summaryrefslogtreecommitdiff
path: root/FreeRTOS/Demo/SuperH_SH7216_Renesas/RTOSDemo/main.c
blob: 6744b5bdab00b9591e3e563f14a10e33b79ec704 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
/*
 * FreeRTOS Kernel V10.4.0
 * Copyright (C) 2020 Amazon.com, Inc. or its affiliates.  All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy of
 * this software and associated documentation files (the "Software"), to deal in
 * the Software without restriction, including without limitation the rights to
 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
 * the Software, and to permit persons to whom the Software is furnished to do so,
 * subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * http://www.FreeRTOS.org
 * http://aws.amazon.com/freertos
 *
 * 1 tab == 4 spaces!
 */



/*
 * Creates all the demo application tasks, then starts the scheduler.  The WEB
 * documentation provides more details of the standard demo application tasks,
 * which provide no particular functionality but do provide a good example of
 * how to use the FreeRTOS API.  In addition to the standard demo tasks, the 
 * following tasks and tests are defined and/or created within this file:
 *
 * Webserver ("uIP") task - This serves a number of dynamically generated WEB
 * pages to a standard WEB browser.  The IP and MAC addresses are configured by
 * constants defined at the bottom of FreeRTOSConfig.h.  Use either a standard
 * Ethernet cable to connect through a hug, or a cross over (point to point)
 * cable to connect directly.  Ensure the IP address used is compatible with the
 * IP address of the machine running the browser - the easiest way to achieve
 * this is to ensure the first three octets of the IP addresses are the same.
 *
 * "Reg test" tasks - These fill the registers with known values, then check
 * that each register still contains its expected value.  Each task uses
 * different values.  The tasks run with very low priority so get preempted very
 * frequently.  A register containing an unexpected value is indicative of an
 * error in the context switching mechanism.  Both standard and floating point
 * registers are checked.  The nature of the reg test tasks necessitates that
 * they are written in assembly code.  They are defined in regtest.src.
 *
 * "math" tasks - These are a set of 8 tasks that perform various double
 * precision floating point calculations in order to check that the tasks 
 * floating point registers are being correctly saved and restored during
 * context switches.  The math tasks are defined in flop.c.
 *
 * "Check" task - This only executes every five seconds but has a high priority
 * to ensure it gets processor time.  Its main function is to check that all the
 * standard demo tasks are still operational.  While no errors have been
 * discovered the check task will toggle an LED every 5 seconds - the toggle
 * rate increasing to 200ms being a visual indication that at least one task has
 * reported unexpected behaviour.
 *
 * *NOTE 1* If LED5 is toggling every 5 seconds then all the demo application
 * tasks are executing as expected and no errors have been reported in any 
 * tasks.  The toggle rate increasing to 200ms indicates that at least one task
 * has reported unexpected behaviour.
 * 
 * *NOTE 2* This file and flop.c both demonstrate the use of 
 * xPortUsesFloatingPoint() which informs the kernel that a task should maintain
 * a floating point context.
 *
 * *NOTE 3* vApplicationSetupTimerInterrupt() is called by the kernel to let
 * the application set up a timer to generate the tick interrupt.  In this
 * example a compare match timer is used for this purpose.  
 * vApplicationTickHook() is used to clear the timer interrupt and relies on
 * configUSE_TICK_HOOK being set to 1 in FreeRTOSConfig.h.
 *
 * *NOTE 4* The traceTASK_SWITCHED_IN and traceTASK_SWITCHED_OUT trace hooks
 * are used to save and restore the floating point context respectively for
 * those tasks that require it (those for which xPortUsesFloatingPoint() has
 * been called).
 * 
 * *NOTE 5* Any interrupt that can cause a context switch requires an asm 
 * wrapper and must be assigned an interrupt priority of 
 * portKERNEL_INTERRUPT_PRIORITY.
 *
 * *NOTE 6* vSetupClockForRunTimeStats() is called by the kernel (via the 
 * portCONFIGURE_TIMER_FOR_RUN_TIME_STATS()) macro to configure an MTU channel
 * to produce a time base that is used to log how much processor time each task
 * is consuming.  The MTU is used to generate a high(ish) frequency interrupt,
 * and so also provides an example of how interrupts that don't make use of the
 * FreeRTOS kernel can be assigned a priority above any priority used by the
 * kernel itself.
 */

