summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAnurag Thakur <anurag105csec21@bpitindia.edu.in>2022-11-19 10:42:07 +0530
committerAnurag Thakur <anurag105csec21@bpitindia.edu.in>2022-11-19 10:45:39 +0530
commit4b77d947c574d8fa875c0b5c974f5d98c0e0a9d2 (patch)
treeb03a82f7a6a1b164b9a0dd0f48a6808efcf7c512
parentf126946b6a87788504e098d24a02bf6c7ef9eff8 (diff)
downloadfreetype2-4b77d947c574d8fa875c0b5c974f5d98c0e0a9d2.tar.gz
[dense] Add drawing functions to rasterizer
* src/dense/ftdense.c: (dense_render_line, dense_render_quadratic, dense_render_cubic, dense_render_glyph, dense_raster_render, Lerp): New Functions
-rw-r--r--src/dense/ftdense.c268
1 files changed, 264 insertions, 4 deletions
diff --git a/src/dense/ftdense.c b/src/dense/ftdense.c
index 80eab48a2..d2a4cde84 100644
--- a/src/dense/ftdense.c
+++ b/src/dense/ftdense.c
@@ -32,6 +32,15 @@ typedef struct dense_TRaster_
} dense_TRaster, *dense_PRaster;
+/* Linear interpolation between P0 and P1 */
+static FT_Vector
+Lerp( float T, FT_Vector P0, FT_Vector P1 )
+{
+ FT_Vector p;
+ p.x = P0.x + T * ( P1.x - P0.x );
+ p.y = P0.y + T * ( P1.y - P0.y );
+ return p;
+}
static int
dense_move_to( const FT_Vector* to, dense_worker* worker )
@@ -54,11 +63,112 @@ dense_line_to( const FT_Vector* to, dense_worker* worker )
}
void
-dense_render_line( dense_worker* worker, TPos tox, TPos toy )
+dense_render_line( dense_worker* worker, FT_Pos tox, FT_Pos toy )
{
- return;
+ float from_x = worker->prev_x;
+ float from_y = worker->prev_y;
+ if ( from_y == toy )
+ return;
+
+
+ from_x /= 256.0;
+ from_y /= 256.0;
+ float to_x = tox / 256.0;
+ float to_y = toy / 256.0;
+
+
+ float dir;
+ if ( from_y < to_y )
+ dir = 1;
+ else
+ {
+ dir = -1;
+ FT_SWAP(from_x, to_x );
+ FT_SWAP(from_y, to_y );
+ }
+
+ // Clip to the height.
+ if ( from_y >= worker->m_h || to_y <= 0 )
+ return;
+
+ float dxdy = ( to_x - from_x ) / (float)( to_y - from_y );
+ if ( from_y < 0 )
+ {
+ from_x -= from_y * dxdy;
+ from_y = 0;
+ }
+ if ( to_y > worker->m_h )
+ {
+ to_x -= ( to_y - worker->m_h ) * dxdy;
+ to_y = (float)worker->m_h;
+ }
+
+ float x = from_x;
+ int y0 = (int)from_y;
+ int y_limit = (int)ceil( to_y );
+ float* m_a = worker->m_a;
+
+ for ( int y = y0; y < y_limit; y++ )
+ {
+ int linestart = y * worker->m_w;
+ float dy = fmin( y + 1.0f, to_y ) - fmax( (float)y, from_y );
+ float xnext = x + dxdy * dy;
+ float d = dy * dir;
+
+ float x0, x1;
+ if ( x < xnext )
+ {
+ x0 = x;
+ x1 = xnext;
+ }
+ else
+ {
+ x0 = xnext;
+ x1 = x;
+ }
+
+ /*
+ It's possible for x0 to be negative on the last scanline because of
+ floating-point inaccuracy That would cause an out-of-bounds array access at
+ index -1.
