summaryrefslogtreecommitdiff
path: root/src/sdf/ftsdf.c
blob: 7fcd12a3c5625c0f3bf483c02ece37f93c2b476a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478

#include <freetype/internal/ftobjs.h>
#include <freetype/internal/ftdebug.h>
#include <freetype/fttrigon.h>
#include "ftsdf.h"

#include "ftsdferrs.h"

  /**************************************************************************
   *
   * for tracking memory used
   *
   */

#ifdef FT_DEBUG_LEVEL_TRACE

  #undef FT_DEBUG_INNER
  #undef FT_ASSIGNP_INNER

  #define FT_DEBUG_INNER( exp )  ( _ft_debug_file   = __FILE__, \
                                   _ft_debug_lineno = line,     \
                                   (exp) )

  #define FT_ASSIGNP_INNER( p, exp )  ( _ft_debug_file   = __FILE__, \
                                        _ft_debug_lineno = line,     \
                                        FT_ASSIGNP( p, exp ) )

  /* To be used with `FT_Memory::user' in order to track */
  /* memory allocations.                                 */
  typedef struct  SDF_MemoryUser_
  {
    void*    prev_user;
    FT_Long  total_usage;

  } SDF_MemoryUser;

  /* Use these functions while allocating and deallocating  */
  /* memory. These macros restore the previous user pointer */
  /* before calling the allocation functions, which is ess- */
  /* ential if the program is compiled with macro           */
  /* `FT_DEBUG_MEMORY'.                                     */

  static FT_Pointer
  sdf_alloc( FT_Memory  memory,
             FT_Long    size,
             FT_Error*  err, 
             FT_Int     line )
  {
    SDF_MemoryUser*  current_user;
    FT_Pointer       ptr;
    FT_Error         error;


    current_user = (SDF_MemoryUser*)memory->user;
    memory->user = current_user->prev_user;

    if ( !FT_QALLOC( ptr, size ) )      
      current_user->total_usage += size;

    memory->user = (void*)current_user;
    *err = error;

    return ptr;
  }

  static void
  sdf_free( FT_Memory    memory,
             FT_Pointer  ptr,
             FT_Int      line )
  {
    SDF_MemoryUser*  current_user;

    current_user = (SDF_MemoryUser*)memory->user;
    memory->user = current_user->prev_user;

    FT_FREE( ptr );

    memory->user = (void*)current_user;
  }

  #define SDF_ALLOC( ptr, size )                     \
            ( ptr = sdf_alloc( memory, size,         \
                               &error, __LINE__ ),   \
              error != 0 )

  #define SDF_FREE( ptr )                            \
            sdf_free( memory, ptr, __LINE__ )        \

  #define SDF_MEMORY_TRACKER_DECLARE() SDF_MemoryUser  sdf_memory_user

  #define SDF_MEMORY_TRACKER_SETUP()                    \
            sdf_memory_user.prev_user   = memory->user; \
            sdf_memory_user.total_usage = 0;            \
            memory->user = &sdf_memory_user

  #define SDF_MEMORY_TRACKER_DONE()                     \
            memory->user = sdf_memory_user.prev_user;   \
            FT_TRACE0(( "[sdf] sdf_raster_render: "     \
                        "Total memory used = %ld\n",    \
                         sdf_memory_user.total_usage ))

#else

  /* Use the native allocation functions. */
  #define SDF_ALLOC FT_QALLOC
  #define SDF_FREE  FT_FREE

  /* Do nothing */
  #define SDF_MEMORY_TRACKER_DECLARE() FT_DUMMY_STMNT
  #define SDF_MEMORY_TRACKER_SETUP()   FT_DUMMY_STMNT
  #define SDF_MEMORY_TRACKER_DONE()    FT_DUMMY_STMNT

#endif

  /**************************************************************************
   *
   * definitions
   *
   */

  /* If it is defined to 1 then the rasterizer will use Newton-Raphson's  */
  /* method for finding shortest distance from a point to a conic curve.  */
  /* The other method is an analytical method which find the roots of a   */
  /* cubic polynomial to find the shortest distance. But the analytical   */
  /* method has underflow as of now. So, use the Newton's method if there */
  /* is any visible artifacts.                                            */
  #ifndef USE_NEWTON_FOR_CONIC
  #  define USE_NEWTON_FOR_CONIC 1
  #endif

  /* `MAX_NEWTON_DIVISIONS' is the number of intervals the bezier curve   */
  /* is sampled and checked for shortest distance.                        */
  #define MAX_NEWTON_DIVISIONS   4

  /* `MAX_NEWTON_STEPS' is the number of steps of Newton's iterations in  */
  /* each interval of the bezier curve. Basically for each division we    */
  /* run the Newton's approximation (i.e. x -= Q( t ) / Q'( t )) to get   */
  /* the shortest distance.                                               */
  #define MAX_NEWTON_STEPS       4

  /* This is the distance in 16.16 which is used for corner resolving. If */
  /* the difference of two distance is less than `CORNER_CHECK_EPSILON'   */
  /* then they will be checked for corner if they have ambiguity.         */
  #define CORNER_CHECK_EPSILON   32

  #if 0

  /* Coarse grid dimension. Probably will be removed in the future cause  */
  /* coarse grid optimization is the slowest.                             */
  #define CG_DIMEN               8