/* Kernel includes. */
#include "FreeRTOS.h"
#include "task.h"

/* Demo application includes. */
#include "BlockQ.h"
#include "death.h"
#include "integer.h"
#include "blocktim.h"
#include "flash.h"
#include "partest.h"
#include "semtest.h"
#include "PollQ.h"
#include "GenQTest.h"
#include "QPeek.h"
#include "recmutex.h"
#include "flop.h"

/* Constants required to configure the hardware. */
#define mainFRQCR_VALUE 					( 0x0303 )	/* Input = 12.5MHz, I Clock = 200MHz, B Clock = 50MHz, P Clock = 50MHz */

/* Task priorities. */
#define mainQUEUE_POLL_PRIORITY				( tskIDLE_PRIORITY + 1 )
#define mainCHECK_TASK_PRIORITY				( tskIDLE_PRIORITY + 3 )
#define mainSEM_TEST_PRIORITY				( tskIDLE_PRIORITY + 1 )
#define mainBLOCK_Q_PRIORITY				( tskIDLE_PRIORITY + 2 )
#define mainCREATOR_TASK_PRIORITY           ( tskIDLE_PRIORITY + 3 )
#define mainFLASH_TASK_PRIORITY				( tskIDLE_PRIORITY + 1 )
#define mainuIP_TASK_PRIORITY				( tskIDLE_PRIORITY + 2 )
#define mainINTEGER_TASK_PRIORITY           ( tskIDLE_PRIORITY )
#define mainGEN_QUEUE_TASK_PRIORITY			( tskIDLE_PRIORITY )
#define mainFLOP_TASK_PRIORITY				( tskIDLE_PRIORITY )

/* The WEB server uses string handling functions, which in turn use a bit more
stack than most of the other tasks. */
#define mainuIP_STACK_SIZE					( configMINIMAL_STACK_SIZE * 3 )

/* The LED toggled by the check task. */
#define mainCHECK_LED						( 5 )

/* The rate at which mainCHECK_LED will toggle when all the tasks are running
without error. */
#define mainNO_ERROR_CYCLE_TIME				( 5000 / portTICK_PERIOD_MS )

/* The rate at which mainCHECK_LED will toggle when an error has been reported
by at least one task. */
#define mainERROR_CYCLE_TIME				( 200 / portTICK_PERIOD_MS )

/*
 * vApplicationMallocFailedHook() will only be called if
 * configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h.  It is a hook
 * function that will execute if a call to pvPortMalloc() fails.
 * pvPortMalloc() is called internally by the kernel whenever a task, queue or
 * semaphore is created.  It is also called by various parts of the demo
 * application.  
 */
void vApplicationMallocFailedHook( void );

/*
 * vApplicationIdleHook() will only be called if configUSE_IDLE_HOOK is set to 1
 * in FreeRTOSConfig.h.  It is a hook function that is called on each iteration
 * of the idle task.  It is essential that code added to this hook function
 * never attempts to block in any way (for example, call xQueueReceive() with
 * a block time specified).  If the application makes use of the vTaskDelete()
 * API function (as this demo application does) then it is also important that
 * vApplicationIdleHook() is permitted to return to its calling function because
 * it is the responsibility of the idle task to clean up memory allocated by the
 * kernel to any task that has since been deleted.
 */
void vApplicationIdleHook( void );

/*
 * Just sets up clocks, ports, etc. used by the demo application.
 */
static void prvSetupHardware( void );

/*
 * The check task as described at the top of this file.
 */
static void prvCheckTask( void *pvParameters );

/*
 * The reg test tasks as described at the top of this file.
 */
extern void vRegTest1Task( void *pvParameters );
extern void vRegTest2Task( void *pvParameters );

/*
 * Contains the implementation of the WEB server.
 */
extern void vuIP_Task( void *pvParameters );