+ */
+ float x0floor = x0 <= 0.0f ? 0.0f : (float)floor( x0 );
+
+ int x0i = (int)x0floor;
+ float x1ceil = (float)ceil( x1 );
+ int x1i = (int)x1ceil;
+ if ( x1i <= x0i + 1 )
+ {
+ float xmf = 0.5f * ( x + xnext ) - x0floor;
+ m_a[linestart + x0i] += d - d * xmf;
+ m_a[linestart + ( x0i + 1 )] += d * xmf;
+ }
+ else
+ {
+ float s = 1.0f / ( x1 - x0 );
+ float x0f = x0 - x0floor;
+ float a0 = 0.5f * s * ( 1.0f - x0f ) * ( 1.0f - x0f );
+ float x1f = x1 - x1ceil + 1.0f;
+ float am = 0.5f * s * x1f * x1f;
+ m_a[linestart + x0i] += d * a0;
+ if ( x1i == x0i + 2 )
+ m_a[linestart + ( x0i + 1 )] += d * ( 1.0f - a0 - am );
+ else
+ {
+ float a1 = s * ( 1.5f - x0f );
+ m_a[linestart + ( x0i + 1 )] += d * ( a1 - a0 );
+ for ( int xi = x0i + 2; xi < x1i - 1; xi++ )
+ m_a[linestart + xi] += d * s;
+ float a2 = a1 + ( x1i - x0i - 3 ) * s;
+ m_a[linestart + ( x1i - 1 )] += d * ( 1.0f - a2 - am );
+ }
+ m_a[linestart + x1i] += d * am;
+ }
+ x = xnext;
+ }
}
+
static int
dense_conic_to( const FT_Vector* control,
const FT_Vector* to,
@@ -73,7 +183,56 @@ dense_render_quadratic( dense_worker* worker,
FT_Vector* control,
FT_Vector* to )
{
+ /*
+ Calculate devsq as the square of four times the
+ distance from the control point to the midpoint of the curve.
+ This is the place at which the curve is furthest from the
+ line joining the control points.
+
+ 4 x point on curve = p0 + 2p1 + p2
+ 4 x midpoint = 4p1
+
+ The division by four is omitted to save time.
+ */
+
+ FT_Vector aP0 = { DOWNSCALE( worker->prev_x ), DOWNSCALE( worker->prev_y ) };
+ FT_Vector aP1 = { control->x, control->y };
+ FT_Vector aP2 = { to->x, to->y };
+
+ float devx = aP0.x - aP1.x - aP1.x + aP2.x;
+ float devy = aP0.y - aP1.y - aP1.y + aP2.y;
+ float devsq = devx * devx + devy * devy;
+
+ if ( devsq < 0.333f )
+ {
+ dense_line_to( &aP2, worker );
return;
+ }
+
+ /*
+ According to Raph Levien, the reason for the subdivision by n (instead of
+ recursive division by the Casteljau system) is that "I expect the flatness
+ computation to be semi-expensive (it's done once rather than on each potential
+ subdivision) and also because you'll often get fewer subdivisions. Taking a
+ circular arc as a simplifying assumption, where I get n, a recursive approach
+ would get 2^ceil(lg n), which, if I haven't made any horrible mistakes, is
+ expected to be 33% more in the limit".
