL_: result:=(reg2=NR_H_) or (reg2=NR_L_) or (reg2=NR_HL_); else result:=reg1=reg2; end; end; function registers_interfere(reg1, reg2: TRegister): Boolean; begin case reg1 of NR_A: result:=(reg2=NR_A) or (reg2=NR_AF); NR_F: result:=(reg2=NR_F) or (reg2=NR_AF) or (reg2=NR_CARRYFLAG) or (reg2=NR_ADDSUBTRACTFLAG) or (reg2=NR_PARITYOVERFLOWFLAG) or (reg2=NR_HALFCARRYFLAG) or (reg2=NR_ZEROFLAG) or (reg2=NR_SIGNFLAG); NR_AF: result:=(reg2=NR_A) or (reg2=NR_F) or (reg2=NR_AF) or (reg2=NR_CARRYFLAG) or (reg2=NR_ADDSUBTRACTFLAG) or (reg2=NR_PARITYOVERFLOWFLAG) or (reg2=NR_HALFCARRYFLAG) or (reg2=NR_ZEROFLAG) or (reg2=NR_SIGNFLAG); NR_CARRYFLAG,NR_ADDSUBTRACTFLAG,NR_PARITYOVERFLOWFLAG,NR_HALFCARRYFLAG,NR_ZEROFLAG,NR_SIGNFLAG: result:=(reg2=NR_F) or (reg2=NR_AF) or (reg2=reg1); NR_B: result:=(reg2=NR_B) or (reg2=NR_BC); NR_C: result:=(reg2=NR_C) or (reg2=NR_BC); NR_BC: result:=(reg2=NR_B) or (reg2=NR_C) or (reg2=NR_BC); NR_D: result:=(reg2=NR_D) or (reg2=NR_DE); NR_E: result:=(reg2=NR_E) or (reg2=NR_DE); NR_DE: result:=(reg2=NR_D) or (reg2=NR_E) or (reg2=NR_DE); NR_H: result:=(reg2=NR_H) or (reg2=NR_HL); NR_L: result:=(reg2=NR_L) or (reg2=NR_HL); NR_HL: result:=(reg2=NR_H) or (reg2=NR_L) or (reg2=NR_HL); NR_A_: result:=(reg2=NR_A_) or (reg2=NR_AF_); NR_F_: result:=(reg2=NR_F_) or (reg2=NR_AF_) or (reg2=NR_CARRYFLAG_) or (reg2=NR_ADDSUBTRACTFLAG_) or (reg2=NR_PARITYOVERFLOWFLAG_) or (reg2=NR_HALFCARRYFLAG_) or (reg2=NR_ZEROFLAG_) or (reg2=NR_SIGNFLAG_); NR_AF_: result:=(reg2=NR_A_) or (reg2=NR_F_) or (reg2=NR_AF_) or (reg2=NR_CARRYFLAG_) or (reg2=NR_ADDSUBTRACTFLAG_) or (reg2=NR_PARITYOVERFLOWFLAG_) or (reg2=NR_HALFCARRYFLAG_) or (reg2=NR_ZEROFLAG_) or (reg2=NR_SIGNFLAG_); NR_CARRYFLAG_,NR_ADDSUBTRACTFLAG_,NR_PARITYOVERFLOWFLAG_,NR_HALFCARRYFLAG_,NR_ZEROFLAG_,NR_SIGNFLAG_: result:=(reg2=NR_F_) or (reg2=NR_AF_) or (reg2=reg1); NR_B_: result:=(reg2=NR_B_) or (reg2=NR_BC_); NR_C_: result:=(reg2=NR_C_) or (reg2=NR_BC_); NR_BC_: result:=(reg2=NR_B_) or (reg2=NR_C_) or (reg2=NR_BC_); NR_D_: result:=(reg2=NR_D_) or (reg2=NR_DE_); NR_E_: result:=(reg2=NR_E_) or (reg2=NR_DE_); NR_DE_: result:=(reg2=NR_D_) or (reg2=NR_E_) or (reg2=NR_DE_); NR_H_: result:=(reg2=NR_H_) or (reg2=NR_HL_); NR_L_: result:=(reg2=NR_L_) or (reg2=NR_HL_); NR_HL_: result:=(reg2=NR_H_) or (reg2=NR_L_) or (reg2=NR_HL_); else result:=reg1=reg2; end; end; function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE} const inverse: array[TAsmCond] of TAsmCond=(C_None, C_Z,C_NZ,C_C,C_NC,C_PE,C_PO,C_M,C_P); begin result := inverse[c]; end; function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE} begin result := c1 = c2; end; { Checks if Subset is a subset of c (e.g. "less than" is a subset of "less than or equal" } function condition_in(const Subset, c: TAsmCond): Boolean; begin { Z80 has no condition subsets } Result := {(c.cond = C_None) or} conditions_equal(Subset, c); end; function rotl(d : dword;b : byte) : dword; begin result:=(d shr (32-b)) or (d shl b); end; function dwarf_reg(r:tregister):byte; var reg : shortint; begin reg:=regdwarf_table[findreg_by_number(r)]; if reg=-1 then internalerror(200603251); result:=reg; end; function dwarf_reg_no_error(r:tregister):shortint; begin result:=regdwarf_table[findreg_by_number(r)]; end; function eh_return_data_regno(nr: longint): longint; begin result:=-1; end; function is_calljmp(o:tasmop):boolean;{$ifdef USEINLINE}inline;{$endif USEINLINE} begin is_calljmp:= o in call_jmp_instructions; end; end.