summaryrefslogtreecommitdiff
path: root/dfa.c
blob: 03dd9e7e495a965bd5fd18dc4cf6986d6631d9a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
/* dfa.c - deterministic extended regexp routines for GNU
   Copyright (C) 1988 Free Software Foundation, Inc.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA */

/* Written June, 1988 by Mike Haertel
   Modified July, 1988 by Arthur David Olson to assist BMG speedups  */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <assert.h>
#include <ctype.h>
#include <stdio.h>

#ifdef STDC_HEADERS
#include <stdlib.h>
#else
#include <sys/types.h>
extern char *calloc(), *malloc(), *realloc();
extern void free();
#endif

#if defined(HAVE_STRING_H) || defined(STDC_HEADERS)
#include <string.h>
#undef index
#define index strchr
#else
#include <strings.h>
#endif

#ifndef DEBUG	/* use the same approach as regex.c */
#undef assert
#define assert(e)
#endif /* DEBUG */

#ifndef isgraph
#define isgraph(C) (isprint(C) && !isspace(C))
#endif

#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
#define ISALPHA(C) isalpha(C)
#define ISUPPER(C) isupper(C)
#define ISLOWER(C) islower(C)
#define ISDIGIT(C) isdigit(C)
#define ISXDIGIT(C) isxdigit(C)
#define ISSPACE(C) isspace(C)
#define ISPUNCT(C) ispunct(C)
#define ISALNUM(C) isalnum(C)
#define ISPRINT(C) isprint(C)
#define ISGRAPH(C) isgraph(C)
#define ISCNTRL(C) iscntrl(C)
#else
#define ISALPHA(C) (isascii(C) && isalpha(C))
#define ISUPPER(C) (isascii(C) && isupper(C))
#define ISLOWER(C) (isascii(C) && islower(C))
#define ISDIGIT(C) (isascii(C) && isdigit(C))
#define ISXDIGIT(C) (isascii(C) && isxdigit(C))
#define ISSPACE(C) (isascii(C) && isspace(C))
#define ISPUNCT(C) (isascii(C) && ispunct(C))
#define ISALNUM(C) (isascii(C) && isalnum(C))
#define ISPRINT(C) (isascii(C) && isprint(C))
#define ISGRAPH(C) (isascii(C) && isgraph(C))
#define ISCNTRL(C) (isascii(C) && iscntrl(C))
#endif

#include "regex.h"
#include "dfa.h"

#ifdef __STDC__
typedef void *ptr_t;
#else
typedef char *ptr_t;
#ifndef const
#define const
#endif
#endif

static void dfamust _RE_ARGS((struct dfa *dfa));

static ptr_t xcalloc _RE_ARGS((size_t n, size_t s));
static ptr_t xmalloc _RE_ARGS((size_t n));
static ptr_t xrealloc _RE_ARGS((ptr_t p, size_t n));
#ifdef DEBUG
static void prtok _RE_ARGS((token t));
#endif
static int tstbit _RE_ARGS((int b, charclass c));
static void setbit _RE_ARGS((int b, charclass c));
static void clrbit _RE_ARGS((int b, charclass c));
static void copyset _RE_ARGS((charclass src, charclass dst));
static void zeroset _RE_ARGS((charclass s));
static void notset _RE_ARGS((charclass s));
static int equal _RE_ARGS((charclass s1, charclass s2));
static int charclass_index _RE_ARGS((charclass s));
static int looking_at _RE_ARGS((const char *s));
static token lex _RE_ARGS((void));
static void addtok _RE_ARGS((token t));
static void atom _RE_ARGS((void));
static int nsubtoks _RE_ARGS((int tindex));
static void copytoks _RE_ARGS((int tindex, int ntokens));
static void closure _RE_ARGS((void));
static void branch _RE_ARGS((void));
static void regexp _RE_ARGS((int toplevel));
static void copy _RE_ARGS((position_set *src, position_set *dst));
static void insert _RE_ARGS((position p, position_set *s));
static void merge _RE_ARGS((position_set *s1, position_set *s2, position_set *m));
static void delete _RE_ARGS((position p, position_set *s));
static int state_index _RE_ARGS((struct dfa *d, position_set *s,
			  int newline, int letter));
static void build_state _RE_ARGS((int s, struct dfa *d));
static void build_state_zero _RE_ARGS((struct dfa *d));
static char *icatalloc _RE_ARGS((char *old, char *new));
static char *icpyalloc _RE_ARGS((char *string));
static char *istrstr _RE_ARGS((char *lookin, char *lookfor));
static void ifree _RE_ARGS((char *cp));
static void freelist _RE_ARGS((char **cpp));
static char **enlist _RE_ARGS((char **cpp, char *new, size_t len));
static char **comsubs _RE_ARGS((char *left, char *right));
static char **addlists _RE_ARGS((char **old, char **new));
static char **inboth _RE_ARGS((char **left, char **right));

static ptr_t
xcalloc(n, s)
     size_t n;
     size_t s;
{
  ptr_t r = calloc(n, s);

  if (!r)
    dfaerror("Memory exhausted");
  return r;
}

static ptr_t
xmalloc(n)
     size_t n;
{
  ptr_t r = malloc(n);

  assert(n != 0);
  if (!r)
    dfaerror("Memory exhausted");
  return r;
}

static ptr_t
xrealloc(p, n)
     ptr_t p;
     size_t n;
{
  ptr_t r = realloc(p, n);

  assert(n != 0);
  if (!r)
    dfaerror("Memory exhausted");
  return r;
}

#define CALLOC(p, t, n) ((p) = (t *) xcalloc((size_t)(n), sizeof (t)))
#define MALLOC(p, t, n) ((p) = (t *) xmalloc((n) * sizeof (t)))
#define REALLOC(p, t, n) ((p) = (t *) xrealloc((ptr_t) (p), (n) * sizeof (t)))

/* Reallocate an array of type t if nalloc is too small for index. */
#define REALLOC_IF_NECESSARY(p, t, nalloc, index) \
  if ((index) >= (nalloc))			  \
    {						  \
      while ((index) >= (nalloc))		  \
	(nalloc) *= 2;				  \
      REALLOC(p, t, nalloc);			  \
    }

#ifdef DEBUG

static void
prtok(t)
     token t;
{
  char *s;

  if (t < 0)
    fprintf(stderr, "END");
  else if (t < NOTCHAR)
    fprintf(stderr, "%c", t);
  else
    {
      switch (t)
	{
	case EMPTY: s = "EMPTY"; break;
	case BACKREF: s = "BACKREF"; break;
	case BEGLINE: s = "BEGLINE"; break;
	case ENDLINE: s = "ENDLINE"; break;
	case BEGWORD: s = "BEGWORD"; break;
	case ENDWORD: s = "ENDWORD"; break;
	case LIMWORD: s = "LIMWORD"; break;
	case NOTLIMWORD: s = "NOTLIMWORD"; break;
	case QMARK: s = "QMARK"; break;
	case STAR: s = "STAR"; break;
	case PLUS: s = "PLUS"; break;
	case CAT: s = "CAT"; break;
	case OR: s = "OR"; break;
	case ORTOP: s = "ORTOP"; break;
	case LPAREN: s = "LPAREN"; break;
	case RPAREN: s = "RPAREN"; break;
	default: s = "CSET"; break;
	}
      fprintf(stderr, "%s", s);
    }
}
#endif /* DEBUG */

/* Stuff pertaining to charclasses. */

static int
tstbit(b, c)
     int b;
     charclass c;
{
  return c[b / INTBITS] & 1 << b % INTBITS;
}

static void
setbit(b, c)
     int b;
     charclass c;
{
  c[b / INTBITS] |= 1 << b % INTBITS;
}

static void
clrbit(b, c)
     int b;
     charclass c;
{
  c[b / INTBITS] &= ~(1 << b % INTBITS);
}

static void
copyset(src, dst)
     charclass src;
     charclass dst;
{
  int i;

  for (i = 0; i < CHARCLASS_INTS; ++i)
    dst[i] = src[i];
}

static void
zeroset(s)
     charclass s;
{
  int i;

  for (i = 0; i < CHARCLASS_INTS; ++i)
    s[i] = 0;
}

static void
notset(s)
     charclass s;
{
  int i;

  for (i = 0; i < CHARCLASS_INTS; ++i)
    s[i] = ~s[i];
}

static int
equal(s1, s2)
     charclass s1;
     charclass s2;
{
  int i;

  for (i = 0; i < CHARCLASS_INTS; ++i)
    if (s1[i] != s2[i])
      return 0;
  return 1;
}

/* A pointer to the current dfa is kept here during parsing. */
static struct dfa *dfa;

/* Find the index of charclass s in dfa->charclasses, or allocate a new charclass. */
static int
charclass_index(s)
     charclass s;
{
  int i;

  for (i = 0; i < dfa->cindex; ++i)
    if (equal(s, dfa->charclasses[i]))
      return i;
  REALLOC_IF_NECESSARY(dfa->charclasses, charclass, dfa->calloc, dfa->cindex);
  ++dfa->cindex;
  copyset(s, dfa->charclasses[i]);
  return i;
}

/* Syntax bits controlling the behavior of the lexical analyzer. */
static reg_syntax_t syntax_bits, syntax_bits_set;

/* Flag for case-folding letters into sets. */
static int case_fold;

/* Entry point to set syntax options. */
void
dfasyntax(bits, fold)
     reg_syntax_t bits;
     int fold;
{
  syntax_bits_set = 1;
  syntax_bits = bits;
  case_fold = fold;
}

/* Lexical analyzer.  All the dross that deals with the obnoxious
   GNU Regex syntax bits is located here.  The poor, suffering
   reader is referred to the GNU Regex documentation for the
   meaning of the @#%!@#%^!@ syntax bits. */

static char *lexstart;		/* Pointer to beginning of input string. */
static char *lexptr;		/* Pointer to next input character. */
static int lexleft;		/* Number of characters remaining. */
static token lasttok;		/* Previous token returned; initially END. */
static int laststart;		/* True if we're separated from beginning or (, |
				   only by zero-width characters. */
static int parens;		/* Count of outstanding left parens. */
static int minrep, maxrep;	/* Repeat counts for {m,n}. */