/*
 * The interrupt handler for the MTU - which is used to maintain the time base
 * used by the run time stats.
 */
#pragma interrupt MTU_Match
void MTU_Match( void );

/*-----------------------------------------------------------*/

/* Variables that are incremented on each iteration of the reg test tasks - 
provided the tasks have not reported any errors.  The check task inspects these
variables to ensure they are still incrementing as expected. */
volatile unsigned long ulRegTest1CycleCount = 0UL, ulRegTest2CycleCount = 0UL;

/* The status message that is displayed at the bottom of the "task stats" WEB
page, which is served by the uIP task. */
const char *pcStatusMessage = "All tasks executing without error.";

/* The time use for the run time stats. */
unsigned long ulRunTime = 0UL;

/*-----------------------------------------------------------*/

/*
 * Creates the majority of the demo application tasks before starting the
 * scheduler.
 */
void main(void)
{
TaskHandle_t xCreatedTask;

	prvSetupHardware();

	/* Start the reg test tasks which test the context switching mechanism. */
	xTaskCreate( vRegTest1Task, "RegTst1", configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY, &xCreatedTask );
	xPortUsesFloatingPoint( xCreatedTask );
	
	xTaskCreate( vRegTest2Task, "RegTst2", configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY, &xCreatedTask );
	xPortUsesFloatingPoint( xCreatedTask );

	xTaskCreate( vuIP_Task, "uIP", mainuIP_STACK_SIZE, NULL, mainuIP_TASK_PRIORITY, NULL );

	/* Start the check task as described at the top of this file. */
	xTaskCreate( prvCheckTask, "Check", configMINIMAL_STACK_SIZE, NULL, mainCHECK_TASK_PRIORITY, NULL );

	/* Start the standard demo tasks.  These don't perform any particular useful
	functionality, other than to demonstrate the FreeRTOS API being used. */
	vStartBlockingQueueTasks( mainBLOCK_Q_PRIORITY );
	vCreateBlockTimeTasks();
    vStartSemaphoreTasks( mainSEM_TEST_PRIORITY );
    vStartPolledQueueTasks( mainQUEUE_POLL_PRIORITY );
    vStartIntegerMathTasks( mainINTEGER_TASK_PRIORITY );
    vStartGenericQueueTasks( mainGEN_QUEUE_TASK_PRIORITY );
	vStartLEDFlashTasks( mainFLASH_TASK_PRIORITY );
    vStartQueuePeekTasks();
	vStartRecursiveMutexTasks();
	
	/* Start the math tasks as described at the top of this file. */
	vStartMathTasks( mainFLOP_TASK_PRIORITY );

	/* The suicide tasks must be created last as they need to know how many
	tasks were running prior to their creation in order to ascertain whether
	or not the correct/expected number of tasks are running at any given time. */
    vCreateSuicidalTasks( mainCREATOR_TASK_PRIORITY );

	/* Start the tasks running. */
	vTaskStartScheduler();

	/* Will only get here if there was insufficient heap memory to create the idle
    task.  Increase the configTOTAL_HEAP_SIZE setting in FreeRTOSConfig.h. */
	for( ;; );
}
/*-----------------------------------------------------------*/

static void prvCheckTask( void *pvParameter )
{
TickType_t xNextWakeTime, xCycleFrequency = mainNO_ERROR_CYCLE_TIME;
unsigned long ulLastRegTest1CycleCount = 0UL, ulLastRegTest2CycleCount = 0UL;

	/* Just to remove compiler warning. */
	( void ) pvParameter;

	/* Initialise xNextWakeTime - this only needs to be done once. */
	xNextWakeTime = xTaskGetTickCount();

	for( ;; )
	{
		/* Place this task in the blocked state until it is time to run again. */
		vTaskDelayUntil( &xNextWakeTime, xCycleFrequency );
		