  #endif

  /**************************************************************************
   *
   * macros
   *
   */

  #define MUL_26D6( a, b ) ( ( ( a ) * ( b ) ) / 64 )
  #define VEC_26D6_DOT( p, q ) ( MUL_26D6( p.x, q.x ) +   \
                                 MUL_26D6( p.y, q.y ) )

  /**************************************************************************
   *
   * structures and enums
   *
   */

  /**************************************************************************
   *
   * @Struct:
   *   SDF_TRaster
   *
   * @Description:
   *   This struct is used in place of `FT_Raster' and is stored within
   *   the internal freetype renderer struct. While rasterizing this is
   *   passed to the `FT_Raster_Render_Func' function, which then can be
   *   used however we want.
   *
   * @Fields:
   *   memory ::
   *     Used internally to allocate intermediate memory while raterizing.
   *
   */
  typedef struct  SDF_TRaster_
  {
    FT_Memory  memory;

  } SDF_TRaster;

  /**************************************************************************
   *
   * @Enum:
   *   SDF_Edge_Type
   *
   * @Description:
   *   Enumeration of all the types of curve present in fonts.
   *
   * @Fields:
   *   SDF_EDGE_UNDEFINED ::
   *     Undefined edge, simply used to initialize and detect errors.
   *
   *   SDF_EDGE_LINE ::
   *     Line segment with start and end point.
   *
   *   SDF_EDGE_CONIC ::
   *     A conic/quadratic bezier curve with start, end and on control
   *     point.
   *
   *   SDF_EDGE_CUBIC ::
   *     A cubic bezier curve with start, end and two control points.
   *
   */
  typedef enum  SDF_Edge_Type_
  {
    SDF_EDGE_UNDEFINED  = 0,
    SDF_EDGE_LINE       = 1,
    SDF_EDGE_CONIC      = 2,
    SDF_EDGE_CUBIC      = 3

  } SDF_Edge_Type;

  /**************************************************************************
   *
   * @Enum:
   *   SDF_Contour_Orientation
   *
   * @Description:
   *   Enumeration of all the orientation of a contour. We determine the
   *   orientation by calculating the area covered by a contour.
   *
   * @Fields:
   *   SDF_ORIENTATION_NONE ::
   *     Undefined orientation, simply used to initialize and detect errors.
   *
   *   SDF_ORIENTATION_CW ::
   *     Clockwise orientation. (positive area covered)
   *
   *   SDF_ORIENTATION_ACW ::
   *     Anti-clockwise orientation. (negative area covered)
   *
   * @Note:
   *   The orientation is independent of the fill rule of a `FT_Outline',
   *   that means the fill will be different for different font formats.
   *   For example, for TrueType fonts clockwise contours are filled, while
   *   for OpenType fonts anti-clockwise contours are filled. To determine
   *   the propert fill rule use `FT_Outline_Get_Orientation'.
   *
   */
  typedef enum  SDF_Contour_Orientation_
  {
    SDF_ORIENTATION_NONE  = 0,
    SDF_ORIENTATION_CW    = 1,
    SDF_ORIENTATION_ACW   = 2

  } SDF_Contour_Orientation;

  /**************************************************************************
   *
   * @Enum:
   *   SDF_Edge
   *
   * @Description:
   *   Represent an edge of a contour.
   *
   * @Fields:
   *   start_pos ::
   *     Start position of an edge. Valid for all types of edges.
   *
   *   end_pos ::
   *     Etart position of an edge. Valid for all types of edges.
   *
   *   control_a ::
   *     A control point of the edge. Valid only for `SDF_EDGE_CONIC'
   *     and `SDF_EDGE_CUBIC'.
   *
   *   control_b ::
   *     Another control point of the edge. Valid only for `SDF_EDGE_CONIC'.
   *
   *   edge_type ::
   *     Type of the edge, see `SDF_Edge_Type' for all possible edge types.
   *
   *   next ::
   *     Used to create a singly linked list, which can be interpreted
   *     as a contour.
   *
   */
  typedef struct  SDF_Edge_
  {
    FT_26D6_Vec    start_pos;
    FT_26D6_Vec    end_pos;
    FT_26D6_Vec    control_a;
    FT_26D6_Vec    control_b;

    SDF_Edge_Type  edge_type;

    struct SDF_Edge_*   next;

  } SDF_Edge;

  /**************************************************************************
   *
   * @Enum:
   *   SDF_Contour
   *
   * @Description:
   *   Represent a complete contour, which contains a list of edges.
   *
   * @Fields:
   *   last_pos ::
   *     Contains the position of the `end_pos' of the last edge
   *     in the list of edges. Useful while decomposing the outline
   *     using `FT_Outline_Decompose'.
   *
   *   edges ::
   *     Linked list of all the edges that make the contour.
   *
   *   next ::
   *     Used to create a singly linked list, which can be interpreted
   *     as a complete shape or `FT_Outline'.
   *
   */
  typedef struct  SDF_Contour_
  {
    FT_26D6_Vec           last_pos;
    SDF_Edge*             edges;

    struct SDF_Contour_*  next;

  } SDF_Contour;