+ */
+
+ const float tol = 3.0f;
+ int n = (int)floor( sqrt( sqrt( tol * devsq ) ) )/8;
+ FT_Vector p = aP0;
+ float nrecip = 1.0f / ( n + 1.0f );
+ float t = 0.0f;
+ for ( int i = 0; i < n; i++ )
+ {
+ t += nrecip;
+ FT_Vector next = Lerp( t, Lerp( t, aP0, aP1 ), Lerp( t, aP1, aP2 ) );
+ dense_line_to(&next, worker );
+ p = next;
+ }
+
+ dense_line_to( &aP2, worker );
}
static int
@@ -92,7 +251,43 @@ dense_render_cubic( dense_worker* worker,
FT_Vector* control_2,
FT_Vector* to )
{
- return;
+ FT_Vector aP0 = { DOWNSCALE( worker->prev_x ), DOWNSCALE( worker->prev_y ) };
+ FT_Vector aP1 = { control_1->x, control_1->y };
+ FT_Vector aP2 = { control_2->x, control_2->y };
+ FT_Vector aP3 = { to->x, to->y };
+
+ float devx = aP0.x - aP1->x - aP1->x + aP2->x;
+ float devy = aP0.y - aP1->y - aP1->y + aP2->y;
+ float devsq0 = devx * devx + devy * devy;
+ devx = aP1->x - aP2->x - aP2->x + aP3->x;
+ devy = aP1->y - aP2->y - aP2->y + aP3->y;
+ float devsq1 = devx * devx + devy * devy;
+ float devsq = fmax( devsq0, devsq1 );
+
+ if ( devsq < 0.333f )
+ {
+ dense_render_line( worker, aP3->x, aP3->y );
+ return;
+ }
+
+ const float tol = 3.0f;
+ int n = (int)floor( sqrt( sqrt( tol * devsq ) ) ) / 8;
+ FT_Vector p = aP0;
+ float nrecip = 1.0f / ( n + 1.0f );
+ float t = 0.0f;
+ for ( int i = 0; i < n; i++ )
+ {
+ t += nrecip;
+ FT_Vector a = Lerp( t, Lerp( t, aP0, *aP1 ), Lerp( t, *aP1, *aP2 ) );
+ FT_Vector b = Lerp( t, Lerp( t, *aP1, *aP2 ), Lerp( t, *aP2, *aP3 ) );
+ FT_Vector next = Lerp( t, a, b );
+ dense_render_line( worker, next.x, next.y );
+ worker->prev_x = next.x;
+ worker->prev_y = next.y;
+ p = next;
+ }
+
+ dense_line_to( &aP3, worker );
}
static int
@@ -152,13 +347,78 @@ dense_render_glyph( dense_worker* worker, const FT_Bitmap* target )
{
FT_Error error = FT_Outline_Decompose( &( worker->outline ),
&dense_decompose_funcs, worker );
+ // Render into bitmap
+ const float* source = worker->m_a;
+
+ unsigned char* dest = target->buffer;
+ unsigned char* dest_end = target->buffer + worker->m_w * worker->m_h;
+ float value = 0.0f;
+ while ( dest < dest_end )
+ {
+ value += *source++;
+ if ( value > 0.0f )
+ {
+ int n = (int)( fabs( value ) * 255.0f + 0.5f );
+ if ( n > 255 )
+ n = 255;
+ *dest = (unsigned char)n;
+ }
+ else
+ *dest = 0;
+ dest++;
+ }
+
+ free(worker->m_a);
return error;
}
static int
dense_raster_render( FT_Raster raster, const FT_Raster_Params* params )
{
- return 0;
+ const FT_Outline* outline = (const FT_Outline*)params->source;
+ FT_Bitmap* target_map = params->target;
+
+ dense_worker worker[1];
+
+ if ( !raster )
+ return FT_THROW( Invalid_Argument );
+
+ if ( !outline )
+ return FT_THROW( Invalid_Outline );
+
+ worker->outline = *outline;
+
+ if ( !target_map )
+ return FT_THROW( Invalid_Argument );
+
+ /* nothing to do */
+ if ( !target_map->width || !target_map->rows )
+ return 0;
+
+ if ( !target_map->buffer )
+ return FT_THROW( Invalid_Argument );
+
+ worker->m_origin_x = 0;
+ worker->m_origin_y = 0;
+ worker->m_w = target_map->pitch;
+ worker->m_h = target_map->rows;
+
+ int size = worker->m_w * worker->m_h + 4;
+
+ worker->m_a = malloc( sizeof( float ) * size );
+ worker->m_a_size = size;
+
+ memset( worker->m_a, 0, ( sizeof( float ) * size ) );
+ /* exit if nothing to do */
+ if ( worker->m_w <= worker->m_origin_x || worker->m_h <= worker->m_origin_y )
+ {
+ return 0;
+ }
+
+ // Invert the pitch to account for different +ve y-axis direction in dense array
+ // (maybe temporary solution)
+ target_map->pitch *= -1;
+ return dense_render_glyph( worker, target_map );
}
FT_DEFINE_RASTER_FUNCS(