/* Note that characters become unsigned here. */
#define FETCH(c, eoferr)   	      \
  {			   	      \
    if (! lexleft)	   	      \
      if (eoferr != 0)	   	      \
	dfaerror(eoferr);  	      \
      else		   	      \
	return lasttok = END;	      \
    (c) = (unsigned char) *lexptr++;  \
    --lexleft;		   	      \
  }

#ifdef __STDC__
#define FUNC(F, P) static int F(int c) { return P(c); }
#else
#define FUNC(F, P) static int F(c) int c; { return P(c); }
#endif

FUNC(is_alpha, ISALPHA)
FUNC(is_upper, ISUPPER)
FUNC(is_lower, ISLOWER)
FUNC(is_digit, ISDIGIT)
FUNC(is_xdigit, ISXDIGIT)
FUNC(is_space, ISSPACE)
FUNC(is_punct, ISPUNCT)
FUNC(is_alnum, ISALNUM)
FUNC(is_print, ISPRINT)
FUNC(is_graph, ISGRAPH)
FUNC(is_cntrl, ISCNTRL)

static int is_blank(c)
int c;
{
   return (c == ' ' || c == '\t');
}

/* The following list maps the names of the Posix named character classes
   to predicate functions that determine whether a given character is in
   the class.  The leading [ has already been eaten by the lexical analyzer. */
static struct {
  const char *name;
  int (*pred) _RE_ARGS((int));
} prednames[] = {
  { ":alpha:]", is_alpha },
  { ":upper:]", is_upper },
  { ":lower:]", is_lower },
  { ":digit:]", is_digit },
  { ":xdigit:]", is_xdigit },
  { ":space:]", is_space },
  { ":punct:]", is_punct },
  { ":alnum:]", is_alnum },
  { ":print:]", is_print },
  { ":graph:]", is_graph },
  { ":cntrl:]", is_cntrl },
  { ":blank:]", is_blank },
  { 0 }
};

static int
looking_at(s)
     const char *s;
{
  size_t len;

  len = strlen(s);
  if (lexleft < len)
    return 0;
  return strncmp(s, lexptr, len) == 0;
}

static token
lex()
{
  token c, c1, c2;
  int backslash = 0, invert;
  charclass ccl;
  int i;

  /* Basic plan: We fetch a character.  If it's a backslash,
     we set the backslash flag and go through the loop again.
     On the plus side, this avoids having a duplicate of the
     main switch inside the backslash case.  On the minus side,
     it means that just about every case begins with
     "if (backslash) ...".  */
  for (i = 0; i < 2; ++i)
    {
      FETCH(c, 0);
      switch (c)
	{
	case '\\':
	  if (backslash)
	    goto normal_char;
	  if (lexleft == 0)
	    dfaerror("Unfinished \\ escape");
	  backslash = 1;
	  break;

	case '^':
	  if (backslash)
	    goto normal_char;
	  if (syntax_bits & RE_CONTEXT_INDEP_ANCHORS
	      || lasttok == END
	      || lasttok == LPAREN
	      || lasttok == OR)
	    return lasttok = BEGLINE;
	  goto normal_char;

	case '$':
	  if (backslash)
	    goto normal_char;
	  if (syntax_bits & RE_CONTEXT_INDEP_ANCHORS
	      || lexleft == 0
	      || (syntax_bits & RE_NO_BK_PARENS
		  ? lexleft > 0 && *lexptr == ')'
		  : lexleft > 1 && lexptr[0] == '\\' && lexptr[1] == ')')
	      || (syntax_bits & RE_NO_BK_VBAR
		  ? lexleft > 0 && *lexptr == '|'
		  : lexleft > 1 && lexptr[0] == '\\' && lexptr[1] == '|')
	      || ((syntax_bits & RE_NEWLINE_ALT)
	          && lexleft > 0 && *lexptr == '\n'))
	    return lasttok = ENDLINE;
	  goto normal_char;

	case '1':
	case '2':
	case '3':
	case '4':
	case '5':
	case '6':
	case '7':
	case '8':
	case '9':
	  if (backslash && !(syntax_bits & RE_NO_BK_REFS))
	    {
	      laststart = 0;
	      return lasttok = BACKREF;
	    }
	  goto normal_char;

	case '`':
	  if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
	    return lasttok = BEGLINE;	/* FIXME: should be beginning of string */
	  goto normal_char;

	case '\'':
	  if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
	    return lasttok = ENDLINE;	/* FIXME: should be end of string */
	  goto normal_char;

	case '<':
	  if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
	    return lasttok = BEGWORD;
	  goto normal_char;

	case '>':
	  if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
	    return lasttok = ENDWORD;
	  goto normal_char;

	case 'b':
	  if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
	    return lasttok = LIMWORD;
	  goto normal_char;

	case 'B':
	  if (backslash && !(syntax_bits & RE_NO_GNU_OPS))
	    return lasttok = NOTLIMWORD;
	  goto normal_char;

	case '?':
	  if (syntax_bits & RE_LIMITED_OPS)
	    goto normal_char;
	  if (backslash != ((syntax_bits & RE_BK_PLUS_QM) != 0))
	    goto normal_char;
	  if (!(syntax_bits & RE_CONTEXT_INDEP_OPS) && laststart)
	    goto normal_char;
	  return lasttok = QMARK;

	case '*':
	  if (backslash)
	    goto normal_char;
	  if (!(syntax_bits & RE_CONTEXT_INDEP_OPS) && laststart)
	    goto normal_char;
	  return lasttok = STAR;

	case '+':
	  if (syntax_bits & RE_LIMITED_OPS)
	    goto normal_char;
	  if (backslash != ((syntax_bits & RE_BK_PLUS_QM) != 0))
	    goto normal_char;
	  if (!(syntax_bits & RE_CONTEXT_INDEP_OPS) && laststart)
	    goto normal_char;
	  return lasttok = PLUS;

	case '{':
	  if (!(syntax_bits & RE_INTERVALS))
	    goto normal_char;
	  if (backslash != ((syntax_bits & RE_NO_BK_BRACES) == 0))
	    goto normal_char;
	  minrep = maxrep = 0;
	  /* Cases:
	     {M} - exact count
	     {M,} - minimum count, maximum is infinity
	     {,M} - 0 through M
	     {M,N} - M through N */
	  FETCH(c, "unfinished repeat count");
	  if (ISDIGIT(c))
	    {
	      minrep = c - '0';
	      for (;;)
		{
		  FETCH(c, "unfinished repeat count");
		  if (!ISDIGIT(c))
		    break;
		  minrep = 10 * minrep + c - '0';
		}
	    }
	  else if (c != ',')
	    dfaerror("malformed repeat count");
	  if (c == ',')
	    for (;;)
	      {
		FETCH(c, "unfinished repeat count");
		if (!ISDIGIT(c))
		  break;
		maxrep = 10 * maxrep + c - '0';
	      }
	  else
	    maxrep = minrep;
	  if (!(syntax_bits & RE_NO_BK_BRACES))
	    {
	      if (c != '\\')
		dfaerror("malformed repeat count");
	      FETCH(c, "unfinished repeat count");
	    }
	  if (c != '}')
	    dfaerror("malformed repeat count");
	  laststart = 0;
	  return lasttok = REPMN;

	case '|':
	  if (syntax_bits & RE_LIMITED_OPS)
	    goto normal_char;
	  if (backslash != ((syntax_bits & RE_NO_BK_VBAR) == 0))
	    goto normal_char;
	  laststart = 1;
	  return lasttok = OR;

	case '\n':
	  if (syntax_bits & RE_LIMITED_OPS
	      || backslash
	      || !(syntax_bits & RE_NEWLINE_ALT))
	    goto normal_char;
	  laststart = 1;
	  return lasttok = OR;

	case '(':
	  if (backslash != ((syntax_bits & RE_NO_BK_PARENS) == 0))
	    goto normal_char;
	  ++parens;
	  laststart = 1;
	  return lasttok = LPAREN;

	case ')':
	  if (backslash != ((syntax_bits & RE_NO_BK_PARENS) == 0))
	    goto normal_char;
	  if (parens == 0 && syntax_bits & RE_UNMATCHED_RIGHT_PAREN_ORD)
	    goto normal_char;
	  --parens;
	  laststart = 0;
	  return lasttok = RPAREN;

	case '.':
	  if (backslash)
	    goto normal_char;
	  zeroset(ccl);
	  notset(ccl);
	  if (!(syntax_bits & RE_DOT_NEWLINE))
	    clrbit('\n', ccl);
	  if (syntax_bits & RE_DOT_NOT_NULL)
	    clrbit('\0', ccl);
	  laststart = 0;
	  return lasttok = CSET + charclass_index(ccl);

	case 'w':
	case 'W':
	  if (!backslash || (syntax_bits & RE_NO_GNU_OPS))
	    goto normal_char;
	  zeroset(ccl);
	  for (c2 = 0; c2 < NOTCHAR; ++c2)
	    if (ISALNUM(c2))
	      setbit(c2, ccl);
	  setbit('_', ccl);
	  if (c == 'W')
	    notset(ccl);
	  laststart = 0;
	  return lasttok = CSET + charclass_index(ccl);
	