  /**************************************************************************
   *
   * @Enum:
   *   SDF_Shape
   *
   * @Description:
   *   Represent a complete shape which is the decomposition of `FT_Outline'.
   *
   * @Fields:
   *   memory ::
   *     Used internally to allocate memory.
   *
   *   contours ::
   *     Linked list of all the contours that make the shape.
   *
   */
  typedef struct  SDF_Shape_
  {
    FT_Memory     memory;
    SDF_Contour*  contours;

  } SDF_Shape;

  /**************************************************************************
   *
   * @Enum:
   *   SDF_Signed_Distance
   *
   * @Description:
   *   Represent signed distance of a point, i.e. the distance of the
   *   edge nearest to the point.
   *
   * @Fields:
   *   distance ::
   *     Distance of the point from the nearest edge. Can be squared or
   *     absolute depending on the `USE_SQUARED_DISTANCES' parameter
   *     defined in `ftsdfcommon.h'.
   *
   *   cross ::
   *     Cross product of the shortest distance vector (i.e. the vector
   *     the point to the nearest edge) and the direction of the edge
   *     at the nearest point. This is used to resolve any ambiguity
   *     in the sign.
   *
   *   sign ::
   *     Represent weather the distance vector is outside or inside the
   *     contour corresponding to the edge.
   *
   * @Note:
   *   The `sign' may or may not be correct, therefore it must be checked
   *   properly in case there is an ambiguity.
   *
   */
  typedef struct SDF_Signed_Distance_
  {
    FT_16D16      distance;
    FT_16D16      cross;
    FT_Char       sign;       

  } SDF_Signed_Distance;

  /**************************************************************************
   *
   * @Enum:
   *   SDF_Params
   *
   * @Description:
   *   Yet another internal parameters required by the rasterizer.
   *
   * @Fields:
   *   orientation ::
   *     This is not the `SDF_Contour_Orientation', this is the
   *     `FT_Orientation', which determine weather clockwise is to 
   *     be filled or anti-clockwise.
   *
   *   flip_sign ::
   *     Simply flip the sign if this is true. By default the points
   *     filled by the outline are positive.
   *
   *   flip_y ::
   *     If set to true the output bitmap will be upside down. Can be
   *     useful because OpenGL and DirectX have different coordinate
   *     system for textures.
   *
   *   overload_sign ::
   *     In the subdivision and bounding box optimization, the default
   *     outside sign is taken as -1. This parameter can be used to
   *     modify that behaviour. For example, while generating SDF for
   *     single counter-clockwise contour the outside sign should be 1.
   *
   */
  typedef struct SDF_Params_
  {
    FT_Orientation  orientation;
    FT_Bool         flip_sign;
    FT_Bool         flip_y;

    FT_Int          overload_sign;

  } SDF_Params;

  /**************************************************************************
   *
   * constants, initializer and destructor
   *
   */

  static
  const FT_Vector    zero_vector  = { 0, 0 };

  static
  const SDF_Edge     null_edge    = { { 0, 0 }, { 0, 0 },
                                      { 0, 0 }, { 0, 0 },
                                      SDF_EDGE_UNDEFINED, NULL };

  static
  const SDF_Contour  null_contour = { { 0, 0 }, NULL, NULL };

  static
  const SDF_Shape    null_shape   = { NULL, NULL };

  static
  const SDF_Signed_Distance  max_sdf = { INT_MAX, 0, 0 };

  /* Creates a new `SDF_Edge' on the heap and assigns the `edge' */
  /* pointer to the newly allocated memory.                      */
  static FT_Error
  sdf_edge_new( FT_Memory   memory,
                SDF_Edge**  edge )
  {
    FT_Error   error = FT_Err_Ok;
    SDF_Edge*  ptr   = NULL;


    if ( !memory || !edge )
    {
      error = FT_THROW( Invalid_Argument );
      goto Exit;
    }

    if ( !SDF_ALLOC( ptr, sizeof( *ptr ) ) )
    {
      *ptr = null_edge;
      *edge = ptr;
    }

  Exit:
    return error;
  }

  /* Frees the allocated `edge' variable. */
  static void
  sdf_edge_done( FT_Memory   memory,
                 SDF_Edge**  edge )
  {
    if ( !memory || !edge || !*edge )
      return;

    SDF_FREE( *edge );
  }

  /* Creates a new `SDF_Contour' on the heap and assigns  */
  /* the `contour' pointer to the newly allocated memory. */
  static FT_Error
  sdf_contour_new( FT_Memory      memory,
                   SDF_Contour**  contour )
  {
    FT_Error      error = FT_Err_Ok;
    SDF_Contour*  ptr   = NULL;


    if ( !memory || !contour )
    {
      error = FT_THROW( Invalid_Argument );
      goto Exit;
    }

    if ( !SDF_ALLOC( ptr, sizeof( *ptr ) ) )
    {
      *ptr = null_contour;
      *contour = ptr;
    }

  Exit:
    return error;
  }

  /* Frees the allocated `contour' variable and also frees */
  /* the list of edges.                                    */
  static void
  sdf_contour_done( FT_Memory      memory,
                    SDF_Contour**  contour )
  {
    SDF_Edge*  edges;
    SDF_Edge*  temp;

    if ( !memory || !contour || !*contour )
      return;

    edges = (*contour)->edges;