		/* Inspect all the other tasks to ensure none have experienced any errors. */
		if( xAreGenericQueueTasksStillRunning() != pdTRUE )
		{
			/* Increase the rate at which this task cycles, which will increase the
			rate at which mainCHECK_LED flashes to give visual feedback that an error
			has occurred. */
			xCycleFrequency = mainERROR_CYCLE_TIME;
			pcStatusMessage = "Error in GenQ test.";
		}
		else if( xAreQueuePeekTasksStillRunning() != pdTRUE )
		{
			xCycleFrequency = mainERROR_CYCLE_TIME;
			pcStatusMessage = "Error in Queue Peek test.";
		}
		else if( xAreBlockingQueuesStillRunning() != pdTRUE )
		{
			xCycleFrequency = mainERROR_CYCLE_TIME;
			pcStatusMessage = "Error in Blocking Queue test.";
		}
		else if( xAreBlockTimeTestTasksStillRunning() != pdTRUE )
		{
			xCycleFrequency = mainERROR_CYCLE_TIME;
			pcStatusMessage = "Error in BlockTim test.";
		}
	    else if( xAreSemaphoreTasksStillRunning() != pdTRUE )
	    {
	        xCycleFrequency = mainERROR_CYCLE_TIME;
			pcStatusMessage = "Error in Semaphore test.";
	    }
	    else if( xArePollingQueuesStillRunning() != pdTRUE )
	    {
	        xCycleFrequency = mainERROR_CYCLE_TIME;
			pcStatusMessage = "Error in Polling Queue test.";
	    }
	    else if( xIsCreateTaskStillRunning() != pdTRUE )
	    {
	        xCycleFrequency = mainERROR_CYCLE_TIME;
			pcStatusMessage = "Error in Create test.";
	    }
	    else if( xAreIntegerMathsTaskStillRunning() != pdTRUE )
	    {
	        xCycleFrequency = mainERROR_CYCLE_TIME;
			pcStatusMessage = "Error in integer Math test.";
	    }
	    else if( xAreRecursiveMutexTasksStillRunning() != pdTRUE )
	    {
	    	xCycleFrequency = mainERROR_CYCLE_TIME;
			pcStatusMessage = "Error in recursive mutex test.";
	    }
		else if( xAreMathsTaskStillRunning() != pdTRUE )
		{
			xCycleFrequency = mainERROR_CYCLE_TIME;
			pcStatusMessage = "Error in floating point Math test.";
		}

		/* Check the reg test tasks are still cycling.  They will stop incrementing
		their loop counters if they encounter an error. */
		if( ulRegTest1CycleCount == ulLastRegTest1CycleCount )
		{
			xCycleFrequency = mainERROR_CYCLE_TIME;
			pcStatusMessage = "Error in RegTest.";
		}

		if( ulRegTest2CycleCount == ulLastRegTest2CycleCount )
		{
			xCycleFrequency = mainERROR_CYCLE_TIME;
			pcStatusMessage = "Error in RegTest.";
		}
		
		ulLastRegTest1CycleCount = ulRegTest1CycleCount;
		ulLastRegTest2CycleCount = ulRegTest2CycleCount;
		
		/* Toggle the check LED to give an indication of the system status.  If the
		LED toggles every 5 seconds then everything is ok.  A faster toggle indicates
		an error. */
		vParTestToggleLED( mainCHECK_LED );
	}
}
/*-----------------------------------------------------------*/

void vApplicationMallocFailedHook( void )
{
	/* A call to vPortMalloc() failed, probably during the creation of a task,
	queue or semaphore.  Inspect pxCurrentTCB to find which task is currently
	executing. */
	for( ;; );
}
/*-----------------------------------------------------------*/

void vApplicationIdleHook( void )
{
	/* Code can be added to the idle task here.  This function must *NOT* attempt
	to block.  Also, if the application uses the vTaskDelete() API function then
	this function must return regularly to ensure the idle task gets a chance to
	clean up the memory used by deleted tasks. */
}
/*-----------------------------------------------------------*/

void vApplicationStackOverflowHook( TaskHandle_t pxTask, char *pcTaskName )
{
	/* Just to remove compiler warnings.  This function will only actually
	get called if configCHECK_FOR_STACK_OVERFLOW is set to a non zero value.
	By default this demo does not use the stack overflow checking functionality
	as the SuperH will normally execute an exception if the stack overflows. */
	( void ) pxTask;
	( void ) pcTaskName;
	
	taskDISABLE_INTERRUPTS();
	for( ;; );
}
/*-----------------------------------------------------------*/

static void prvSetupHardware( void )
{
volatile unsigned long ul;