	case '[':
	  if (backslash)
	    goto normal_char;
	  zeroset(ccl);
	  FETCH(c, "Unbalanced [");
	  if (c == '^')
	    {
	      FETCH(c, "Unbalanced [");
	      invert = 1;
	    }
	  else
	    invert = 0;
	  do
	    {
	      /* Nobody ever said this had to be fast. :-)
		 Note that if we're looking at some other [:...:]
		 construct, we just treat it as a bunch of ordinary
		 characters.  We can do this because we assume
		 regex has checked for syntax errors before
		 dfa is ever called. */
	      if (c == '[' && (syntax_bits & RE_CHAR_CLASSES))
		for (c1 = 0; prednames[c1].name; ++c1)
		  if (looking_at(prednames[c1].name))
		    {
			int (*pred)() = prednames[c1].pred;
			if (case_fold
			    && (pred == is_upper || pred == is_lower))
				pred = is_alpha;

		      for (c2 = 0; c2 < NOTCHAR; ++c2)
			if ((*pred)(c2))
			  setbit(c2, ccl);
		      lexptr += strlen(prednames[c1].name);
		      lexleft -= strlen(prednames[c1].name);
		      FETCH(c1, "Unbalanced [");
		      goto skip;
		    }
	      if (c == '\\' && (syntax_bits & RE_BACKSLASH_ESCAPE_IN_LISTS))
		FETCH(c, "Unbalanced [");
	      FETCH(c1, "Unbalanced [");
	      if (c1 == '-')
		{
		  FETCH(c2, "Unbalanced [");
		  if (c2 == ']')
		    {
		      /* In the case [x-], the - is an ordinary hyphen,
			 which is left in c1, the lookahead character. */
		      --lexptr;
		      ++lexleft;
		      c2 = c;
		    }
		  else
		    {
		      if (c2 == '\\'
			  && (syntax_bits & RE_BACKSLASH_ESCAPE_IN_LISTS))
			FETCH(c2, "Unbalanced [");
		      FETCH(c1, "Unbalanced [");
		    }
		}
	      else
		c2 = c;
	      while (c <= c2)
		{
		  setbit(c, ccl);
		  if (case_fold)
		    if (ISUPPER(c))
		      setbit(tolower(c), ccl);
		    else if (ISLOWER(c))
		      setbit(toupper(c), ccl);
		  ++c;
		}
	    skip:
	      ;
	    }
	  while ((c = c1) != ']');
	  if (invert)
	    {
	      notset(ccl);
	      if (syntax_bits & RE_HAT_LISTS_NOT_NEWLINE)
		clrbit('\n', ccl);
	    }
	  laststart = 0;
	  return lasttok = CSET + charclass_index(ccl);

	default:
	normal_char:
	  laststart = 0;
	  if (case_fold && ISALPHA(c))
	    {
	      zeroset(ccl);
	      setbit(c, ccl);
	      if (isupper(c))
		setbit(tolower(c), ccl);
	      else
		setbit(toupper(c), ccl);
	      return lasttok = CSET + charclass_index(ccl);
	    }
	  return c;
	}
    }

  /* The above loop should consume at most a backslash
     and some other character. */
  abort();
  return END;	/* keeps pedantic compilers happy. */
}

/* Recursive descent parser for regular expressions. */

static token tok;		/* Lookahead token. */
static int depth;		/* Current depth of a hypothetical stack
				   holding deferred productions.  This is
				   used to determine the depth that will be
				   required of the real stack later on in
				   dfaanalyze(). */

/* Add the given token to the parse tree, maintaining the depth count and
   updating the maximum depth if necessary. */
static void
addtok(t)
     token t;
{
  REALLOC_IF_NECESSARY(dfa->tokens, token, dfa->talloc, dfa->tindex);
  dfa->tokens[dfa->tindex++] = t;

  switch (t)
    {
    case QMARK:
    case STAR:
    case PLUS:
      break;

    case CAT:
    case OR:
    case ORTOP:
      --depth;
      break;

    default:
      ++dfa->nleaves;
    case EMPTY:
      ++depth;
      break;
    }
  if (depth > dfa->depth)
    dfa->depth = depth;
}

/* The grammar understood by the parser is as follows.

   regexp:
     regexp OR branch
     branch

   branch:
     branch closure
     closure

   closure:
     closure QMARK
     closure STAR
     closure PLUS
     atom

   atom:
     <normal character>
     CSET
     BACKREF
     BEGLINE
     ENDLINE
     BEGWORD
     ENDWORD
     LIMWORD
     NOTLIMWORD
     <empty>

   The parser builds a parse tree in postfix form in an array of tokens. */

static void
atom()
{
  if ((tok >= 0 && tok < NOTCHAR) || tok >= CSET || tok == BACKREF
      || tok == BEGLINE || tok == ENDLINE || tok == BEGWORD
      || tok == ENDWORD || tok == LIMWORD || tok == NOTLIMWORD)
    {
      addtok(tok);
      tok = lex();
    }
  else if (tok == LPAREN)
    {
      tok = lex();
      regexp(0);
      if (tok != RPAREN)
	dfaerror("Unbalanced (");
      tok = lex();
    }
  else
    addtok(EMPTY);
}

/* Return the number of tokens in the given subexpression. */
static int
nsubtoks(tindex)
int tindex;
{
  int ntoks1;

  switch (dfa->tokens[tindex - 1])
    {
    default:
      return 1;
    case QMARK:
    case STAR:
    case PLUS:
      return 1 + nsubtoks(tindex - 1);
    case CAT:
    case OR:
    case ORTOP:
      ntoks1 = nsubtoks(tindex - 1);
      return 1 + ntoks1 + nsubtoks(tindex - 1 - ntoks1);
    }
}

/* Copy the given subexpression to the top of the tree. */
static void
copytoks(tindex, ntokens)
     int tindex, ntokens;
{
  int i;

  for (i = 0; i < ntokens; ++i)
    addtok(dfa->tokens[tindex + i]);
}

static void
closure()
{
  int tindex, ntokens, i;

  atom();
  while (tok == QMARK || tok == STAR || tok == PLUS || tok == REPMN)
    if (tok == REPMN)
      {
	ntokens = nsubtoks(dfa->tindex);
	tindex = dfa->tindex - ntokens;
	if (maxrep == 0)
	  addtok(PLUS);
	if (minrep == 0)
	  addtok(QMARK);
	for (i = 1; i < minrep; ++i)
	  {
	    copytoks(tindex, ntokens);
	    addtok(CAT);
	  }
	for (; i < maxrep; ++i)
	  {
	    copytoks(tindex, ntokens);
	    addtok(QMARK);
	    addtok(CAT);
	  }
	tok = lex();
      }
    else
      {
	addtok(tok);
	tok = lex();
      }
}

static void
branch()
{
  closure();
  while (tok != RPAREN && tok != OR && tok >= 0)
    {
      closure();
      addtok(CAT);
    }
}

static void
regexp(toplevel)
     int toplevel;
{
  branch();
  while (tok == OR)
    {
      tok = lex();
      branch();
      if (toplevel)
	addtok(ORTOP);
      else
	addtok(OR);
    }
}

/* Main entry point for the parser.  S is a string to be parsed, len is the
   length of the string, so s can include NUL characters.  D is a pointer to
   the struct dfa to parse into. */
void
dfaparse(s, len, d)
     char *s;
     size_t len;
     struct dfa *d;

{
  dfa = d;
  lexstart = lexptr = s;
  lexleft = len;
  lasttok = END;
  laststart = 1;
  parens = 0;

  if (! syntax_bits_set)
    dfaerror("No syntax specified");

  tok = lex();
  depth = d->depth;

  regexp(1);

  if (tok != END)
    dfaerror("Unbalanced )");

  addtok(END - d->nregexps);
  addtok(CAT);

  if (d->nregexps)
    addtok(ORTOP);

  ++d->nregexps;
}

/* Some primitives for operating on sets of positions. */

/* Copy one set to another; the destination must be large enough. */
static void
copy(src, dst)
     position_set *src;
     position_set *dst;
{
  int i;

  for (i = 0; i < src->nelem; ++i)
    dst->elems[i] = src->elems[i];
  dst->nelem = src->nelem;
}

/* Insert a position in a set.  Position sets are maintained in sorted
   order according to index.  If position already exists in the set with
   the same index then their constraints are logically or'd together.
   S->elems must point to an array large enough to hold the resulting set. */
static void
insert(p, s)
     position p;
     position_set *s;
{
  int i;
  position t1, t2;

  for (i = 0; i < s->nelem && p.index < s->elems[i].index; ++i)
    continue;
  if (i < s->nelem && p.index == s->elems[i].index)
    s->elems[i].constraint |= p.constraint;
  else
    {
      t1 = p;
      ++s->nelem;
      while (i < s->nelem)
	{
	  t2 = s->elems[i];
	  s->elems[i++] = t1;
	  t1 = t2;
	}
    }
}

/* Merge two sets of positions into a third.  The result is exactly as if
   the positions of both sets were inserted into an initially empty set. */
static void
merge(s1, s2, m)
     position_set *s1;
     position_set *s2;
     position_set *m;
{
  int i = 0, j = 0;

  m->nelem = 0;
  while (i < s1->nelem && j < s2->nelem)
    if (s1->elems[i].index > s2->elems[j].index)
      m->elems[m->nelem++] = s1->elems[i++];
    else if (s1->elems[i].index < s2->elems[j].index)
      m->elems[m->nelem++] = s2->elems[j++];
    else
      {
	m->elems[m->nelem] = s1->elems[i++];
	m->elems[m->nelem++].constraint |= s2->elems[j++].constraint;
      }
  while (i < s1->nelem)
    m->elems[m->nelem++] = s1->elems[i++];
  while (j < s2->nelem)
    m->elems[m->nelem++] = s2->elems[j++];
}

/* Delete a position from a set. */
static void
delete(p, s)
     position p;
     position_set *s;
{
  int i;

  for (i = 0; i < s->nelem; ++i)
    if (p.index == s->elems[i].index)
      break;
  if (i < s->nelem)
    for (--s->nelem; i < s->nelem; ++i)
      s->elems[i] = s->elems[i + 1];
}

