1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
|
{
Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
Contains the base types for the ARM
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
{# Base unit for processor information. This unit contains
enumerations of registers, opcodes, sizes, and other
such things which are processor specific.
}
unit cpubase;
{$i fpcdefs.inc}
interface
uses
cutils,cclasses,
globtype,globals,
cpuinfo,
aasmbase,
cgbase
;
{*****************************************************************************
Assembler Opcodes
*****************************************************************************}
type
TAsmOp= {$i armop.inc}
{ This should define the array of instructions as string }
op2strtable=array[tasmop] of string[11];
const
{ First value of opcode enumeration }
firstop = low(tasmop);
{ Last value of opcode enumeration }
lastop = high(tasmop);
{*****************************************************************************
Registers
*****************************************************************************}
type
{ Number of registers used for indexing in tables }
tregisterindex=0..{$i rarmnor.inc}-1;
const
{ Available Superregisters }
{$i rarmsup.inc}
RS_PC = RS_R15;
{ No Subregisters }
R_SUBWHOLE = R_SUBNONE;
{ Available Registers }
{$i rarmcon.inc}
{ aliases }
NR_PC = NR_R15;
{ Integer Super registers first and last }
first_int_supreg = RS_R0;
first_int_imreg = $10;
{ Float Super register first and last }
first_fpu_supreg = RS_F0;
first_fpu_imreg = $08;
{ MM Super register first and last }
first_mm_supreg = RS_S0;
first_mm_imreg = $20;
{$warning TODO Calculate bsstart}
regnumber_count_bsstart = 64;
regnumber_table : array[tregisterindex] of tregister = (
{$i rarmnum.inc}
);
regstabs_table : array[tregisterindex] of shortint = (
{$i rarmsta.inc}
);
regdwarf_table : array[tregisterindex] of shortint = (
{$i rarmdwa.inc}
);
{ registers which may be destroyed by calls }
VOLATILE_INTREGISTERS = [RS_R0..RS_R3,RS_R12..RS_R15];
VOLATILE_FPUREGISTERS = [RS_F0..RS_F3];
type
totherregisterset = set of tregisterindex;
{*****************************************************************************
Instruction post fixes
*****************************************************************************}
type
{ ARM instructions load/store and arithmetic instructions
can have several instruction post fixes which are collected
in this enumeration
}
TOpPostfix = (PF_None,
{ update condition flags
or floating point single }
PF_S,
{ floating point size }
PF_D,PF_E,PF_P,PF_EP,
{ load/store }
PF_B,PF_SB,PF_BT,PF_H,PF_SH,PF_T,
{ multiple load/store address modes }
PF_IA,PF_IB,PF_DA,PF_DB,PF_FD,PF_FA,PF_ED,PF_EA
);
TRoundingMode = (RM_None,RM_P,RM_M,RM_Z);
const
cgsize2fpuoppostfix : array[OS_NO..OS_F128] of toppostfix = (
PF_E,
PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,
PF_S,PF_D,PF_E,PF_None,PF_None);
oppostfix2str : array[TOpPostfix] of string[2] = ('',
's',
'd','e','p','ep',
'b','sb','bt','h','sh','t',
'ia','ib','da','db','fd','fa','ed','ea');
roundingmode2str : array[TRoundingMode] of string[1] = ('',
'p','m','z');
{*****************************************************************************
Conditions
*****************************************************************************}
type
TAsmCond=(C_None,
C_EQ,C_NE,C_CS,C_CC,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS,
C_GE,C_LT,C_GT,C_LE,C_AL,C_NV
);
const
cond2str : array[TAsmCond] of string[2]=('',
'eq','ne','cs','cc','mi','pl','vs','vc','hi','ls',
'ge','lt','gt','le','al','nv'
);
uppercond2str : array[TAsmCond] of string[2]=('',
'EQ','NE','CS','CC','MI','PL','VS','VC','HI','LS',
'GE','LT','GT','LE','AL','NV'
);
{*****************************************************************************
Flags
*****************************************************************************}
type
TResFlags = (F_EQ,F_NE,F_CS,F_CC,F_MI,F_PL,F_VS,F_VC,F_HI,F_LS,
F_GE,F_LT,F_GT,F_LE);
{*****************************************************************************
Operands
*****************************************************************************}
taddressmode = (AM_OFFSET,AM_PREINDEXED,AM_POSTINDEXED);
tshiftmode = (SM_None,SM_LSL,SM_LSR,SM_ASR,SM_ROR,SM_RRX);
tupdatereg = (UR_None,UR_Update);
pshifterop = ^tshifterop;
tshifterop = record
shiftmode : tshiftmode;
rs : tregister;
shiftimm : byte;
end;
{*****************************************************************************
Constants
*****************************************************************************}
const
max_operands = 4;
{# Constant defining possibly all registers which might require saving }
ALL_OTHERREGISTERS = [];
general_superregisters = [RS_R0..RS_PC];
{# Table of registers which can be allocated by the code generator
internally, when generating the code.