    /* release all the edges */
    while ( edges )
    {
      temp = edges;
      edges = edges->next;

      sdf_edge_done( memory, &temp );
    }

    SDF_FREE( *contour );
  }

  /* Creates a new `SDF_Shape' on the heap and assigns  */
  /* the `shape' pointer to the newly allocated memory. */
  static FT_Error
  sdf_shape_new( FT_Memory    memory,
                 SDF_Shape**  shape )
  {
    FT_Error      error = FT_Err_Ok;
    SDF_Shape*    ptr   = NULL;


    if ( !memory || !shape )
    {
      error = FT_THROW( Invalid_Argument );
      goto Exit;
    }

    if ( !SDF_ALLOC( ptr, sizeof( *ptr ) ) )
    {
      *ptr = null_shape;
      ptr->memory = memory;
      *shape = ptr;
    }

  Exit:
    return error;
  }

  /* Frees the allocated `shape' variable and also frees */
  /* the list of contours.                               */
  static void
  sdf_shape_done( SDF_Shape**  shape )
  {
    FT_Memory     memory;
    SDF_Contour*  contours;
    SDF_Contour*  temp;


    if ( !shape || !*shape )
      return;

    memory = (*shape)->memory;
    contours = (*shape)->contours;

    if ( !memory )
      return;

    /* release all the contours */
    while ( contours )
    {
      temp = contours;
      contours = contours->next;

      sdf_contour_done( memory, &temp );
    }

    /* release the allocated shape struct  */
    SDF_FREE( *shape );
  }

  /**************************************************************************
   *
   * shape decomposition functions
   *
   */

  /* This function is called when walking along a new contour */
  /* so add a new contour to the shape's list.                */
  static FT_Error
  sdf_move_to( const FT_26D6_Vec* to,
               void*              user )
  {
    SDF_Shape*    shape    = ( SDF_Shape* )user;
    SDF_Contour*  contour  = NULL;

    FT_Error      error    = FT_Err_Ok;
    FT_Memory     memory   = shape->memory;


    if ( !to || !user )
    {
      error = FT_THROW( Invalid_Argument );
      goto Exit;
    }

    FT_CALL( sdf_contour_new( memory, &contour ) );

    contour->last_pos = *to;
    contour->next = shape->contours;
    shape->contours = contour;

  Exit:
    return error;
  }

  /* This function is called when there is a line in the  */
  /* contour. The line is from the previous edge point to */
  /* the parameter `to'.                                  */
  static FT_Error
  sdf_line_to( const FT_26D6_Vec*  to,
               void*               user )
  {
    SDF_Shape*    shape    = ( SDF_Shape* )user;
    SDF_Edge*     edge     = NULL;
    SDF_Contour*  contour  = NULL;

    FT_Error      error    = FT_Err_Ok;
    FT_Memory     memory   = shape->memory;


    if ( !to || !user )
    {
      error = FT_THROW( Invalid_Argument );
      goto Exit;
    }

    contour = shape->contours;

    if ( contour->last_pos.x == to->x && 
         contour->last_pos.y == to->y )
      goto Exit;

    FT_CALL( sdf_edge_new( memory, &edge ) );

    edge->edge_type = SDF_EDGE_LINE;
    edge->start_pos = contour->last_pos;
    edge->end_pos   = *to;

    edge->next = contour->edges;
    contour->edges = edge;
    contour->last_pos = *to;

  Exit:
    return error;
  }

  /* This function is called when there is a conic bezier  */
  /* curve in the contour. The bezier is from the previous */
  /* edge point to the parameter `to' with the control     */
  /* point being `control_1'.                              */
  static FT_Error
  sdf_conic_to( const FT_26D6_Vec*  control_1,
                const FT_26D6_Vec*  to,
                void*               user )
  {
    SDF_Shape*    shape    = ( SDF_Shape* )user;
    SDF_Edge*     edge     = NULL;
    SDF_Contour*  contour  = NULL;

    FT_Error      error    = FT_Err_Ok;
    FT_Memory     memory   = shape->memory;


    if ( !control_1 || !to || !user )
    {
      error = FT_THROW( Invalid_Argument );
      goto Exit;
    }

    contour = shape->contours;

    FT_CALL( sdf_edge_new( memory, &edge ) );

    edge->edge_type = SDF_EDGE_CONIC;
    edge->start_pos = contour->last_pos;
    edge->control_a = *control_1;
    edge->end_pos   = *to;

    edge->next = contour->edges;
    contour->edges = edge;
    contour->last_pos = *to;

  Exit:
    return error;
  }

  /* This function is called when there is a cubic bezier  */
  /* curve in the contour. The bezier is from the previous */
  /* edge point to the parameter `to' with one control     */
  /* point being `control_1' and another `control_2'.      */
  static FT_Error
  sdf_cubic_to( const FT_26D6_Vec*  control_1,
                const FT_26D6_Vec*  control_2,
                const FT_26D6_Vec*  to,
                void*               user )
  {
    SDF_Shape*    shape    = ( SDF_Shape* )user;
    SDF_Edge*     edge     = NULL;
    SDF_Contour*  contour  = NULL;

    FT_Error      error    = FT_Err_Ok;
    FT_Memory     memory   = shape->memory;


    if ( !control_2 || !control_1 || !to || !user )
    {
      error = FT_THROW( Invalid_Argument );
      goto Exit;
    }

    contour = shape->contours;