	/* Set the CPU and peripheral clocks. */
	CPG.FRQCR.WORD = mainFRQCR_VALUE;
	
	/* Wait for the clock to settle. */
	for( ul = 0; ul < 99; ul++ )
	{
		nop();
	}

	/* Initialise the ports used to toggle LEDs. */
	vParTestInitialise();	
}
/*-----------------------------------------------------------*/

void vApplicationSetupTimerInterrupt( void )
{
/* The peripheral clock is divided by 32 before feeding the compare match
peripheral (CMT). */
const unsigned long ulCompareMatch = ( configPERIPHERAL_CLOCK_HZ / ( configTICK_RATE_HZ * 32 ) ) + 1;

	/* Configure a timer to create the RTOS tick interrupt.  This example uses
	the compare match timer, but the multi function timer or possible even the
	watchdog timer could also be used.  Ensure vPortTickInterrupt() is installed
	as the interrupt handler for whichever peripheral is used. */
	
	/* Turn the CMT on. */
	STB.CR4.BIT._CMT = 0;
	
	/* Set the compare match value for the required tick frequency. */
	CMT0.CMCOR = ( unsigned short ) ulCompareMatch;
	
	/* Divide the peripheral clock by 32. */
	CMT0.CMCSR.BIT.CKS = 0x01;
	
	/* Set the CMT interrupt priority - the interrupt priority must be
	configKERNEL_INTERRUPT_PRIORITY no matter which peripheral is used to generate
	the tick interrupt. */
	INTC.IPR08.BIT._CMT0 = portKERNEL_INTERRUPT_PRIORITY;
	
	/* Clear the interrupt flag. */
	CMT0.CMCSR.BIT.CMF = 0;
	
	/* Enable the compare match interrupt. */
	CMT0.CMCSR.BIT.CMIE = 0x01;
	
	/* Start the timer. */
	CMT.CMSTR.BIT.STR0 = 0x01;
}
/*-----------------------------------------------------------*/

void vApplicationTickHook( void )
{
	/* Clear the tick inerrupt.  This is called from an interrupt context. */
	CMT0.CMCSR.BIT.CMF = 0;
}
/*-----------------------------------------------------------*/

void vSetupClockForRunTimeStats( void )
{
	/* Configure an MTU channel to generate a periodic interrupt that is used
	as the run time stats time base.  The run time stats keep a track of how
	much processing time each task is using. */

	/* Turn the MTU2 on. */
	STB.CR3.BIT._MTU2 = 0;
		
	/* Clear counter on compare match A. */
	MTU20.TCR.BIT.CCLR = 0x01;
	
	/* Compare match value to give very approximately 10 interrupts per 
	millisecond. */
	MTU20.TGRA = 5000;
	
	/* Ensure the interrupt is clear. */
	MTU20.TSR.BIT.TGFA = 0;
		
	/* Enable the compare match interrupt. */
	MTU20.TIER.BIT.TGIEA = 0x01;	
	
	/* Set the interrupt priority. */
	INTC.IPR09.BIT._MTU20G = portKERNEL_INTERRUPT_PRIORITY + 1;
	
	/* Start the count. */
	MTU2.TSTR.BIT.CST0 = 1;
}
/*-----------------------------------------------------------*/

void MTU_Match( void )
{
volatile unsigned char ucStatus;

	/* Increment the run time stats time base. */
	ulRunTime++;

	/* Clear the interrupt. */
	ucStatus = MTU20.TSR.BYTE;
	MTU20.TSR.BIT.TGFA = 0;
}
/*-----------------------------------------------------------*/

char *pcGetTaskStatusMessage( void )
{
	/* Not bothered about a critical section here.  This just returns a string
	that is displaed on the "Task Stats" WEB page served by this demo. */
	return pcStatusMessage;
}
/*-----------------------------------------------------------*/