}
{ legend: }
{ xxxregs = set of all possibly used registers of that type in the code }
{ generator }
{ usableregsxxx = set of all 32bit components of registers that can be }
{ possible allocated to a regvar or using getregisterxxx (this }
{ excludes registers which can be only used for parameter }
{ passing on ABI's that define this) }
{ c_countusableregsxxx = amount of registers in the usableregsxxx set }
maxintregs = 15;
{ to determine how many registers to use for regvars }
maxintscratchregs = 3;
usableregsint = [RS_R4..RS_R10];
c_countusableregsint = 7;
maxfpuregs = 8;
fpuregs = [RS_F0..RS_F7];
usableregsfpu = [RS_F4..RS_F7];
c_countusableregsfpu = 4;
mmregs = [RS_D0..RS_D15];
usableregsmm = [RS_D8..RS_D15];
c_countusableregsmm = 8;
maxaddrregs = 0;
addrregs = [];
usableregsaddr = [];
c_countusableregsaddr = 0;
{*****************************************************************************
Operand Sizes
*****************************************************************************}
type
topsize = (S_NO,
S_B,S_W,S_L,S_BW,S_BL,S_WL,
S_IS,S_IL,S_IQ,
S_FS,S_FL,S_FX,S_D,S_Q,S_FV,S_FXX
);
{*****************************************************************************
Constants
*****************************************************************************}
const
firstsaveintreg = RS_R4;
lastsaveintreg = RS_R10;
firstsavefpureg = RS_F4;
lastsavefpureg = RS_F7;
firstsavemmreg = RS_D8;
lastsavemmreg = RS_D15;
maxvarregs = 7;
varregs : Array [1..maxvarregs] of tsuperregister =
(RS_R4,RS_R5,RS_R6,RS_R7,RS_R8,RS_R9,RS_R10);
maxfpuvarregs = 4;
fpuvarregs : Array [1..maxfpuvarregs] of tsuperregister =
(RS_F4,RS_F5,RS_F6,RS_F7);
{*****************************************************************************
Default generic sizes
*****************************************************************************}
{ Defines the default address size for a processor, }
OS_ADDR = OS_32;
{ the natural int size for a processor, }
OS_INT = OS_32;
OS_SINT = OS_S32;
{ the maximum float size for a processor, }
OS_FLOAT = OS_F64;
{ the size of a vector register for a processor }
OS_VECTOR = OS_M32;
{*****************************************************************************
Generic Register names
*****************************************************************************}
{ Stack pointer register }
NR_STACK_POINTER_REG = NR_R13;
RS_STACK_POINTER_REG = RS_R13;
{ Frame pointer register }
RS_FRAME_POINTER_REG = RS_R11;
NR_FRAME_POINTER_REG = NR_R11;
{ Register for addressing absolute data in a position independant way,
such as in PIC code. The exact meaning is ABI specific. For
further information look at GCC source : PIC_OFFSET_TABLE_REGNUM
}
NR_PIC_OFFSET_REG = NR_R9;
{ Results are returned in this register (32-bit values) }
NR_FUNCTION_RETURN_REG = NR_R0;
RS_FUNCTION_RETURN_REG = RS_R0;
{ Low part of 64bit return value }
NR_FUNCTION_RETURN64_LOW_REG = NR_R0;
RS_FUNCTION_RETURN64_LOW_REG = RS_R0;
{ High part of 64bit return value }
NR_FUNCTION_RETURN64_HIGH_REG = NR_R1;
RS_FUNCTION_RETURN64_HIGH_REG = RS_R1;
{ The value returned from a function is available in this register }
NR_FUNCTION_RESULT_REG = NR_FUNCTION_RETURN_REG;
RS_FUNCTION_RESULT_REG = RS_FUNCTION_RETURN_REG;
{ The lowh part of 64bit value returned from a function }
NR_FUNCTION_RESULT64_LOW_REG = NR_FUNCTION_RETURN64_LOW_REG;
RS_FUNCTION_RESULT64_LOW_REG = RS_FUNCTION_RETURN64_LOW_REG;
{ The high part of 64bit value returned from a function }
NR_FUNCTION_RESULT64_HIGH_REG = NR_FUNCTION_RETURN64_HIGH_REG;
RS_FUNCTION_RESULT64_HIGH_REG = RS_FUNCTION_RETURN64_HIGH_REG;
NR_FPU_RESULT_REG = NR_F0;
NR_MM_RESULT_REG = NR_NO;
NR_RETURN_ADDRESS_REG = NR_FUNCTION_RETURN_REG;
{ Offset where the parent framepointer is pushed }
PARENT_FRAMEPOINTER_OFFSET = 0;
{*****************************************************************************
GCC /ABI linking information
*****************************************************************************}
const
{ Registers which must be saved when calling a routine declared as
cppdecl, cdecl, stdcall, safecall, palmossyscall. The registers
saved should be the ones as defined in the target ABI and / or GCC.