    FT_CALL( sdf_edge_new( memory, &edge ) );

    edge->edge_type = SDF_EDGE_CUBIC;
    edge->start_pos = contour->last_pos;
    edge->control_a = *control_1;
    edge->control_b = *control_2;
    edge->end_pos   = *to;

    edge->next = contour->edges;
    contour->edges = edge;
    contour->last_pos = *to;

  Exit:
    return error;
  }

  /* Construct the struct to hold all four outline */
  /* decomposition functions.                      */
  FT_DEFINE_OUTLINE_FUNCS(
    sdf_decompose_funcs,

    (FT_Outline_MoveTo_Func)  sdf_move_to,   /* move_to  */
    (FT_Outline_LineTo_Func)  sdf_line_to,   /* line_to  */
    (FT_Outline_ConicTo_Func) sdf_conic_to,  /* conic_to */
    (FT_Outline_CubicTo_Func) sdf_cubic_to,  /* cubic_to */

    0,                                       /* shift    */
    0                                        /* delta    */
  )

  /* The function decomposes the outline and puts it */
  /* into the `shape' struct.                        */
  static FT_Error
  sdf_outline_decompose( FT_Outline*  outline,
                         SDF_Shape*   shape )
  {
    FT_Error  error = FT_Err_Ok;


    if ( !outline || !shape )
    {
      error = FT_THROW( Invalid_Argument );
      goto Exit;
    }

    error = FT_Outline_Decompose( outline, 
                                  &sdf_decompose_funcs,
                                  (void*)shape );

  Exit:
    return error;
  }

  /**************************************************************************
   *
   * utility functions
   *
   */

  /* The function returns the control box of a edge. */
  /* The control box is a rectangle in which all the */
  /* control points can fit tightly.                 */
  static FT_CBox
  get_control_box( SDF_Edge  edge )
  {
    FT_CBox  cbox;
    FT_Bool  is_set = 0;


    switch (edge.edge_type) {
    case SDF_EDGE_CUBIC:
    {
      cbox.xMin = edge.control_b.x;
      cbox.xMax = edge.control_b.x;
      cbox.yMin = edge.control_b.y;
      cbox.yMax = edge.control_b.y;

      is_set = 1;
    }
    case SDF_EDGE_CONIC:
    {
      if ( is_set )
      {
        cbox.xMin = edge.control_a.x < cbox.xMin ?
                    edge.control_a.x : cbox.xMin;
        cbox.xMax = edge.control_a.x > cbox.xMax ?
                    edge.control_a.x : cbox.xMax;

        cbox.yMin = edge.control_a.y < cbox.yMin ?
                    edge.control_a.y : cbox.yMin;
        cbox.yMax = edge.control_a.y > cbox.yMax ?
                    edge.control_a.y : cbox.yMax;
      }
      else
      {
        cbox.xMin = edge.control_a.x;
        cbox.xMax = edge.control_a.x;
        cbox.yMin = edge.control_a.y;
        cbox.yMax = edge.control_a.y;

        is_set = 1;
      }
    }
    case SDF_EDGE_LINE:
    {
      if ( is_set )
      {
        cbox.xMin = edge.start_pos.x < cbox.xMin ?
                    edge.start_pos.x : cbox.xMin;
        cbox.xMax = edge.start_pos.x > cbox.xMax ?
                    edge.start_pos.x : cbox.xMax;

        cbox.yMin = edge.start_pos.y < cbox.yMin ?
                    edge.start_pos.y : cbox.yMin;
        cbox.yMax = edge.start_pos.y > cbox.yMax ?
                    edge.start_pos.y : cbox.yMax;
      }
      else
      {
        cbox.xMin = edge.start_pos.x;
        cbox.xMax = edge.start_pos.x;
        cbox.yMin = edge.start_pos.y;
        cbox.yMax = edge.start_pos.y;
      }

      cbox.xMin = edge.end_pos.x < cbox.xMin ?
                  edge.end_pos.x : cbox.xMin;
      cbox.xMax = edge.end_pos.x > cbox.xMax ?
                  edge.end_pos.x : cbox.xMax;

      cbox.yMin = edge.end_pos.y < cbox.yMin ?
                  edge.end_pos.y : cbox.yMin;
      cbox.yMax = edge.end_pos.y > cbox.yMax ?
                  edge.end_pos.y : cbox.yMax;

      break;
    }
    default:
        break;
    }

    return cbox;
  }

  /* The function returns the orientation for a single contour.  */
  /* Note that the orientation is independent of the fill rule.  */
  /* So, for ttf the clockwise has to be filled and the opposite */
  /* for otf fonts.                                              */
  static SDF_Contour_Orientation
  get_contour_orientation ( SDF_Contour*  contour )
  {
    SDF_Edge*  head = NULL;
    FT_26D6    area = 0;


    /* return none if invalid parameters */
    if ( !contour || !contour->edges )
      return SDF_ORIENTATION_NONE;

    head = contour->edges;