/* Find the index of the state corresponding to the given position set with
   the given preceding context, or create a new state if there is no such
   state.  Newline and letter tell whether we got here on a newline or
   letter, respectively. */
static int
state_index(d, s, newline, letter)
     struct dfa *d;
     position_set *s;
     int newline;
     int letter;
{
  int hash = 0;
  int constraint;
  int i, j;

  newline = newline ? 1 : 0;
  letter = letter ? 1 : 0;

  for (i = 0; i < s->nelem; ++i)
    hash ^= s->elems[i].index + s->elems[i].constraint;

  /* Try to find a state that exactly matches the proposed one. */
  for (i = 0; i < d->sindex; ++i)
    {
      if (hash != d->states[i].hash || s->nelem != d->states[i].elems.nelem
	  || newline != d->states[i].newline || letter != d->states[i].letter)
	continue;
      for (j = 0; j < s->nelem; ++j)
	if (s->elems[j].constraint
	    != d->states[i].elems.elems[j].constraint
	    || s->elems[j].index != d->states[i].elems.elems[j].index)
	  break;
      if (j == s->nelem)
	return i;
    }

  /* We'll have to create a new state. */
  REALLOC_IF_NECESSARY(d->states, dfa_state, d->salloc, d->sindex);
  d->states[i].hash = hash;
  MALLOC(d->states[i].elems.elems, position, s->nelem);
  copy(s, &d->states[i].elems);
  d->states[i].newline = newline;
  d->states[i].letter = letter;
  d->states[i].backref = 0;
  d->states[i].constraint = 0;
  d->states[i].first_end = 0;
  for (j = 0; j < s->nelem; ++j)
    if (d->tokens[s->elems[j].index] < 0)
      {
	constraint = s->elems[j].constraint;
	if (SUCCEEDS_IN_CONTEXT(constraint, newline, 0, letter, 0)
	    || SUCCEEDS_IN_CONTEXT(constraint, newline, 0, letter, 1)
	    || SUCCEEDS_IN_CONTEXT(constraint, newline, 1, letter, 0)
	    || SUCCEEDS_IN_CONTEXT(constraint, newline, 1, letter, 1))
	  d->states[i].constraint |= constraint;
	if (! d->states[i].first_end)
	  d->states[i].first_end = d->tokens[s->elems[j].index];
      }
    else if (d->tokens[s->elems[j].index] == BACKREF)
      {
	d->states[i].constraint = NO_CONSTRAINT;
	d->states[i].backref = 1;
      }

  ++d->sindex;

  return i;
}

/* Find the epsilon closure of a set of positions.  If any position of the set
   contains a symbol that matches the empty string in some context, replace
   that position with the elements of its follow labeled with an appropriate
   constraint.  Repeat exhaustively until no funny positions are left.
   S->elems must be large enough to hold the result. */
static void epsclosure _RE_ARGS((position_set *s, struct dfa *d));

static void
epsclosure(s, d)
     position_set *s;
     struct dfa *d;
{
  int i, j;
  int *visited;
  position p, old;

  MALLOC(visited, int, d->tindex);
  for (i = 0; i < d->tindex; ++i)
    visited[i] = 0;

  for (i = 0; i < s->nelem; ++i)
    if (d->tokens[s->elems[i].index] >= NOTCHAR
	&& d->tokens[s->elems[i].index] != BACKREF
	&& d->tokens[s->elems[i].index] < CSET)
      {
	old = s->elems[i];
	p.constraint = old.constraint;
	delete(s->elems[i], s);
	if (visited[old.index])
	  {
	    --i;
	    continue;
	  }
	visited[old.index] = 1;
	switch (d->tokens[old.index])
	  {
	  case BEGLINE:
	    p.constraint &= BEGLINE_CONSTRAINT;
	    break;
	  case ENDLINE:
	    p.constraint &= ENDLINE_CONSTRAINT;
	    break;
	  case BEGWORD:
	    p.constraint &= BEGWORD_CONSTRAINT;
	    break;
	  case ENDWORD:
	    p.constraint &= ENDWORD_CONSTRAINT;
	    break;
	  case LIMWORD:
	    p.constraint &= LIMWORD_CONSTRAINT;
	    break;
	  case NOTLIMWORD:
	    p.constraint &= NOTLIMWORD_CONSTRAINT;
	    break;
	  default:
	    break;
	  }
	for (j = 0; j < d->follows[old.index].nelem; ++j)
	  {
	    p.index = d->follows[old.index].elems[j].index;
	    insert(p, s);
	  }
	/* Force rescan to start at the beginning. */
	i = -1;
      }

  free(visited);
}

/* Perform bottom-up analysis on the parse tree, computing various functions.
   Note that at this point, we're pretending constructs like \< are real
   characters rather than constraints on what can follow them.

   Nullable:  A node is nullable if it is at the root of a regexp that can
   match the empty string.
   *  EMPTY leaves are nullable.
   * No other leaf is nullable.
   * A QMARK or STAR node is nullable.
   * A PLUS node is nullable if its argument is nullable.
   * A CAT node is nullable if both its arguments are nullable.
   * An OR node is nullable if either argument is nullable.

   Firstpos:  The firstpos of a node is the set of positions (nonempty leaves)
   that could correspond to the first character of a string matching the
   regexp rooted at the given node.
   * EMPTY leaves have empty firstpos.
   * The firstpos of a nonempty leaf is that leaf itself.
   * The firstpos of a QMARK, STAR, or PLUS node is the firstpos of its
     argument.
   * The firstpos of a CAT node is the firstpos of the left argument, union
     the firstpos of the right if the left argument is nullable.
   * The firstpos of an OR node is the union of firstpos of each argument.

   Lastpos:  The lastpos of a node is the set of positions that could
   correspond to the last character of a string matching the regexp at
   the given node.
   * EMPTY leaves have empty lastpos.
   * The lastpos of a nonempty leaf is that leaf itself.
   * The lastpos of a QMARK, STAR, or PLUS node is the lastpos of its
     argument.
   * The lastpos of a CAT node is the lastpos of its right argument, union
     the lastpos of the left if the right argument is nullable.
   * The lastpos of an OR node is the union of the lastpos of each argument.

   Follow:  The follow of a position is the set of positions that could
   correspond to the character following a character matching the node in
   a string matching the regexp.  At this point we consider special symbols
   that match the empty string in some context to be just normal characters.
   Later, if we find that a special symbol is in a follow set, we will
   replace it with the elements of its follow, labeled with an appropriate
   constraint.
   * Every node in the firstpos of the argument of a STAR or PLUS node is in
     the follow of every node in the lastpos.
   * Every node in the firstpos of the second argument of a CAT node is in
     the follow of every node in the lastpos of the first argument.

   Because of the postfix representation of the parse tree, the depth-first
   analysis is conveniently done by a linear scan with the aid of a stack.
   Sets are stored as arrays of the elements, obeying a stack-like allocation
   scheme; the number of elements in each set deeper in the stack can be
   used to determine the address of a particular set's array. */
void
dfaanalyze(d, searchflag)
     struct dfa *d;
     int searchflag;
{
  int *nullable;		/* Nullable stack. */
  int *nfirstpos;		/* Element count stack for firstpos sets. */
  position *firstpos;		/* Array where firstpos elements are stored. */
  int *nlastpos;		/* Element count stack for lastpos sets. */
  position *lastpos;		/* Array where lastpos elements are stored. */
  int *nalloc;			/* Sizes of arrays allocated to follow sets. */
  position_set tmp;		/* Temporary set for merging sets. */
  position_set merged;		/* Result of merging sets. */
  int wants_newline;		/* True if some position wants newline info. */
  int *o_nullable;
  int *o_nfirst, *o_nlast;
  position *o_firstpos, *o_lastpos;
  int i, j;
  position *pos;

#ifdef DEBUG
  fprintf(stderr, "dfaanalyze:\n");
  for (i = 0; i < d->tindex; ++i)
    {
      fprintf(stderr, " %d:", i);
      prtok(d->tokens[i]);
    }
  putc('\n', stderr);
#endif

  d->searchflag = searchflag;

  MALLOC(nullable, int, d->depth);
  o_nullable = nullable;
  MALLOC(nfirstpos, int, d->depth);
  o_nfirst = nfirstpos;
  MALLOC(firstpos, position, d->nleaves);
  o_firstpos = firstpos, firstpos += d->nleaves;
  MALLOC(nlastpos, int, d->depth);
  o_nlast = nlastpos;
  MALLOC(lastpos, position, d->nleaves);
  o_lastpos = lastpos, lastpos += d->nleaves;
  MALLOC(nalloc, int, d->tindex);
  for (i = 0; i < d->tindex; ++i)
    nalloc[i] = 0;
  MALLOC(merged.elems, position, d->nleaves);

  CALLOC(d->follows, position_set, d->tindex);

  for (i = 0; i < d->tindex; ++i)
#ifdef DEBUG
    {				/* Nonsyntactic #ifdef goo... */
#endif
    switch (d->tokens[i])
      {
      case EMPTY:
	/* The empty set is nullable. */
	*nullable++ = 1;

	/* The firstpos and lastpos of the empty leaf are both empty. */
	*nfirstpos++ = *nlastpos++ = 0;
	break;

      case STAR:
      case PLUS:
	/* Every element in the firstpos of the argument is in the follow
	   of every element in the lastpos. */
	tmp.nelem = nfirstpos[-1];
	tmp.elems = firstpos;
	pos = lastpos;
	for (j = 0; j < nlastpos[-1]; ++j)
	  {
	    merge(&tmp, &d->follows[pos[j].index], &merged);
	    REALLOC_IF_NECESSARY(d->follows[pos[j].index].elems, position,
				 nalloc[pos[j].index], merged.nelem - 1);
	    copy(&merged, &d->follows[pos[j].index]);
	  }

      case QMARK:
	/* A QMARK or STAR node is automatically nullable. */
	if (d->tokens[i] != PLUS)
	  nullable[-1] = 1;
	break;

      case CAT:
	/* Every element in the firstpos of the second argument is in the
	   follow of every element in the lastpos of the first argument. */
	tmp.nelem = nfirstpos[-1];
	tmp.elems = firstpos;
	pos = lastpos + nlastpos[-1];
	for (j = 0; j < nlastpos[-2]; ++j)
	  {
	    merge(&tmp, &d->follows[pos[j].index], &merged);
	    REALLOC_IF_NECESSARY(d->follows[pos[j].index].elems, position,
				 nalloc[pos[j].index], merged.nelem - 1);
	    copy(&merged, &d->follows[pos[j].index]);
	  }