This value can be deduced from the CALLED_USED_REGISTERS array in the
GCC source.
}
saved_standard_registers : array[0..6] of tsuperregister =
(RS_R4,RS_R5,RS_R6,RS_R7,RS_R8,RS_R9,RS_R10);
{ Required parameter alignment when calling a routine declared as
stdcall and cdecl. The alignment value should be the one defined
by GCC or the target ABI.
The value of this constant is equal to the constant
PARM_BOUNDARY / BITS_PER_UNIT in the GCC source.
}
std_param_align = 4;
{*****************************************************************************
Helpers
*****************************************************************************}
{ Returns the tcgsize corresponding with the size of reg.}
function reg_cgsize(const reg: tregister) : tcgsize;
function cgsize2subreg(s:Tcgsize):Tsubregister;
function is_calljmp(o:tasmop):boolean;
procedure inverse_flags(var f: TResFlags);
function flags_to_cond(const f: TResFlags) : TAsmCond;
function findreg_by_number(r:Tregister):tregisterindex;
function std_regnum_search(const s:string):Tregister;
function std_regname(r:Tregister):string;
function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
procedure shifterop_reset(var so : tshifterop);
function is_pc(const r : tregister) : boolean;
function is_shifter_const(d : aint;var imm_shift : byte) : boolean;
implementation
uses
rgBase,verbose;
const
std_regname_table : array[tregisterindex] of string[7] = (
{$i rarmstd.inc}
);
regnumber_index : array[tregisterindex] of tregisterindex = (
{$i rarmrni.inc}
);
std_regname_index : array[tregisterindex] of tregisterindex = (
{$i rarmsri.inc}
);
function cgsize2subreg(s:Tcgsize):Tsubregister;
begin
cgsize2subreg:=R_SUBWHOLE;
end;
function reg_cgsize(const reg: tregister): tcgsize;
const subreg2cgsize:array[Tsubregister] of Tcgsize =
(OS_NO,OS_8,OS_8,OS_16,OS_32,OS_64,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO);
begin
case getregtype(reg) of
R_INTREGISTER :
reg_cgsize:=OS_32;
R_FPUREGISTER :
reg_cgsize:=OS_F80;
else
internalerror(200303181);
end;
end;
function is_calljmp(o:tasmop):boolean;
begin
{ This isn't 100% perfect because the arm allows jumps also by writing to PC=R15.
To overcome this problem we simply forbid that FPC generates jumps by loading R15 }
is_calljmp:= o in [A_B,A_BL,A_BX,A_BLX];
end;
procedure inverse_flags(var f: TResFlags);
const
inv_flags: array[TResFlags] of TResFlags =
(F_NE,F_EQ,F_CC,F_CS,F_PL,F_MI,F_VC,F_VS,F_LS,F_HI,
F_LT,F_GE,F_LE,F_GT);
begin
f:=inv_flags[f];
end;
function flags_to_cond(const f: TResFlags) : TAsmCond;
const
flag_2_cond: array[F_EQ..F_LE] of TAsmCond =
(C_EQ,C_NE,C_CS,C_CC,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS,
C_GE,C_LT,C_GT,C_LE);
begin
if f>high(flag_2_cond) then
internalerror(200112301);
result:=flag_2_cond[f];
end;
function findreg_by_number(r:Tregister):tregisterindex;
begin
result:=rgBase.findreg_by_number_table(r,regnumber_index);
end;
function std_regnum_search(const s:string):Tregister;
begin
result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
end;
function std_regname(r:Tregister):string;
var
p : tregisterindex;
begin
p:=findreg_by_number_table(r,regnumber_index);
if p<>0 then
result:=std_regname_table[p]
else
result:=generic_regname(r);
end;
procedure shifterop_reset(var so : tshifterop);
begin
FillChar(so,sizeof(so),0);
end;
function is_pc(const r : tregister) : boolean;
begin
is_pc:=(r=NR_R15);
end;
function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
const
inverse: array[TAsmCond] of TAsmCond=(C_None,
C_NE,C_EQ,C_CC,C_CS,C_PL,C_MI,C_VC,C_VS,C_LS,C_HI,
C_LT,C_GE,C_LE,C_GT,C_None,C_None
);
begin
result := inverse[c];
end;
function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
begin
result := c1 = c2;
end;
function rotl(d : dword;b : byte) : dword;
begin
result:=(d shr (32-b)) or (d shl b);
end;
function is_shifter_const(d : aint;var imm_shift : byte) : boolean;
var
i : longint;
begin
for i:=0 to 15 do
begin
if (dword(d) and not(rotl($ff,i*2)))=0 then
begin
imm_shift:=i*2;
result:=true;
exit;
end;
end;
result:=false;
end;
end.
|