    /* Simply calculate the area of the control box for */
    /* all the edges.                                   */
    while ( head )
    {
      switch ( head->edge_type ) {
      case SDF_EDGE_LINE:
      {
        area += MUL_26D6( ( head->end_pos.x - head->start_pos.x ),
                          ( head->end_pos.y + head->start_pos.y ) );
        break;
      }
      case SDF_EDGE_CONIC:
      {
        area += MUL_26D6( head->control_a.x - head->start_pos.x,
                          head->control_a.y + head->start_pos.y );
        area += MUL_26D6( head->end_pos.x - head->control_a.x,
                          head->end_pos.y + head->control_a.y );
        break;
      }
      case SDF_EDGE_CUBIC:
      {
        area += MUL_26D6( head->control_a.x - head->start_pos.x,
                          head->control_a.y + head->start_pos.y );
        area += MUL_26D6( head->control_b.x - head->control_a.x,
                          head->control_b.y + head->control_a.y );
        area += MUL_26D6( head->end_pos.x - head->control_b.x,
                          head->end_pos.y + head->control_b.y );
        break;
      }
      default:
          return SDF_ORIENTATION_NONE;
      }

      head = head->next;
    }

    /* Clockwise contour cover a positive area, and Anti-Clockwise */
    /* contour cover a negitive area.                              */
    if ( area > 0 )
      return SDF_ORIENTATION_CW;
    else
      return SDF_ORIENTATION_ACW;
  }

  /* The function is exactly same as the one    */
  /* in the smooth renderer. It splits a conic  */
  /* into two conic exactly half way at t = 0.5 */
  static void
  split_conic( FT_26D6_Vec*  base )
  {
    FT_26D6  a, b;


    base[4].x = base[2].x;
    a = base[0].x + base[1].x;
    b = base[1].x + base[2].x;
    base[3].x = b / 2;
    base[2].x = ( a + b ) / 4;
    base[1].x = a / 2;

    base[4].y = base[2].y;
    a = base[0].y + base[1].y;
    b = base[1].y + base[2].y;
    base[3].y = b / 2;
    base[2].y = ( a + b ) / 4;
    base[1].y = a / 2;
  }

  /* The function is exactly same as the one    */
  /* in the smooth renderer. It splits a cubic  */
  /* into two cubic exactly half way at t = 0.5 */
  static void
  split_cubic( FT_26D6_Vec*  base )
  {
    FT_26D6  a, b, c;


    base[6].x = base[3].x;
    a = base[0].x + base[1].x;
    b = base[1].x + base[2].x;
    c = base[2].x + base[3].x;
    base[5].x = c / 2;
    c += b;
    base[4].x = c / 4;
    base[1].x = a / 2;
    a += b;
    base[2].x = a / 4;
    base[3].x = ( a + c ) / 8;

    base[6].y = base[3].y;
    a = base[0].y + base[1].y;
    b = base[1].y + base[2].y;
    c = base[2].y + base[3].y;
    base[5].y = c / 2;
    c += b;
    base[4].y = c / 4;
    base[1].y = a / 2;
    a += b;
    base[2].y = a / 4;
    base[3].y = ( a + c ) / 8;
  }

  /* the function splits a conic bezier curve     */
  /* into a number of lines and adds them to      */
  /* a list `out'. The function uses recursion    */
  /* that is why a `max_splits' param is required */
  /* for stopping.                                */
  static FT_Error
  split_sdf_conic( FT_Memory     memory,
                   FT_26D6_Vec*  control_points,
                   FT_Int        max_splits,
                   SDF_Edge**    out )
  {
    FT_Error     error = FT_Err_Ok;
    FT_26D6_Vec  cpos[5];
    SDF_Edge*    left,*  right;


    if ( !memory || !out  )
    {
      error = FT_THROW( Invalid_Argument );
      goto Exit;
    }

    /* split the conic */
    cpos[0] = control_points[0];
    cpos[1] = control_points[1];
    cpos[2] = control_points[2];

    split_conic( cpos );

    /* If max number of splits is done */
    /* then stop and add the lines to  */
    /* the list.                       */
    if ( max_splits <= 2 )
      goto Append;

    /* If not max splits then keep splitting */
    FT_CALL( split_sdf_conic( memory, &cpos[0], max_splits / 2, out ) );
    FT_CALL( split_sdf_conic( memory, &cpos[2], max_splits / 2, out ) );

    /* [NOTE]: This is not an efficient way of   */
    /* splitting the curve. Check the deviation  */
    /* instead and stop if the deviation is less */
    /* than a pixel.                             */

    goto Exit;

  Append:

    /* Allocation and add the lines to the list. */

    FT_CALL( sdf_edge_new( memory, &left) );
    FT_CALL( sdf_edge_new( memory, &right) );

    left->start_pos  = cpos[0];
    left->end_pos    = cpos[2];
    left->edge_type  = SDF_EDGE_LINE;

    right->start_pos = cpos[2];
    right->end_pos   = cpos[4];
    right->edge_type = SDF_EDGE_LINE;

    left->next = right;
    right->next = (*out);
    *out = left;

  Exit:
    return error;
  }

  /* the function splits a cubic bezier curve     */
  /* into a number of lines and adds them to      */
  /* a list `out'. The function uses recursion    */
  /* that is why a `max_splits' param is required */
  /* for stopping.                                */
  static FT_Error
  split_sdf_cubic( FT_Memory     memory,
                   FT_26D6_Vec*  control_points,
                   FT_Int        max_splits,
                   SDF_Edge**    out )
  {
    FT_Error     error = FT_Err_Ok;
    FT_26D6_Vec  cpos[7];
    SDF_Edge*    left,*  right;


    if ( !memory || !out  )
    {
      error = FT_THROW( Invalid_Argument );
      goto Exit;
    }

