{ This file is part of the Free Pascal run time library. Copyright (c) 1999-2000 by Pierre Muller, member of the Free Pascal development team. See the file COPYING.FPC, included in this distribution, for details about the copyright. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. **********************************************************************} Unit UComplex; {$ifndef VER2_0} {$INLINE ON} {$define TEST_INLINE} {$endif VER2_0} { created for FPC by Pierre Muller } { inpired from the complex unit from JD GAYRARD mai 95 } { FPC supports operator overloading } interface {$ifndef FPUNONE} uses math; type complex = record re : real; im : real; end; pcomplex = ^complex; const i : complex = (re : 0.0; im : 1.0); _0 : complex = (re : 0.0; im : 0.0); { assignment overloading is also used in type conversions (beware also in implicit type conversions) after this operator any real can be passed to a function as a complex arg !! } operator := (r : real) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} { operator := (i : longint) z : complex; not needed because longint can be converted to real } { four operator : +, -, * , / and comparison = } operator + (z1, z2 : complex) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} { these ones are created because the code is simpler and thus faster } operator + (z1 : complex; r : real) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} operator + (r : real; z1 : complex) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} operator - (z1, z2 : complex) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} operator - (z1 : complex;r : real) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} operator - (r : real; z1 : complex) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} operator * (z1, z2 : complex) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} operator * (z1 : complex; r : real) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} operator * (r : real; z1 : complex) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} operator / (znum, zden : complex) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} operator / (znum : complex; r : real) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} operator / (r : real; zden : complex) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} { ** is the exponentiation operator } operator ** (z1, z2 : complex) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} operator ** (z1 : complex; r : real) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} operator ** (r : real; z1 : complex) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} operator = (z1, z2 : complex) b : boolean; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} operator = (z1 : complex;r : real) b : boolean; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} operator = (r : real; z1 : complex) b : boolean; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} operator - (z1 : complex) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} { complex functions } function cong (z : complex) : complex; { conjuge } { inverse function 1/z } function cinv (z : complex) : complex; { complex functions with real return values } function cmod (z : complex) : real; { module } function carg (z : complex) : real; { argument : a / z = p.e^ia } { fonctions elementaires } function cexp (z : complex) : complex; { exponential } function cln (z : complex) : complex; { natural logarithm } function csqrt (z : complex) : complex; { square root } { complex trigonometric functions } function ccos (z : complex) : complex; { cosinus } function csin (z : complex) : complex; { sinus } function ctg (z : complex) : complex; { tangent } { inverse complex trigonometric functions } function carc_cos (z : complex) : complex; { arc cosinus } function carc_sin (z : complex) : complex; { arc sinus } function carc_tg (z : complex) : complex; { arc tangent } { hyperbolic complex functions } function cch (z : complex) : complex; { hyperbolic cosinus } function csh (z : complex) : complex; { hyperbolic sinus } function cth (z : complex) : complex; { hyperbolic tangent } { inverse hyperbolic complex functions } function carg_ch (z : complex) : complex; { hyperbolic arc cosinus } function carg_sh (z : complex) : complex; { hyperbolic arc sinus } function carg_th (z : complex) : complex; { hyperbolic arc tangente } { functions to write out a complex value } function cstr(z : complex) : string; function cstr(z:complex;len : integer) : string; function cstr(z:complex;len,dec : integer) : string; implementation operator := (r : real) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} begin z.re:=r; z.im:=0.0; end; { four base operations +, -, * , / } operator + (z1, z2 : complex) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} { addition : z := z1 + z2 } begin z.re := z1.re + z2.re; z.im := z1.im + z2.im; end; operator + (z1 : complex; r : real) z : complex; { addition : z := z1 + r } {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} begin z.re := z1.re + r; z.im := z1.im; end; operator + (r : real; z1 : complex) z : complex; { addition : z := r + z1 } {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} begin z.re := z1.re + r; z.im := z1.im; end; operator - (z1, z2 : complex) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} { substraction : z := z1 - z2 } begin z.re := z1.re - z2.re; z.im := z1.im - z2.im; end; operator - (z1 : complex; r : real) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} { substraction : z := z1 - r } begin z.re := z1.re - r; z.im := z1.im; end; operator - (z1 : complex) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} { substraction : z := - z1 } begin z.re := -z1.re; z.im := -z1.im; end; operator - (r : real; z1 : complex) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} { substraction : z := r - z1 } begin z.re := r - z1.re; z.im := - z1.im; end; operator * (z1, z2 : complex) z : complex; { multiplication : z := z1 * z2 } {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} begin z.re := (z1.re * z2.re) - (z1.im * z2.im); z.im := (z1.re * z2.im) + (z1.im * z2.re); end; operator * (z1 : complex; r : real) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} { multiplication : z := z1 * r } begin z.re := z1.re * r; z.im := z1.im * r; end; operator * (r : real; z1 : complex) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} { multiplication : z := r * z1 } begin z.re := z1.re * r; z.im := z1.im * r; end; operator / (znum, zden : complex) z : complex; {$ifdef TEST_INLINE} inline; {$endif TEST_INLINE} { division : z := znum / zden } { The following algorithm is used to properly handle denominator overflow: | a + b(d/c) c - a(d/c) | ---------- + ---------- I if |d| < |c| a + b I | c + d(d/c) a + d(d/c) ------- = | c + d I | b + a(c/d) -a+ b(c/d) | ---------- + ---------- I if |d| >= |c| | d + c(c/d) d + c(c/d) } var tmp, denom : real; begin if ( abs(zden.re) > abs(zden.im) ) then begin tmp := zden.im / zden.re; denom := zden.re + zden.im * tmp; z.re := (znum.re + znum.im * tmp) / denom; z.im := (znum.im - znum.re * tmp) / denom; end else begin tmp := zden.re / zden.im; denom := zden.im + zden.re * tmp; z.re := (znum.im + znum.re * tmp) / denom; z.im := (-znum.re + znum.im * tmp) / denom; end; end; operator / (znum : complex; r : real) z : complex; { division : z := znum / r } begin z.re := znum.re / r; z.im := znum.im / r; end; operator / (r : real; zden : complex) z : complex; { division : z := r / zden } var denom : real; begin with zden do denom := (re * re) + (im * im); { generates a fpu exception if denom=0 as for reals } z.re := (r * zden.re) / denom; z.im := - (r * zden.im) / denom; end; function cmod (z : complex): real; { module : r = |z| } begin with z do cmod := sqrt((re * re) + (im * im)); end; function carg (z : complex): real; { argument : 0 / z = p ei0 } begin carg := arctan2(z.im, z.re); end; function cong (z : complex) : complex; { complex conjugee : if z := x + i.y then cong is x - i.y } begin cong.re := z.re; cong.im := - z.im; end; function cinv (z : complex) : complex; { inverse : r := 1 / z } var denom : real; begin with z do denom := (re * re) + (im * im); { generates a fpu exception if denom=0 as for reals } cinv.re:=z.re/denom; cinv.im:=-z.im/denom; end; operator = (z1, z2 : complex) b : boolean; { returns TRUE if z1 = z2 } begin b := (z1.re = z2.re) and (z1.im = z2.im); end; operator = (z1 : complex; r :real) b : boolean; { returns TRUE if z1 = r } begin b := (z1.re = r) and (z1.im = 0.0) end; operator = (r : real; z1 : complex) b : boolean; { returns TRUE if z1 = r } begin b := (z1.re = r) and (z1.im = 0.0) end; { fonctions elementaires } function cexp (z : complex) : complex; { exponantial : r := exp(z) } { exp(x + iy) = exp(x).exp(iy) = exp(x).