	/* The firstpos of a CAT node is the firstpos of the first argument,
	   union that of the second argument if the first is nullable. */
	if (nullable[-2])
	  nfirstpos[-2] += nfirstpos[-1];
	else
	  firstpos += nfirstpos[-1];
	--nfirstpos;

	/* The lastpos of a CAT node is the lastpos of the second argument,
	   union that of the first argument if the second is nullable. */
	if (nullable[-1])
	  nlastpos[-2] += nlastpos[-1];
	else
	  {
	    pos = lastpos + nlastpos[-2];
	    for (j = nlastpos[-1] - 1; j >= 0; --j)
	      pos[j] = lastpos[j];
	    lastpos += nlastpos[-2];
	    nlastpos[-2] = nlastpos[-1];
	  }
	--nlastpos;

	/* A CAT node is nullable if both arguments are nullable. */
	nullable[-2] = nullable[-1] && nullable[-2];
	--nullable;
	break;

      case OR:
      case ORTOP:
	/* The firstpos is the union of the firstpos of each argument. */
	nfirstpos[-2] += nfirstpos[-1];
	--nfirstpos;

	/* The lastpos is the union of the lastpos of each argument. */
	nlastpos[-2] += nlastpos[-1];
	--nlastpos;

	/* An OR node is nullable if either argument is nullable. */
	nullable[-2] = nullable[-1] || nullable[-2];
	--nullable;
	break;

      default:
	/* Anything else is a nonempty position.  (Note that special
	   constructs like \< are treated as nonempty strings here;
	   an "epsilon closure" effectively makes them nullable later.
	   Backreferences have to get a real position so we can detect
	   transitions on them later.  But they are nullable. */
	*nullable++ = d->tokens[i] == BACKREF;

	/* This position is in its own firstpos and lastpos. */
	*nfirstpos++ = *nlastpos++ = 1;
	--firstpos, --lastpos;
	firstpos->index = lastpos->index = i;
	firstpos->constraint = lastpos->constraint = NO_CONSTRAINT;

	/* Allocate the follow set for this position. */
	nalloc[i] = 1;
	MALLOC(d->follows[i].elems, position, nalloc[i]);
	break;
      }
#ifdef DEBUG
    /* ... balance the above nonsyntactic #ifdef goo... */
      fprintf(stderr, "node %d:", i);
      prtok(d->tokens[i]);
      putc('\n', stderr);
      fprintf(stderr, nullable[-1] ? " nullable: yes\n" : " nullable: no\n");
      fprintf(stderr, " firstpos:");
      for (j = nfirstpos[-1] - 1; j >= 0; --j)
	{
	  fprintf(stderr, " %d:", firstpos[j].index);
	  prtok(d->tokens[firstpos[j].index]);
	}
      fprintf(stderr, "\n lastpos:");
      for (j = nlastpos[-1] - 1; j >= 0; --j)
	{
	  fprintf(stderr, " %d:", lastpos[j].index);
	  prtok(d->tokens[lastpos[j].index]);
	}
      putc('\n', stderr);
    }
#endif

  /* For each follow set that is the follow set of a real position, replace
     it with its epsilon closure. */
  for (i = 0; i < d->tindex; ++i)
    if (d->tokens[i] < NOTCHAR || d->tokens[i] == BACKREF
	|| d->tokens[i] >= CSET)
      {
#ifdef DEBUG
	fprintf(stderr, "follows(%d:", i);
	prtok(d->tokens[i]);
	fprintf(stderr, "):");
	for (j = d->follows[i].nelem - 1; j >= 0; --j)
	  {
	    fprintf(stderr, " %d:", d->follows[i].elems[j].index);
	    prtok(d->tokens[d->follows[i].elems[j].index]);
	  }
	putc('\n', stderr);
#endif
	copy(&d->follows[i], &merged);
	epsclosure(&merged, d);
	if (d->follows[i].nelem < merged.nelem)
	  REALLOC(d->follows[i].elems, position, merged.nelem);
	copy(&merged, &d->follows[i]);
      }

  /* Get the epsilon closure of the firstpos of the regexp.  The result will
     be the set of positions of state 0. */
  merged.nelem = 0;
  for (i = 0; i < nfirstpos[-1]; ++i)
    insert(firstpos[i], &merged);
  epsclosure(&merged, d);

  /* Check if any of the positions of state 0 will want newline context. */
  wants_newline = 0;
  for (i = 0; i < merged.nelem; ++i)
    if (PREV_NEWLINE_DEPENDENT(merged.elems[i].constraint))
      wants_newline = 1;

  /* Build the initial state. */
  d->salloc = 1;
  d->sindex = 0;
  MALLOC(d->states, dfa_state, d->salloc);
  state_index(d, &merged, wants_newline, 0);

  free(o_nullable);
  free(o_nfirst);
  free(o_firstpos);
  free(o_nlast);
  free(o_lastpos);
  free(nalloc);
  free(merged.elems);
}

/* Find, for each character, the transition out of state s of d, and store
   it in the appropriate slot of trans.

   We divide the positions of s into groups (positions can appear in more
   than one group).  Each group is labeled with a set of characters that
   every position in the group matches (taking into account, if necessary,
   preceding context information of s).  For each group, find the union
   of the its elements' follows.  This set is the set of positions of the
   new state.  For each character in the group's label, set the transition
   on this character to be to a state corresponding to the set's positions,
   and its associated backward context information, if necessary.

   If we are building a searching matcher, we include the positions of state
   0 in every state.

   The collection of groups is constructed by building an equivalence-class
   partition of the positions of s.

   For each position, find the set of characters C that it matches.  Eliminate
   any characters from C that fail on grounds of backward context.

   Search through the groups, looking for a group whose label L has nonempty
   intersection with C.  If L - C is nonempty, create a new group labeled
   L - C and having the same positions as the current group, and set L to
   the intersection of L and C.  Insert the position in this group, set
   C = C - L, and resume scanning.

   If after comparing with every group there are characters remaining in C,
   create a new group labeled with the characters of C and insert this
   position in that group. */
void
dfastate(s, d, trans)
     int s;
     struct dfa *d;
     int trans[];
{
  position_set grps[NOTCHAR];	/* As many as will ever be needed. */
  charclass labels[NOTCHAR];	/* Labels corresponding to the groups. */
  int ngrps = 0;		/* Number of groups actually used. */
  position pos;			/* Current position being considered. */
  charclass matches;		/* Set of matching characters. */
  int matchesf;			/* True if matches is nonempty. */
  charclass intersect;		/* Intersection with some label set. */
  int intersectf;		/* True if intersect is nonempty. */
  charclass leftovers;		/* Stuff in the label that didn't match. */
  int leftoversf;		/* True if leftovers is nonempty. */
  static charclass letters;	/* Set of characters considered letters. */
  static charclass newline;	/* Set of characters that aren't newline. */
  position_set follows;		/* Union of the follows of some group. */
  position_set tmp;		/* Temporary space for merging sets. */
  int state;			/* New state. */
  int wants_newline;		/* New state wants to know newline context. */
  int state_newline;		/* New state on a newline transition. */
  int wants_letter;		/* New state wants to know letter context. */
  int state_letter;		/* New state on a letter transition. */
  static int initialized;	/* Flag for static initialization. */
  int i, j, k;

  /* Initialize the set of letters, if necessary. */
  if (! initialized)
    {
      initialized = 1;
      for (i = 0; i < NOTCHAR; ++i)
	if (ISALNUM(i))
	  setbit(i, letters);
      setbit('\n', newline);
    }

  zeroset(matches);

  for (i = 0; i < d->states[s].elems.nelem; ++i)
    {
      pos = d->states[s].elems.elems[i];
      if (d->tokens[pos.index] >= 0 && d->tokens[pos.index] < NOTCHAR)
	setbit(d->tokens[pos.index], matches);
      else if (d->tokens[pos.index] >= CSET)
	copyset(d->charclasses[d->tokens[pos.index] - CSET], matches);
      else
	continue;

      /* Some characters may need to be eliminated from matches because
	 they fail in the current context. */
      if (pos.constraint != 0xFF)
	{
	  if (! MATCHES_NEWLINE_CONTEXT(pos.constraint,
					 d->states[s].newline, 1))
	    clrbit('\n', matches);
	  if (! MATCHES_NEWLINE_CONTEXT(pos.constraint,
					 d->states[s].newline, 0))
	    for (j = 0; j < CHARCLASS_INTS; ++j)
	      matches[j] &= newline[j];
	  if (! MATCHES_LETTER_CONTEXT(pos.constraint,
					d->states[s].letter, 1))
	    for (j = 0; j < CHARCLASS_INTS; ++j)
	      matches[j] &= ~letters[j];
	  if (! MATCHES_LETTER_CONTEXT(pos.constraint,
					d->states[s].letter, 0))
	    for (j = 0; j < CHARCLASS_INTS; ++j)
	      matches[j] &= letters[j];

	  /* If there are no characters left, there's no point in going on. */
	  for (j = 0; j < CHARCLASS_INTS && !matches[j]; ++j)
	    continue;
	  if (j == CHARCLASS_INTS)
	    continue;
	}

      for (j = 0; j < ngrps; ++j)
	{
	  /* If matches contains a single character only, and the current
	     group's label doesn't contain that character, go on to the
	     next group. */
	  if (d->tokens[pos.index] >= 0 && d->tokens[pos.index] < NOTCHAR
	      && !tstbit(d->tokens[pos.index], labels[j]))
	    continue;