    /* split the conic */
    cpos[0] = control_points[0];
    cpos[1] = control_points[1];
    cpos[2] = control_points[2];
    cpos[3] = control_points[3];

    split_cubic( cpos );

    /* If max number of splits is done */
    /* then stop and add the lines to  */
    /* the list.                       */
    if ( max_splits <= 2 )
      goto Append;

    /* If not max splits then keep splitting */
    FT_CALL( split_sdf_cubic( memory, &cpos[0], max_splits / 2, out ) );
    FT_CALL( split_sdf_cubic( memory, &cpos[3], max_splits / 2, out ) );

    /* [NOTE]: This is not an efficient way of   */
    /* splitting the curve. Check the deviation  */
    /* instead and stop if the deviation is less */
    /* than a pixel.                             */

    goto Exit;

  Append:

    /* Allocation and add the lines to the list. */

    FT_CALL( sdf_edge_new( memory, &left) );
    FT_CALL( sdf_edge_new( memory, &right) );

    left->start_pos  = cpos[0];
    left->end_pos    = cpos[3];
    left->edge_type  = SDF_EDGE_LINE;

    right->start_pos = cpos[3];
    right->end_pos   = cpos[6];
    right->edge_type = SDF_EDGE_LINE;

    left->next = right;
    right->next = (*out);
    *out = left;

  Exit:
    return error;
  }

  /* This function subdivide and entire shape   */
  /* into line segment such that it doesn't     */
  /* look visually different from the original  */
  /* curve.                                     */
  static FT_Error
  split_sdf_shape( SDF_Shape*  shape )
  {
    FT_Error      error = FT_Err_Ok;
    FT_Memory     memory;

    SDF_Contour*  contours;
    SDF_Contour*  new_contours = NULL;



    if ( !shape || !shape->memory )
    {
      error = FT_THROW( Invalid_Argument );
      goto Exit;
    }

    contours = shape->contours;
    memory = shape->memory;

    /* for each contour */
    while ( contours )
    {
      SDF_Edge*     edges = contours->edges;
      SDF_Edge*     new_edges = NULL;

      SDF_Contour*  tempc;

      /* for each edge */
      while ( edges )
      {
        SDF_Edge*    edge = edges;
        SDF_Edge*    temp;

        switch ( edge->edge_type )
        {
        case SDF_EDGE_LINE:
        {
          /* Just create a duplicate edge in case    */
          /* it is a line. We can use the same edge. */
          FT_CALL( sdf_edge_new( memory, &temp ) );

          ft_memcpy( temp, edge, sizeof( *edge ) );

          temp->next = new_edges;
          new_edges = temp;
          break;
        }
        case SDF_EDGE_CONIC:
        {
          /* Subdivide the curve and add to the list. */
          FT_26D6_Vec  ctrls[3];


          ctrls[0] = edge->start_pos;
          ctrls[1] = edge->control_a;
          ctrls[2] = edge->end_pos;
          error = split_sdf_conic( memory, ctrls, 32, &new_edges );
          break;
        }
        case SDF_EDGE_CUBIC:
        {
          /* Subdivide the curve and add to the list. */
          FT_26D6_Vec  ctrls[4];


          ctrls[0] = edge->start_pos;
          ctrls[1] = edge->control_a;
          ctrls[2] = edge->control_b;
          ctrls[3] = edge->end_pos;
          error = split_sdf_cubic( memory, ctrls, 32, &new_edges );
          break;
        }
        default:
          error = FT_THROW( Invalid_Argument );
          goto Exit;
        }

        edges = edges->next;
      }

      /* add to the contours list */
      FT_CALL( sdf_contour_new( memory, &tempc ) );
      tempc->next   = new_contours;
      tempc->edges  = new_edges;
      new_contours  = tempc;
      new_edges     = NULL;

      /* deallocate the contour */
      tempc = contours;
      contours = contours->next;

      sdf_contour_done( memory, &tempc );
    }

    shape->contours = new_contours;

  Exit:
    return error;
  }

  /**************************************************************************
   *
   * math functions
   *
   */

#if !USE_NEWTON_FOR_CONIC

  /* [NOTE]: All the functions below down until rasterizer */
  /*         can be avoided if we decide to subdivide the  */
  /*         curve into lines.                             */

  /* This function uses newton's iteration to find */
  /* cube root of a fixed point integer.           */
  static FT_16D16
  cube_root( FT_16D16  val )
  {
    /* [IMPORTANT]: This function is not good as it may */
    /* not break, so use a lookup table instead. Or we  */
    /* can use algorithm similar to `square_root'.      */