[cos(y) + i sin(y)] } var expz : real; begin expz := exp(z.re); cexp.re := expz * cos(z.im); cexp.im := expz * sin(z.im); end; function cln (z : complex) : complex; { natural logarithm : r := ln(z) } { ln( p exp(i0)) = ln(p) + i0 + 2kpi } begin cln.re := ln(cmod(z)); cln.im := arctan2(z.im, z.re); end; function csqrt (z : complex) : complex; { square root : r := sqrt(z) } var root, q : real; begin if (z.re<>0.0) or (z.im<>0.0) then begin root := sqrt(0.5 * (abs(z.re) + cmod(z))); q := z.im / (2.0 * root); if z.re >= 0.0 then begin csqrt.re := root; csqrt.im := q; end else if z.im < 0.0 then begin csqrt.re := - q; csqrt.im := - root end else begin csqrt.re := q; csqrt.im := root end end else csqrt := z; end; operator ** (z1, z2 : complex) z : complex; { exp : z := z1 ** z2 } begin z := cexp(z2*cln(z1)); end; operator ** (z1 : complex; r : real) z : complex; { multiplication : z := z1 * r } begin z := cexp( r *cln(z1)); end; operator ** (r : real; z1 : complex) z : complex; { multiplication : z := r + z1 } begin z := cexp(z1*ln(r)); end; { direct trigonometric functions } function ccos (z : complex) : complex; { complex cosinus } { cos(x+iy) = cos(x).cos(iy) - sin(x).sin(iy) } { cos(ix) = cosh(x) et sin(ix) = i.sinh(x) } begin ccos.re := cos(z.re) * cosh(z.im); ccos.im := - sin(z.re) * sinh(z.im); end; function csin (z : complex) : complex; { sinus complex } { sin(x+iy) = sin(x).cos(iy) + cos(x).sin(iy) } { cos(ix) = cosh(x) et sin(ix) = i.sinh(x) } begin csin.re := sin(z.re) * cosh(z.im); csin.im := cos(z.re) * sinh(z.im); end; function ctg (z : complex) : complex; { tangente } var ccosz, temp : complex; begin ccosz := ccos(z); temp := csin(z); ctg := temp / ccosz; end; { fonctions trigonometriques inverses } function carc_cos (z : complex) : complex; { arc cosinus complex } { arccos(z) = -i.argch(z) } begin carc_cos := -i*carg_ch(z); end; function carc_sin (z : complex) : complex; { arc sinus complex } { arcsin(z) = -i.argsh(i.z) } begin carc_sin := -i*carg_sh(i*z); end; function carc_tg (z : complex) : complex; { arc tangente complex } { arctg(z) = -i.argth(i.z) } begin carc_tg := -i*carg_th(i*z); end; { hyberbolic complex functions } function cch (z : complex) : complex; { hyberbolic cosinus } { cosh(x+iy) = cosh(x).cosh(iy) + sinh(x).sinh(iy) } { cosh(iy) = cos(y) et sinh(iy) = i.sin(y) } begin cch.re := cosh(z.re) * cos(z.im); cch.im := sinh(z.re) * sin(z.im); end; function csh (z : complex) : complex; { hyberbolic sinus } { sinh(x+iy) = sinh(x).cosh(iy) + cosh(x).sinh(iy) } { cosh(iy) = cos(y) et sinh(iy) = i.sin(y) } begin csh.re := sinh(z.re) * cos(z.im); csh.im := cosh(z.re) * sin(z.im); end; function cth (z : complex) : complex; { hyberbolic complex tangent } { th(x) = sinh(x) / cosh(x) } { cosh(x) > 1 qq x } var temp : complex; begin temp := cch(z); z := csh(z); cth := z / temp; end; { inverse complex hyperbolic functions } function carg_ch (z : complex) : complex; { hyberbolic arg cosinus } { _________ } { argch(z) = -/+ ln(z + i.V 1 - z.z) } begin carg_ch:=-cln(z+i*csqrt(1.0-z*z)); end; function carg_sh (z : complex) : complex; { hyperbolic arc sinus } { ________ } { argsh(z) = ln(z + V 1 + z.z) } begin carg_sh:=cln(z+csqrt(z*z+1.0)); end; function carg_th (z : complex) : complex; { hyperbolic arc tangent } { argth(z) = 1/2 ln((z + 1) / (1 - z)) } begin carg_th:=cln((z+1.0)/(1.0-z))/2.0; end; { functions to write out a complex value } function cstr(z : complex) : string; var istr : string; begin str(z.im,istr); str(z.re,cstr); while istr[1]=' ' do delete(istr,1,1); if z.im<0 then cstr:=cstr+istr+'i' else if z.im>0 then cstr:=cstr+'+'+istr+'i'; end; function cstr(z:complex;len : integer) : string; var istr : string; begin str(z.im:len,istr); while istr[1]=' ' do delete(istr,1,1); str(z.re:len,cstr); if z.im<0 then cstr:=cstr+istr+'i' else if z.im>0 then cstr:=cstr+'+'+istr+'i'; end; function cstr(z:complex;len,dec : integer) : string; var istr : string; begin str(z.im:len:dec,istr); while istr[1]=' ' do delete(istr,1,1); str(z.re:len:dec,cstr); if z.im<0 then cstr:=cstr+istr+'i' else if z.im>0 then cstr:=cstr+'+'+istr+'i'; end; {$else} implementation {$endif FPUNONE} end.