{ This file is part of the Free Pascal run time library. Copyright (c) 1999-2000 by Michael Van Canneyt, member of the Free Pascal development team See the file COPYING.FPC, included in this distribution, for details about the copyright. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. **********************************************************************} type { See symconst.pas tfloattype } treal_type = ( rt_s32real,rt_s64real,rt_s80real,rt_sc80real, rt_c64bit,rt_currency,rt_s128real ); { corresponding to single double extended fixed comp for i386 } {$if not declared(mul_by_power10)} function mul_by_power10 (x : ValReal; power : integer) : ValReal; forward; {$endif} Procedure str_real (len,f : longint; d : ValReal; real_type :treal_type; out s : string); {$ifdef SUPPORT_EXTENDED} type TSplitExtended = packed record case byte of 0: (bytes: Array[0..9] of byte); 1: (words: Array[0..4] of word); 2: (cards: Array[0..1] of cardinal; w: word); end; const maxDigits = 17; {$else} {$ifdef SUPPORT_DOUBLE} {$ifndef cpujvm} type TSplitDouble = packed record case byte of 0: (bytes: Array[0..7] of byte); 1: (words: Array[0..3] of word); 2: (cards: Array[0..1] of cardinal); end; {$endif} const maxDigits = 15; {$else} {$ifdef SUPPORT_SINGLE} type TSplitSingle = packed record case byte of 0: (bytes: Array[0..3] of byte); 1: (words: Array[0..1] of word); 2: (cards: Array[0..0] of cardinal); end; const maxDigits = 9; {$endif SUPPORT_SINGLE} {$endif SUPPORT_DOUBLE} {$endif SUPPORT_EXTENDED} type { the value in the last position is used for rounding } TIntPartStack = array[1..maxDigits+1] of valReal; var {$ifdef cpujvm} doublebits: int64; {$endif} roundCorr, corrVal, factor : valReal; high_exp10_reduced, spos, endpos, fracCount: longint; correct, currprec: longint; temp : string; power : string[10]; sign : boolean; dot : byte; fraczero, expMaximal: boolean; maxlen : longint; { Maximal length of string for float } minlen : longint; { Minimal length of string for float } explen : longint; { Length of exponent, including E and sign. Must be strictly larger than 2 } const maxexp = 1e+35; { Maximum value for decimal expressions } minexp = 1e-35; { Minimum value for decimal expressions } zero = '0000000000000000000000000000000000000000'; procedure RoundStr(var s: string; lastPos: byte); var carry: longint; begin carry := 1; repeat s[lastPos] := chr(ord(s[lastPos])+carry); carry := 0; if s[lastPos] > '9' then begin s[lastPos] := '0'; carry := 1; end; dec(lastPos); until carry = 0; end; procedure getIntPart(d: valreal); var intPartStack: TIntPartStack; intPart, stackPtr, endStackPtr, digits: longint; overflow: boolean; begin {$ifdef DEBUG_NASM} writeln(stderr,'getintpart(d) entry'); {$endif DEBUG_NASM} { position in the stack (gets increased before first write) } stackPtr := 0; { number of digits processed } digits := 0; { did we wrap around in the stack? Necessary to know whether we should round } overflow :=false; { generate a list consisting of d, d/10, d/100, ... until d < 1.0 } while d > 1.0-roundCorr do begin inc(stackPtr); inc(digits); if stackPtr > maxDigits+1 then begin stackPtr := 1; overflow := true; end; intPartStack[stackPtr] := d; d := d / 10.0; end; { if no integer part, exit } if digits = 0 then exit; endStackPtr := stackPtr+1; if endStackPtr > maxDigits + 1 then endStackPtr := 1; { now, all digits are calculated using trunc(d*10^(-n)-int(d*10^(-n-1))*10) } corrVal := 0.0; { the power of 10 with which the resulting string has to be "multiplied" } { if the decimal point is placed after the first significant digit } correct := digits-1; {$ifdef DEBUG_NASM} writeln(stderr,'endStackPtr = ',endStackPtr); {$endif DEBUG_NASM} repeat if (currprec > 0) then begin intPart:= trunc(intPartStack[stackPtr]-corrVal); dec(currPrec); inc(spos); temp[spos] := chr(intPart+ord('0')); {$ifdef DEBUG_NASM} writeln(stderr,'stackptr =',stackptr,' intpart = ',intpart); {$endif DEBUG_NASM} if temp[spos] > '9' then begin temp[spos] := chr(ord(temp[spos])-10); roundStr(temp,spos-1); end; end; corrVal := int(intPartStack[stackPtr]) * 10.0; {$ifdef DEBUG_NASM} writeln(stderr,'trunc(corrval) = ',trunc(corrval)); {$endif DEBUG_NASM} dec(stackPtr); if stackPtr = 0 then stackPtr := maxDigits+1; until (overflow and (stackPtr = endStackPtr)) or (not overflow and (stackPtr = maxDigits+1)) or (currPrec = 0); { round if we didn't use all available digits yet and if the } { remainder is > 5 } if (overflow or (stackPtr < maxDigits+1)) then begin { we didn't use all available digits of the whole part -> make sure } { the fractional part is not used for rounding later } currprec := -1; { instead, round based on the next whole digit } if (int(intPartStack[stackPtr]-corrVal) >= 5.0) then roundStr(temp,spos); end; {$ifdef DEBUG_NASM} writeln(stderr,'temp at getintpart exit is = ',temp); {$endif DEBUG_NASM} end; function reduce_exponent (d : ValReal; out scaled : ValReal) : longint; { Returns decimal exponent which was used for scaling, and a scaled value out } const C_LN10 = ln(10); var log10_d : longint; begin reduce_exponent := 0; if d<>0 then begin // get exponent approximation ["d" is assumed to be non-negative] log10_d:=trunc(ln(d)/C_LN10); // trying to stay at least 1 digit away from introducing integer/fractional part if log10_d > maxDigits+1 then reduce_exponent := log10_d-maxDigits else if log10_d < -(maxDigits+1) then reduce_exponent := log10_d+maxDigits // else // the number is already suitable enough end; // do scaling if needed if reduce_exponent<>0 then scaled := mul_by_power10(d,-reduce_exponent) // denormals should be handled properly by this call else scaled := d; end; begin case real_type of rt_s32real : begin maxlen:=16; minlen:=8; explen:=4; { correction used with comparing to avoid rounding/precision errors } roundCorr := 1.1920928955e-07; end; rt_s64real : begin maxlen := 22; { correction used with comparing to avoid rounding/precision errors } roundCorr := 2.2204460493e-16; minlen:=9; explen:=5; end; rt_s80real, rt_sc80real: begin { Different in TP help, but this way the output is the same (JM) } maxlen:=25; minlen:=10; explen:=6; { correction used with comparing to avoid rounding/precision errors } roundCorr := 1.0842021725e-19; end; rt_c64bit : begin maxlen:=23; minlen:=10; { according to TP (was 5) (FK) } explen:=6; { correction used with comparing to avoid rounding/precision errors } roundCorr := 2.2204460493e-16; end; rt_currency : begin { Different in TP help, but this way the output is the same (JM) } maxlen:=25; minlen:=10; explen:=0; { correction used with comparing to avoid rounding/precision errors } roundCorr := 1.0842021725e-19; end; rt_s128real : begin { Different in TP help, but this way the output is the same (JM) } maxlen:=25; minlen:=10; explen:=6; { correction used with comparing to avoid rounding/precision errors } roundCorr := 1.0842021725e-19; end; else begin { keep JVM byte code verifier happy } maxlen:=0; minlen:=0; explen:=0; roundCorr:=0; end; end; { check parameters } { default value for length is -32767 } if len=-32767 then len:=maxlen; { determine sign. before precision, needs 2 less calls to abs() } {$ifndef endian_big} {$ifdef SUPPORT_EXTENDED} { extended, format (MSB): 1 Sign bit, 15 bit exponent, 64 bit mantissa } sign := (TSplitExtended(d).w and $8000) <> 0; expMaximal := (TSplitExtended(d).w and $7fff) = 32767; fraczero := (TSplitExtended(d).cards[0] = 0) and ((TSplitExtended(d).cards[1] and $7fffffff) = 0); {$else SUPPORT_EXTENDED} {$ifdef SUPPORT_DOUBLE} {$ifdef FPC_DOUBLE_HILO_SWAPPED} { double, format (MSB): 1 Sign bit, 11 bit exponent, 52 bit mantissa } { high and low dword are swapped when using the arm fpa } sign := ((TSplitDouble(d).cards[0] shr 20) and $800) <> 0; expMaximal := ((TSplitDouble(d).cards[0] shr 20) and $7ff) = 2047; fraczero:= (TSplitDouble(d).cards[0] and $fffff = 0) and (TSplitDouble(d).cards[1] = 0); {$else FPC_DOUBLE_HILO_SWAPPED} { double, format (MSB): 1 Sign bit, 11 bit exponent, 52 bit mantissa } sign := ((TSplitDouble(d).cards[1] shr 20) and $800) <> 0; expMaximal := ((TSplitDouble(d).cards[1] shr 20) and $7ff) = 2047; fraczero := (TSplitDouble(d).cards[1] and $fffff = 0) and (TSplitDouble(d).cards[0] = 0); {$endif FPC_DOUBLE_HILO_SWAPPED} {$else SUPPORT_DOUBLE} {$ifdef SUPPORT_SINGLE} { single, format (MSB): 1 Sign bit, 8 bit exponent, 23 bit mantissa } sign := ((TSplitSingle(d).words[1] shr 7) and $100) <> 0; expMaximal := ((TSplitSingle(d).words[1] shr 7) and $ff) = 255; fraczero := (TSplitSingle(d).cards[0] and $7fffff = 0); {$else SUPPORT_SINGLE} {$error No little endian floating type supported yet in real2str} {$endif SUPPORT_SINGLE} {$endif SUPPORT_DOUBLE} {$endif SUPPORT_EXTENDED} {$else endian_big} {$ifdef SUPPORT_EXTENDED} {$error sign/NaN/Inf not yet supported for big endian CPU's in str_real} {$else SUPPORT_EXTENDED} {$ifdef SUPPORT_DOUBLE} {$ifdef cpujvm} doublebits := JLDouble.doubleToLongBits(d); sign := doublebits<0; expMaximal := (doublebits shr (32+20)) and $7ff = 2047; fraczero:= (((doublebits shr 32) and $fffff) = 0) and (longint(doublebits)=0); {$else cpujvm} { double, format (MSB): 1 Sign bit, 11 bit exponent, 52 bit mantissa } sign := ((TSplitDouble(d).cards[0] shr 20) and $800) <> 0; expMaximal := ((TSplitDouble(d).cards[0] shr 20) and $7ff) = 2047; fraczero:= (TSplitDouble(d).cards[0] and $fffff = 0) and (TSplitDouble(d).cards[1] = 0); {$endif cpujvm} {$else SUPPORT_DOUBLE} {$ifdef SUPPORT_SINGLE} { single, format (MSB): 1 Sign bit, 8 bit exponent, 23 bit mantissa } sign := ((TSplitSingle(d).bytes[0] and $80)) <> 0; expMaximal := ((TSplitSingle(d).words[0] shr 7) and $ff) = 255; fraczero:= (TSplitSingle(d).cards[0] and $7fffff = 0); {$else SUPPORT_SINGLE} {$error No big endian floating type supported yet in real2str} {$endif SUPPORT_SINGLE} {$endif SUPPORT_DOUBLE} {$endif SUPPORT_EXTENDED} {$endif endian} if expMaximal then if fraczero then if sign then temp := '-Inf' else temp := '+Inf' else temp := 'Nan' else begin { d:=abs(d); this converts d to double so we loose precision } { for the same reason I converted d:=frac(d) to d:=d-int(d); (PM) } if sign then d:=-d; { determine precision : maximal precision is : } currPrec := maxlen-explen-2; { this is also the maximal number of decimals !!} if f>currprec then f:=currprec; { when doing a fixed-point, we need less characters.} if (f<0) {or ((d<>0) and ((d>maxexp) and (d>minexp)))} then begin { determine maximal number of decimals } if (len>=0) and (len0) and (len 1.0- roundCorr then d := frac(d); { if we have to round earlier than the amount of available precision, } { only calculate digits up to that point } if (f >= 0) and (currPrec > f) then currPrec := f; { if integer part was zero, go to the first significant digit of the } { fractional part } { make sure we don't get an endless loop if d = 0 } if (spos = 2) and (d <> 0.0) then begin { take rounding errors into account } while d < 0.1-roundCorr do begin d := d * 10.0; dec(correct); { adjust the precision depending on how many digits we } { already "processed" by multiplying by 10, but only if } { the amount of precision is specified } if f >= 0 then dec(currPrec); end; dec(correct); end; { current length of the output string in endPos } endPos := spos; { always calculate at least 1 fractional digit for rounding } if (currPrec >= 0) then begin corrVal := 0.5; factor := 1; for fracCount := 1 to currPrec do factor := factor * 10.0; corrval := corrval / factor; { for single, we may write more significant digits than are available, so the rounding correction itself can show up -> don't round in that case } if real_type<>rt_s32real then d:=d+d*roundCorr; if d >= corrVal then d := d + corrVal; if int(d) = 1 then begin roundStr(temp,spos); d := frac(d); end; { calculate the necessary fractional digits } for fracCount := 1 to currPrec do begin if d > 1.0 then d := frac(d) * 10.0 else d := d * 10.0; inc(spos); temp[spos] := chr(trunc(d)+ord('0')); if temp[spos] > '9' then { possible because trunc and the "*10.0" aren't exact :( } begin temp[spos] := chr(ord(temp[spos]) - 10); roundStr(temp,spos-1); end; end; { new length of string } endPos := spos; end; setLength(temp,endPos); { delete leading zero if we didn't need it while rounding at the } { string level } if temp[2] = '0' then delete(temp,2,1) { the rounding caused an overflow to the next power of 10 } else inc(correct); if sign then temp[1] := '-'; if (f<0) or (correct>(round(ln(maxexp)/ln(10)))) then begin insert ('.',temp,3); str(abs(correct),power); if length(power)=0 then begin if length(temp)0 then setlength(temp,pos('.',temp)+f) else setLength(temp,pos('.',temp)-1); end; end; if length(temp)