    FT_Int  v, g, c;


    if ( val == 0 ||
         val == -FT_INT_16D16( 1 ) ||
         val ==  FT_INT_16D16( 1 ) )
      return val;

    v = val < 0 ? -val : val;
    g = square_root( v );
    c = 0;

    while ( 1 )
    {
      c = FT_MulFix( FT_MulFix( g, g ), g ) - v;
      c = FT_DivFix( c, 3 * FT_MulFix( g, g ) );

      g -= c;

      if ( ( c < 0 ? -c : c ) < 30 )
        break;
    }

    return val < 0 ? -g : g;
  }

  /* The function calculate the perpendicular */
  /* using 1 - ( base ^ 2 ) and then use arc  */
  /* tan to compute the angle.                */
  static FT_16D16
  arc_cos( FT_16D16  val )
  {
    FT_16D16  p, b = val;
    FT_16D16  one  = FT_INT_16D16( 1 );


    if ( b >  one ) b =  one;
    if ( b < -one ) b = -one;

    p = one - FT_MulFix( b, b );
    p = square_root( p );

    return FT_Atan2( b, p );
  }

  /* The function compute the roots of a quadratic       */
  /* polynomial, assigns it to `out' and returns the     */
  /* number of real roots of the equation.               */
  /* The procedure can be found at:                      */
  /* https://mathworld.wolfram.com/QuadraticFormula.html */
  static FT_UShort
  solve_quadratic_equation( FT_26D6   a,
                            FT_26D6   b,
                            FT_26D6   c,
                            FT_16D16  out[2] )
  {
    FT_16D16  discriminant = 0;


    a = FT_26D6_16D16( a );
    b = FT_26D6_16D16( b );
    c = FT_26D6_16D16( c );

    if ( a == 0 )
    {
      if ( b == 0 )
        return 0;
      else 
      {
        out[0] = FT_DivFix( -c, b );
        return 1;
      }
    }

    discriminant = FT_MulFix( b, b ) - 4 * FT_MulFix( a, c );

    if ( discriminant < 0 )
      return 0;
    else if ( discriminant == 0 )
    {
      out[0] = FT_DivFix( -b, 2 * a );

      return 1;
    }
    else
    {
      discriminant = square_root( discriminant );
      out[0] = FT_DivFix( -b + discriminant, 2 * a );
      out[1] = FT_DivFix( -b - discriminant, 2 * a );

      return 2;
    }
  }

  /* The function compute the roots of a cubic polynomial */
  /* assigns it to `out' and returns the number of real   */
  /* roots of the equation.                               */
  /* The procedure can be found at:                       */
  /* https://mathworld.wolfram.com/CubicFormula.html      */
  static FT_UShort
  solve_cubic_equation( FT_26D6   a,
                        FT_26D6   b,
                        FT_26D6   c,
                        FT_26D6   d,
                        FT_16D16  out[3] )
  {
    FT_16D16  q              = 0;     /* intermediate      */
    FT_16D16  r              = 0;     /* intermediate      */

    FT_16D16  a2             = b;     /* x^2 coefficients  */
    FT_16D16  a1             = c;     /* x coefficients    */
    FT_16D16  a0             = d;     /* constant          */

    FT_16D16  q3             = 0;
    FT_16D16  r2             = 0;
    FT_16D16  a23            = 0;
    FT_16D16  a22            = 0;
    FT_16D16  a1x2           = 0;


    /* cutoff value for `a' to be a cubic otherwise solve quadratic*/
    if ( a == 0 || FT_ABS( a ) < 16 )
      return solve_quadratic_equation( b, c, d, out );
    if ( d == 0 )
    {
      out[0] = 0;
      return solve_quadratic_equation( a, b, c, out + 1 ) + 1;
    }

    /* normalize the coefficients, this also makes them 16.16 */
    a2 = FT_DivFix( a2, a );
    a1 = FT_DivFix( a1, a );
    a0 = FT_DivFix( a0, a );

    /* compute intermediates */
    a1x2 = FT_MulFix( a1, a2 );
    a22 = FT_MulFix( a2, a2 );
    a23 = FT_MulFix( a22, a2 );

    q = ( 3 * a1 - a22 ) / 9;
    r = ( 9 * a1x2 - 27 * a0 - 2 * a23 ) / 54;

    /* [BUG]: `q3' and `r2' still causes underflow. */

    q3 = FT_MulFix( q, q );
    q3 = FT_MulFix( q3, q );

    r2 = FT_MulFix( r, r );

    if ( q3 < 0 && r2 < -q3 )
    {
      FT_16D16  t = 0;


      q3 = square_root( -q3 );
      t = FT_DivFix( r, q3 );
      if ( t >  ( 1 << 16 ) ) t =  ( 1 << 16 );
      if ( t < -( 1 << 16 ) ) t = -( 1 << 16 );

      t = arc_cos( t );
      a2 /= 3;
      q = 2 * square_root( -q );
      out[0] = FT_MulFix( q, FT_Cos( t / 3 ) ) - a2;
      out[1] = FT_MulFix( q, FT_Cos( ( t + FT_ANGLE_PI * 2 ) / 3 ) ) - a2;
      out[2] = FT_MulFix( q, FT_Cos( ( t + FT_ANGLE_PI * 4 ) / 3 ) ) - a2;

      return 3;
    }
    else if ( r2 == -q3 )
    {
      FT_16D16  s = 0;


      s = cube_root( r );
      a2 /= -3;
      out[0] = a2 + ( 2 * s );
      out[1] = a2 - s;

      return 2;
    }
    else
    {
      FT_16D16  s    = 0;
      FT_16D16  t    = 0;
      FT_16D16  dis  = 0;


      if ( q3 == 0 )
        dis = FT_ABS( r );
      else
        dis = square_root( q3 + r2 );

      s = cube_root( r + dis );
      t = cube_root( r - dis );
      a2 /= -3;
      out[0] = ( a2 + ( s + t ) );

      return 1;
    }
  }

#endif

/* END */