	  /* Check if this group's label has a nonempty intersection with
	     matches. */
	  intersectf = 0;
	  for (k = 0; k < CHARCLASS_INTS; ++k)
	    (intersect[k] = matches[k] & labels[j][k]) ? (intersectf = 1) : 0;
	  if (! intersectf)
	    continue;

	  /* It does; now find the set differences both ways. */
	  leftoversf = matchesf = 0;
	  for (k = 0; k < CHARCLASS_INTS; ++k)
	    {
	      /* Even an optimizing compiler can't know this for sure. */
	      int match = matches[k], label = labels[j][k];

	      (leftovers[k] = ~match & label) ? (leftoversf = 1) : 0;
	      (matches[k] = match & ~label) ? (matchesf = 1) : 0;
	    }

	  /* If there were leftovers, create a new group labeled with them. */
	  if (leftoversf)
	    {
	      copyset(leftovers, labels[ngrps]);
	      copyset(intersect, labels[j]);
	      MALLOC(grps[ngrps].elems, position, d->nleaves);
	      copy(&grps[j], &grps[ngrps]);
	      ++ngrps;
	    }

	  /* Put the position in the current group.  Note that there is no
	     reason to call insert() here. */
	  grps[j].elems[grps[j].nelem++] = pos;

	  /* If every character matching the current position has been
	     accounted for, we're done. */
	  if (! matchesf)
	    break;
	}

      /* If we've passed the last group, and there are still characters
	 unaccounted for, then we'll have to create a new group. */
      if (j == ngrps)
	{
	  copyset(matches, labels[ngrps]);
	  zeroset(matches);
	  MALLOC(grps[ngrps].elems, position, d->nleaves);
	  grps[ngrps].nelem = 1;
	  grps[ngrps].elems[0] = pos;
	  ++ngrps;
	}
    }

  MALLOC(follows.elems, position, d->nleaves);
  MALLOC(tmp.elems, position, d->nleaves);

  /* If we are a searching matcher, the default transition is to a state
     containing the positions of state 0, otherwise the default transition
     is to fail miserably. */
  if (d->searchflag)
    {
      wants_newline = 0;
      wants_letter = 0;
      for (i = 0; i < d->states[0].elems.nelem; ++i)
	{
	  if (PREV_NEWLINE_DEPENDENT(d->states[0].elems.elems[i].constraint))
	    wants_newline = 1;
	  if (PREV_LETTER_DEPENDENT(d->states[0].elems.elems[i].constraint))
	    wants_letter = 1;
	}
      copy(&d->states[0].elems, &follows);
      state = state_index(d, &follows, 0, 0);
      if (wants_newline)
	state_newline = state_index(d, &follows, 1, 0);
      else
	state_newline = state;
      if (wants_letter)
	state_letter = state_index(d, &follows, 0, 1);
      else
	state_letter = state;
      for (i = 0; i < NOTCHAR; ++i)
	if (i == '\n')
	  trans[i] = state_newline;
	else if (ISALNUM(i))
	  trans[i] = state_letter;
	else
	  trans[i] = state;
    }
  else
    for (i = 0; i < NOTCHAR; ++i)
      trans[i] = -1;

  for (i = 0; i < ngrps; ++i)
    {
      follows.nelem = 0;

      /* Find the union of the follows of the positions of the group.
	 This is a hideously inefficient loop.  Fix it someday. */
      for (j = 0; j < grps[i].nelem; ++j)
	for (k = 0; k < d->follows[grps[i].elems[j].index].nelem; ++k)
	  insert(d->follows[grps[i].elems[j].index].elems[k], &follows);

      /* If we are building a searching matcher, throw in the positions
	 of state 0 as well. */
      if (d->searchflag)
	for (j = 0; j < d->states[0].elems.nelem; ++j)
	  insert(d->states[0].elems.elems[j], &follows);

      /* Find out if the new state will want any context information. */
      wants_newline = 0;
      if (tstbit('\n', labels[i]))
	for (j = 0; j < follows.nelem; ++j)
	  if (PREV_NEWLINE_DEPENDENT(follows.elems[j].constraint))
	    wants_newline = 1;

      wants_letter = 0;
      for (j = 0; j < CHARCLASS_INTS; ++j)
	if (labels[i][j] & letters[j])
	  break;
      if (j < CHARCLASS_INTS)
	for (j = 0; j < follows.nelem; ++j)
	  if (PREV_LETTER_DEPENDENT(follows.elems[j].constraint))
	    wants_letter = 1;

      /* Find the state(s) corresponding to the union of the follows. */
      state = state_index(d, &follows, 0, 0);
      if (wants_newline)
	state_newline = state_index(d, &follows, 1, 0);
      else
	state_newline = state;
      if (wants_letter)
	state_letter = state_index(d, &follows, 0, 1);
      else
	state_letter = state;

      /* Set the transitions for each character in the current label. */
      for (j = 0; j < CHARCLASS_INTS; ++j)
	for (k = 0; k < INTBITS; ++k)
	  if (labels[i][j] & 1 << k)
	    {
	      int c = j * INTBITS + k;

	      if (c == '\n')
		trans[c] = state_newline;
	      else if (ISALNUM(c))
		trans[c] = state_letter;
	      else if (c < NOTCHAR)
		trans[c] = state;
	    }
    }

  for (i = 0; i < ngrps; ++i)
    free(grps[i].elems);
  free(follows.elems);
  free(tmp.elems);
}

/* Some routines for manipulating a compiled dfa's transition tables.
   Each state may or may not have a transition table; if it does, and it
   is a non-accepting state, then d->trans[state] points to its table.
   If it is an accepting state then d->fails[state] points to its table.
   If it has no table at all, then d->trans[state] is NULL.
   TODO: Improve this comment, get rid of the unnecessary redundancy. */

static void
build_state(s, d)
     int s;
     struct dfa *d;
{
  int *trans;			/* The new transition table. */
  int i;

  /* Set an upper limit on the number of transition tables that will ever
     exist at once.  1024 is arbitrary.  The idea is that the frequently
     used transition tables will be quickly rebuilt, whereas the ones that
     were only needed once or twice will be cleared away. */
  if (d->trcount >= 1024)
    {
      for (i = 0; i < d->tralloc; ++i)
	if (d->trans[i])
	  {
	    free((ptr_t) d->trans[i]);
	    d->trans[i] = NULL;
	  }
	else if (d->fails[i])
	  {
	    free((ptr_t) d->fails[i]);
	    d->fails[i] = NULL;
	  }
      d->trcount = 0;
    }

  ++d->trcount;

  /* Set up the success bits for this state. */
  d->success[s] = 0;
  if (ACCEPTS_IN_CONTEXT(d->states[s].newline, 1, d->states[s].letter, 0,
      s, *d))
    d->success[s] |= 4;
  if (ACCEPTS_IN_CONTEXT(d->states[s].newline, 0, d->states[s].letter, 1,
      s, *d))
    d->success[s] |= 2;
  if (ACCEPTS_IN_CONTEXT(d->states[s].newline, 0, d->states[s].letter, 0,
      s, *d))
    d->success[s] |= 1;

  MALLOC(trans, int, NOTCHAR);
  dfastate(s, d, trans);

  /* Now go through the new transition table, and make sure that the trans
     and fail arrays are allocated large enough to hold a pointer for the
     largest state mentioned in the table. */
  for (i = 0; i < NOTCHAR; ++i)
    if (trans[i] >= d->tralloc)
      {
	int oldalloc = d->tralloc;

	while (trans[i] >= d->tralloc)
	  d->tralloc *= 2;
	REALLOC(d->realtrans, int *, d->tralloc + 1);
	d->trans = d->realtrans + 1;
	REALLOC(d->fails, int *, d->tralloc);
	REALLOC(d->success, int, d->tralloc);
	REALLOC(d->newlines, int, d->tralloc);
	while (oldalloc < d->tralloc)
	  {
	    d->trans[oldalloc] = NULL;
	    d->fails[oldalloc++] = NULL;
	  }
      }

  /* Keep the newline transition in a special place so we can use it as
     a sentinel. */
  d->newlines[s] = trans['\n'];
  trans['\n'] = -1;

  if (ACCEPTING(s, *d))
    d->fails[s] = trans;
  else
    d->trans[s] = trans;
}

static void
build_state_zero(d)
     struct dfa *d;
{
  d->tralloc = 1;
  d->trcount = 0;
  CALLOC(d->realtrans, int *, d->tralloc + 1);
  d->trans = d->realtrans + 1;
  CALLOC(d->fails, int *, d->tralloc);
  MALLOC(d->success, int, d->tralloc);
  MALLOC(d->newlines, int, d->tralloc);
  build_state(0, d);
}

