\chapter{TArrayUtils} Set of utilities for manipulating arrays data. Takes 3 arguements for specialization. First one is type of array (can be anything, which is accesible by [] operator, e. g. ordinary array, vector, ...), second one is type of array element. %Usage example for sorting: %\lstinputlisting[language=Pascal]{sortingexample.pp} Members list: \begin{longtable}{|m{10cm}|m{5cm}|} \hline Method & Complexity guarantees \\ \hline \multicolumn{2}{|m{15cm}|}{Description} \\ \hline\hline \verb!procedure RandomShuffle(arr: TArr, size:SizeUint)! & O(N)\\ \hline \multicolumn{2}{|m{15cm}|}{Shuffles elements in array in random way} \\\hline\hline \end{longtable}\chapter{TOrderingArrayUtils} Set of utilities for manipulating arrays data. Takes 3 arguements for specialization. First one is type of array (can be anything, which is accesible by [] operator, e. g. ordinary array, vector, ...), second one is type of array element, third one is comparator class (see TPriorityQueue for definition of comparator class). Usage example for sorting: \lstinputlisting[language=Pascal]{sortingexample.pp} Members list: \begin{longtable}{|m{10cm}|m{5cm}|} \hline Method & Complexity guarantees \\ \hline \multicolumn{2}{|m{15cm}|}{Description} \\ \hline\hline \verb!procedure Sort(arr: TArr, size:SizeUint)! & O(N log N) average and worst case. Uses QuickSort, backed up by HeapSort, when QuickSort ends up in using too much recursion.\\ \hline \multicolumn{2}{|m{15cm}|}{Sort array arr, with specified size. Array indexing should be 0 based.} \\\hline\hline \verb!function NextPermutation! \verb!(arr: TArr, size:SizeUint):boolean! & Worst case for one call $O(N)$. Going through all permutations takes $O(N!)$ time.\\ \hline \multicolumn{2}{|m{15cm}|}{Orders elements on indexes $0, 1, \dots, size-1$ into nearest lexikografic larger permutation.} \\\hline \end{longtable}