/* Search through a buffer looking for a match to the given struct dfa.
   Find the first occurrence of a string matching the regexp in the buffer,
   and the shortest possible version thereof.  Return a pointer to the first
   character after the match, or NULL if none is found.  Begin points to
   the beginning of the buffer, and end points to the first character after
   its end.  We store a newline in *end to act as a sentinel, so end had
   better point somewhere valid.  Newline is a flag indicating whether to
   allow newlines to be in the matching string.  If count is non-
   NULL it points to a place we're supposed to increment every time we
   see a newline.  Finally, if backref is non-NULL it points to a place
   where we're supposed to store a 1 if backreferencing happened and the
   match needs to be verified by a backtracking matcher.  Otherwise
   we store a 0 in *backref. */
char *
dfaexec(d, begin, end, newline, count, backref)
     struct dfa *d;
     char *begin;
     char *end;
     int newline;
     int *count;
     int *backref;
{
  register int s, s1, tmp;	/* Current state. */
  register unsigned char *p;	/* Current input character. */
  register int **trans, *t;	/* Copy of d->trans so it can be optimized
				   into a register. */
  static int sbit[NOTCHAR];	/* Table for anding with d->success. */
  static int sbit_init;

  if (! sbit_init)
    {
      int i;

      sbit_init = 1;
      for (i = 0; i < NOTCHAR; ++i)
	if (i == '\n')
	  sbit[i] = 4;
	else if (ISALNUM(i))
	  sbit[i] = 2;
	else
	  sbit[i] = 1;
    }

  if (! d->tralloc)
    build_state_zero(d);

  s = s1 = 0;
  p = (unsigned char *) begin;
  trans = d->trans;
  *end = '\n';

  for (;;)
    {
      /* The dreaded inner loop. */
      if ((t = trans[s]) != 0)
	do
	  {
	    s1 = t[*p++];
	    if (! (t = trans[s1]))
	      goto last_was_s;
	    s = t[*p++];
	  }
        while ((t = trans[s]) != 0);
      goto last_was_s1;
    last_was_s:
      tmp = s, s = s1, s1 = tmp;
    last_was_s1:

      if (s >= 0 && p <= (unsigned char *) end && d->fails[s])
	{
	  if (d->success[s] & sbit[*p])
	    {
	      if (backref)
		if (d->states[s].backref)
		  *backref = 1;
		else
		  *backref = 0;
	      return (char *) p;
	    }

	  s1 = s;
	  s = d->fails[s][*p++];
	  continue;
	}

      /* If the previous character was a newline, count it. */
      if (count && (char *) p <= end && p[-1] == '\n')
	++*count;

      /* Check if we've run off the end of the buffer. */
      if ((char *) p > end)
	return NULL;

      if (s >= 0)
	{
	  build_state(s, d);
	  trans = d->trans;
	  continue;
	}

      if (p[-1] == '\n' && newline)
	{
	  s = d->newlines[s1];
	  continue;
	}

      s = 0;
    }
}

/* Initialize the components of a dfa that the other routines don't
   initialize for themselves. */
void
dfainit(d)
     struct dfa *d;
{
  d->calloc = 1;
  MALLOC(d->charclasses, charclass, d->calloc);
  d->cindex = 0;

  d->talloc = 1;
  MALLOC(d->tokens, token, d->talloc);
  d->tindex = d->depth = d->nleaves = d->nregexps = 0;

  d->searchflag = 0;
  d->tralloc = 0;

  d->musts = 0;
}

/* Parse and analyze a single string of the given length. */
void
dfacomp(s, len, d, searchflag)
     char *s;
     size_t len;
     struct dfa *d;
     int searchflag;
{
  if (case_fold)	/* dummy folding in service of dfamust() */
    {
      char *lcopy;
      int i;

      lcopy = malloc(len);
      if (!lcopy)
	dfaerror("out of memory");
      
      /* This is a kludge. */
      case_fold = 0;
      for (i = 0; i < len; ++i)
	if (ISUPPER(s[i]))
	  lcopy[i] = tolower(s[i]);
	else
	  lcopy[i] = s[i];

      dfainit(d);
      dfaparse(lcopy, len, d);
      free(lcopy);
      dfamust(d);
      d->cindex = d->tindex = d->depth = d->nleaves = d->nregexps = 0;
      case_fold = 1;
      dfaparse(s, len, d);
      dfaanalyze(d, searchflag);
    }
  else
    {
        dfainit(d);
        dfaparse(s, len, d);
	dfamust(d);
        dfaanalyze(d, searchflag);
    }
}

/* Free the storage held by the components of a dfa. */
void
dfafree(d)
     struct dfa *d;
{
  int i;
  struct dfamust *dm, *ndm;

  free((ptr_t) d->charclasses);
  free((ptr_t) d->tokens);
  for (i = 0; i < d->sindex; ++i)
    free((ptr_t) d->states[i].elems.elems);
  free((ptr_t) d->states);
  for (i = 0; i < d->tindex; ++i)
    if (d->follows[i].elems)
      free((ptr_t) d->follows[i].elems);
  free((ptr_t) d->follows);
  for (i = 0; i < d->tralloc; ++i)
    if (d->trans[i])
      free((ptr_t) d->trans[i]);
    else if (d->fails[i])
      free((ptr_t) d->fails[i]);
  if (d->realtrans) free((ptr_t) d->realtrans);
  if (d->fails) free((ptr_t) d->fails);
  if (d->newlines) free((ptr_t) d->newlines);
  if (d->success) free((ptr_t) d->success);
  for (dm = d->musts; dm; dm = ndm)
    {
      ndm = dm->next;
      free(dm->must);
      free((ptr_t) dm);
    }
}

/* Having found the postfix representation of the regular expression,
   try to find a long sequence of characters that must appear in any line
   containing the r.e.
   Finding a "longest" sequence is beyond the scope here;
   we take an easy way out and hope for the best.
   (Take "(ab|a)b"--please.)

   We do a bottom-up calculation of sequences of characters that must appear
   in matches of r.e.'s represented by trees rooted at the nodes of the postfix
   representation:
	sequences that must appear at the left of the match ("left")
	sequences that must appear at the right of the match ("right")
	lists of sequences that must appear somewhere in the match ("in")
	sequences that must constitute the match ("is")

   When we get to the root of the tree, we use one of the longest of its
   calculated "in" sequences as our answer.  The sequence we find is returned in
   d->must (where "d" is the single argument passed to "dfamust");
   the length of the sequence is returned in d->mustn.

   The sequences calculated for the various types of node (in pseudo ANSI c)
   are shown below.  "p" is the operand of unary operators (and the left-hand
   operand of binary operators); "q" is the right-hand operand of binary
   operators.

   "ZERO" means "a zero-length sequence" below.

	Type	left		right		is		in
	----	----		-----		--		--
	char c	# c		# c		# c		# c
	
	CSET	ZERO		ZERO		ZERO		ZERO
	
	STAR	ZERO		ZERO		ZERO		ZERO

	QMARK	ZERO		ZERO		ZERO		ZERO

	PLUS	p->left		p->right	ZERO		p->in

	CAT	(p->is==ZERO)?	(q->is==ZERO)?	(p->is!=ZERO &&	p->in plus
		p->left :	q->right :	q->is!=ZERO) ?	q->in plus
		p->is##q->left	p->right##q->is	p->is##q->is :	p->right##q->left
						ZERO
					
	OR	longest common	longest common	(do p->is and	substrings common to
		leading		trailing	q->is have same	p->in and q->in
		(sub)sequence	(sub)sequence	length and	
		of p->left	of p->right	content) ?	
		and q->left	and q->right	p->is : NULL	

   If there's anything else we recognize in the tree, all four sequences get set
   to zero-length sequences.  If there's something we don't recognize in the tree,
   we just return a zero-length sequence.

   Break ties in favor of infrequent letters (choosing 'zzz' in preference to
   'aaa')?

   And. . .is it here or someplace that we might ponder "optimizations" such as
	egrep 'psi|epsilon'	->	egrep 'psi'
	egrep 'pepsi|epsilon'	->	egrep 'epsi'
					(Yes, we now find "epsi" as a "string
					that must occur", but we might also
					simplify the *entire* r.e. being sought)
	grep '[c]'		->	grep 'c'
	grep '(ab|a)b'		->	grep 'ab'
	grep 'ab*'		->	grep 'a'
	grep 'a*b'		->	grep 'b'

   There are several issues:

   Is optimization easy (enough)?

   Does optimization actually accomplish anything,
   or is the automaton you get from "psi|epsilon" (for example)
   the same as the one you get from "psi" (for example)?
  
   Are optimizable r.e.'s likely to be used in real-life situations
   (something like 'ab*' is probably unlikely; something like is
   'psi|epsilon' is likelier)? */

static char *
icatalloc(old, new)
     char *old;
     char *new;
{
  char *result;
  size_t oldsize, newsize;

  newsize = (new == NULL) ? 0 : strlen(new);
  if (old == NULL)
    oldsize = 0;
  else if (newsize == 0)
    return old;
  else	oldsize = strlen(old);
  if (old == NULL)
    result = (char *) malloc(newsize + 1);
  else
    result = (char *) realloc((void *) old, oldsize + newsize + 1);
  if (result != NULL && new != NULL)
    (void) strcpy(result + oldsize, new);
  return result;
}

static char *
icpyalloc(string)
     char *string;
{
  return icatalloc((char *) NULL, string);
}

static char *
istrstr(lookin, lookfor)
     char *lookin;
     char *lookfor;
{
  char *cp;
  size_t len;

  len = strlen(lookfor);
  for (cp = lookin; *cp != '\0'; ++cp)
    if (strncmp(cp, lookfor, len) == 0)
      return cp;
  return NULL;
}

static void
ifree(cp)
     char *cp;
{
  if (cp != NULL)
    free(cp);
}

static void
freelist(cpp)
     char **cpp;
{
  int i;

  if (cpp == NULL)
    return;
  for (i = 0; cpp[i] != NULL; ++i)
    {
      free(cpp[i]);
      cpp[i] = NULL;
    }
}

static char **
enlist(cpp, new, len)
     char **cpp;
     char *new;
     size_t len;
{
  int i, j;

  if (cpp == NULL)
    return NULL;
  if ((new = icpyalloc(new)) == NULL)
    {
      freelist(cpp);
      return NULL;
    }
  new[len] = '\0';
  /* Is there already something in the list that's new (or longer)? */
  for (i = 0; cpp[i] != NULL; ++i)
    if (istrstr(cpp[i], new) != NULL)
      {
	free(new);
	return cpp;
      }
  /* Eliminate any obsoleted strings. */
  j = 0;
  while (cpp[j] != NULL)
    if (istrstr(new, cpp[j]) == NULL)
      ++j;
    else
      {
	free(cpp[j]);
	if (--i == j)
	  break;
	cpp[j] = cpp[i];
	cpp[i] = NULL;
      }
  /* Add the new string. */
  cpp = (char **) realloc((char *) cpp, (i + 2) * sizeof *cpp);
  if (cpp == NULL)
    return NULL;
  cpp[i] = new;
  cpp[i + 1] = NULL;
  return cpp;
}

/* Given pointers to two strings, return a pointer to an allocated
   list of their distinct common substrings. Return NULL if something
   seems wild. */
static char **
comsubs(left, right)
     char *left;
     char *right;
{
  char **cpp;
  char *lcp;
  char *rcp;
  size_t i, len;

  if (left == NULL || right == NULL)
    return NULL;
  cpp = (char **) malloc(sizeof *cpp);
  if (cpp == NULL)
    return NULL;
  cpp[0] = NULL;
  for (lcp = left; *lcp != '\0'; ++lcp)
    {
      len = 0;
      rcp = index(right, *lcp);
      while (rcp != NULL)
	{
	  for (i = 1; lcp[i] != '\0' && lcp[i] == rcp[i]; ++i)
	    continue;
	  if (i > len)
	    len = i;
	  rcp = index(rcp + 1, *lcp);
	}
      if (len == 0)
	continue;
      if ((cpp = enlist(cpp, lcp, len)) == NULL)
	break;
    }
  return cpp;
}

static char **
addlists(old, new)
char **old;
char **new;
{
  int i;

  if (old == NULL || new == NULL)
    return NULL;
  for (i = 0; new[i] != NULL; ++i)
    {
      old = enlist(old, new[i], strlen(new[i]));
      if (old == NULL)
	break;
    }
  return old;
}

/* Given two lists of substrings, return a new list giving substrings
   common to both. */
static char **
inboth(left, right)
     char **left;
     char **right;
{
  char **both;
  char **temp;
  int lnum, rnum;

  if (left == NULL || right == NULL)
    return NULL;
  both = (char **) malloc(sizeof *both);
  if (both == NULL)
    return NULL;
  both[0] = NULL;
  for (lnum = 0; left[lnum] != NULL; ++lnum)
    {
      for (rnum = 0; right[rnum] != NULL; ++rnum)
	{
	  temp = comsubs(left[lnum], right[rnum]);
	  if (temp == NULL)
	    {
	      freelist(both);
	      return NULL;
	    }
	  both = addlists(both, temp);
	  freelist(temp);
	  free(temp);
	  if (both == NULL)
	    return NULL;
	}
    }
  return both;
}

typedef struct
{
  char **in;
  char *left;
  char *right;
  char *is;
} must;

static void
resetmust(mp)
must *mp;
{
  mp->left[0] = mp->right[0] = mp->is[0] = '\0';
  freelist(mp->in);
}

static void
dfamust(dfa)
struct dfa *dfa;
{
  must *musts;
  must *mp;
  char *result;
  int ri;
  int i;
  int exact;
  token t;
  static must must0;
  struct dfamust *dm;
  static char empty_string[] = "";

  result = empty_string;
  exact = 0;
  musts = (must *) malloc((dfa->tindex + 1) * sizeof *musts);
  if (musts == NULL)
    return;
  mp = musts;
  for (i = 0; i <= dfa->tindex; ++i)
    mp[i] = must0;
  for (i = 0; i <= dfa->tindex; ++i)
    {
      mp[i].in = (char **) malloc(sizeof *mp[i].in);
      mp[i].left = malloc(2);
      mp[i].right = malloc(2);
      mp[i].is = malloc(2);
      if (mp[i].in == NULL || mp[i].left == NULL ||
	  mp[i].right == NULL || mp[i].is == NULL)
	goto done;
      mp[i].left[0] = mp[i].right[0] = mp[i].is[0] = '\0';
      mp[i].in[0] = NULL;
    }
#ifdef DEBUG
  fprintf(stderr, "dfamust:\n");
  for (i = 0; i < dfa->tindex; ++i)
    {
      fprintf(stderr, " %d:", i);
      prtok(dfa->tokens[i]);
    }
  putc('\n', stderr);
#endif
  for (ri = 0; ri < dfa->tindex; ++ri)
    {
      switch (t = dfa->tokens[ri])
	{
	case LPAREN:
	case RPAREN:
	  goto done;		/* "cannot happen" */
	case EMPTY:
	case BEGLINE:
	case ENDLINE:
	case BEGWORD:
	case ENDWORD:
	case LIMWORD:
	case NOTLIMWORD:
	case BACKREF:
	  resetmust(mp);
	  break;
	case STAR:
	case QMARK:
	  if (mp <= musts)
	    goto done;		/* "cannot happen" */
	  --mp;
	  resetmust(mp);
	  break;
	case OR:
	case ORTOP:
	  if (mp < &musts[2])
	    goto done;		/* "cannot happen" */
	  {
	    char **new;
	    must *lmp;
	    must *rmp;
	    int j, ln, rn, n;

	    rmp = --mp;
	    lmp = --mp;
	    /* Guaranteed to be.  Unlikely, but. . . */
	    if (strcmp(lmp->is, rmp->is) != 0)
	      lmp->is[0] = '\0';
	    /* Left side--easy */
	    i = 0;
	    while (lmp->left[i] != '\0' && lmp->left[i] == rmp->left[i])
	      ++i;
	    lmp->left[i] = '\0';
	    /* Right side */
	    ln = strlen(lmp->right);
	    rn = strlen(rmp->right);
	    n = ln;
	    if (n > rn)
	      n = rn;
	    for (i = 0; i < n; ++i)
	      if (lmp->right[ln - i - 1] != rmp->right[rn - i - 1])
		break;
	    for (j = 0; j < i; ++j)
	      lmp->right[j] = lmp->right[(ln - i) + j];
	    lmp->right[j] = '\0';
	    new = inboth(lmp->in, rmp->in);
	    if (new == NULL)
	      goto done;
	    freelist(lmp->in);
	    free((char *) lmp->in);
	    lmp->in = new;
	  }
	  break;
	case PLUS:
	  if (mp <= musts)
	    goto done;		/* "cannot happen" */
	  --mp;
	  mp->is[0] = '\0';
	  break;
	case END:
	  if (mp != &musts[1])
	    goto done;		/* "cannot happen" */
	  for (i = 0; musts[0].in[i] != NULL; ++i)
	    if (strlen(musts[0].in[i]) > strlen(result))
	      result = musts[0].in[i];
	  if (strcmp(result, musts[0].is) == 0)
	    exact = 1;
	  goto done;
	case CAT:
	  if (mp < &musts[2])
	    goto done;		/* "cannot happen" */
	  {
	    must *lmp;
	    must *rmp;

	    rmp = --mp;
	    lmp = --mp;
	    /* In.  Everything in left, plus everything in
	       right, plus catenation of
	       left's right and right's left. */
	    lmp->in = addlists(lmp->in, rmp->in);
	    if (lmp->in == NULL)
	      goto done;
	    if (lmp->right[0] != '\0' &&
		rmp->left[0] != '\0')
	      {
		char *tp;

		tp = icpyalloc(lmp->right);
		if (tp == NULL)
		  goto done;
		tp = icatalloc(tp, rmp->left);
		if (tp == NULL)
		  goto done;
		lmp->in = enlist(lmp->in, tp,
				 strlen(tp));
		free(tp);
		if (lmp->in == NULL)
		  goto done;
	      }
	    /* Left-hand */
	    if (lmp->is[0] != '\0')
	      {
		lmp->left = icatalloc(lmp->left,
				      rmp->left);
		if (lmp->left == NULL)
		  goto done;
	      }
	    /* Right-hand */
	    if (rmp->is[0] == '\0')
	      lmp->right[0] = '\0';
	    lmp->right = icatalloc(lmp->right, rmp->right);
	    if (lmp->right == NULL)
	      goto done;
	    /* Guaranteed to be */
	    if (lmp->is[0] != '\0' && rmp->is[0] != '\0')
	      {
		lmp->is = icatalloc(lmp->is, rmp->is);
		if (lmp->is == NULL)
		  goto done;
	      }
	    else
	      lmp->is[0] = '\0';
	  }
	  break;
	default:
	  if (t < END)
	    {
	      /* "cannot happen" */
	      goto done;
	    }
	  else if (t == '\0')
	    {
	      /* not on *my* shift */
	      goto done;
	    }
	  else if (t >= CSET)
	    {
	      /* easy enough */
	      resetmust(mp);
	    }
	  else
	    {
	      /* plain character */
	      resetmust(mp);
	      mp->is[0] = mp->left[0] = mp->right[0] = t;
	      mp->is[1] = mp->left[1] = mp->right[1] = '\0';
	      mp->in = enlist(mp->in, mp->is, (size_t)1);
	      if (mp->in == NULL)
		goto done;
	    }
	  break;
	}
#ifdef DEBUG
      fprintf(stderr, " node: %d:", ri);
      prtok(dfa->tokens[ri]);
      fprintf(stderr, "\n  in:");
      for (i = 0; mp->in[i]; ++i)
	fprintf(stderr, " \"%s\"", mp->in[i]);
      fprintf(stderr, "\n  is: \"%s\"\n", mp->is);
      fprintf(stderr, "  left: \"%s\"\n", mp->left);
      fprintf(stderr, "  right: \"%s\"\n", mp->right);
#endif
      ++mp;
    }
 done:
  if (strlen(result))
    {
      dm = (struct dfamust *) malloc(sizeof (struct dfamust));
      dm->exact = exact;
      dm->must = malloc(strlen(result) + 1);
      strcpy(dm->must, result);
      dm->next = dfa->musts;
      dfa->musts = dm;
    }
  mp = musts;
  for (i = 0; i <= dfa->tindex; ++i)
    {
      freelist(mp[i].in);
      ifree((char *) mp[i].in);
      ifree(mp[i].left);
      ifree(mp[i].right);
      ifree(mp[i].is);
    }
  free((char *) mp);
}