// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Page heap. // // See malloc.h for overview. // // When a MSpan is in the heap free list, state == MSpanFree // and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span. // // When a MSpan is allocated, state == MSpanInUse // and heapmap(i) == span for all s->start <= i < s->start+s->npages. #include "runtime.h" #include "arch.h" #include "malloc.h" static MSpan *MHeap_AllocLocked(MHeap*, uintptr, int32); static bool MHeap_Grow(MHeap*, uintptr); static void MHeap_FreeLocked(MHeap*, MSpan*); static MSpan *MHeap_AllocLarge(MHeap*, uintptr); static MSpan *BestFit(MSpan*, uintptr, MSpan*); static void RecordSpan(void *vh, byte *p) { MHeap *h; MSpan *s; MSpan **all; uint32 cap; h = vh; s = (MSpan*)p; if(h->nspan >= h->nspancap) { cap = 64*1024/sizeof(all[0]); if(cap < h->nspancap*3/2) cap = h->nspancap*3/2; all = (MSpan**)runtime_SysAlloc(cap*sizeof(all[0]), &mstats()->other_sys); if(all == nil) runtime_throw("runtime: cannot allocate memory"); if(h->allspans) { runtime_memmove(all, h->allspans, h->nspancap*sizeof(all[0])); // Don't free the old array if it's referenced by sweep. // See the comment in mgc0.c. if(h->allspans != runtime_mheap.sweepspans) runtime_SysFree(h->allspans, h->nspancap*sizeof(all[0]), &mstats()->other_sys); } h->allspans = all; h->nspancap = cap; } h->allspans[h->nspan++] = s; } // Initialize the heap; fetch memory using alloc. void runtime_MHeap_Init(MHeap *h) { MStats *pmstats; uint32 i; pmstats = mstats(); runtime_FixAlloc_Init(&h->spanalloc, sizeof(MSpan), RecordSpan, h, &pmstats->mspan_sys); runtime_FixAlloc_Init(&h->cachealloc, sizeof(MCache), nil, nil, &pmstats->mcache_sys); runtime_FixAlloc_Init(&h->specialfinalizeralloc, sizeof(SpecialFinalizer), nil, nil, &pmstats->other_sys); runtime_FixAlloc_Init(&h->specialprofilealloc, sizeof(SpecialProfile), nil, nil, &pmstats->other_sys); // h->mapcache needs no init for(i=0; ifree); i++) { runtime_MSpanList_Init(&h->free[i]); runtime_MSpanList_Init(&h->busy[i]); } runtime_MSpanList_Init(&h->freelarge); runtime_MSpanList_Init(&h->busylarge); for(i=0; icentral); i++) runtime_MCentral_Init(&h->central[i], i); } void runtime_MHeap_MapSpans(MHeap *h) { uintptr pagesize; uintptr n; // Map spans array, PageSize at a time. n = (uintptr)h->arena_used; n -= (uintptr)h->arena_start; n = n / PageSize * sizeof(h->spans[0]); n = ROUND(n, PageSize); pagesize = getpagesize(); n = ROUND(n, pagesize); if(h->spans_mapped >= n) return; runtime_SysMap((byte*)h->spans + h->spans_mapped, n - h->spans_mapped, h->arena_reserved, &mstats()->other_sys); h->spans_mapped = n; } // Sweeps spans in list until reclaims at least npages into heap. // Returns the actual number of pages reclaimed. static uintptr MHeap_ReclaimList(MHeap *h, MSpan *list, uintptr npages) { MSpan *s; uintptr n; uint32 sg; n = 0; sg = runtime_mheap.sweepgen; retry: for(s = list->next; s != list; s = s->next) { if(s->sweepgen == sg-2 && runtime_cas(&s->sweepgen, sg-2, sg-1)) { runtime_MSpanList_Remove(s); // swept spans are at the end of the list runtime_MSpanList_InsertBack(list, s); runtime_unlock(h); n += runtime_MSpan_Sweep(s); runtime_lock(h); if(n >= npages) return n; // the span could have been moved elsewhere goto retry; } if(s->sweepgen == sg-1) { // the span is being sweept by background sweeper, skip continue; } // already swept empty span, // all subsequent ones must also be either swept or in process of sweeping break; } return n; } // Sweeps and reclaims at least npage pages into heap. // Called before allocating npage pages. static void MHeap_Reclaim(MHeap *h, uintptr npage) { uintptr reclaimed, n; // First try to sweep busy spans with large objects of size >= npage, // this has good chances of reclaiming the necessary space. for(n=npage; n < nelem(h->busy); n++) { if(MHeap_ReclaimList(h, &h->busy[n], npage)) return; // Bingo! } // Then -- even larger objects. if(MHeap_ReclaimList(h, &h->busylarge, npage)) return; // Bingo! // Now try smaller objects. // One such object is not enough, so we need to reclaim several of them. reclaimed = 0; for(n=0; n < npage && n < nelem(h->busy); n++) { reclaimed += MHeap_ReclaimList(h, &h->busy[n], npage-reclaimed); if(reclaimed >= npage) return; } // Now sweep everything that is not yet swept. runtime_unlock(h); for(;;) { n = runtime_sweepone(); if(n == (uintptr)-1) // all spans are swept break; reclaimed += n; if(reclaimed >= npage) break; } runtime_lock(h); } // Allocate a new span of npage pages from the heap // and record its size class in the HeapMap and HeapMapCache. MSpan* runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large, bool needzero) { MStats *pmstats; MSpan *s; runtime_lock(h); pmstats = mstats(); pmstats->heap_alloc += (intptr)runtime_m()->mcache->local_cachealloc; runtime_m()->mcache->local_cachealloc = 0; s = MHeap_AllocLocked(h, npage, sizeclass); if(s != nil) { pmstats->heap_inuse += npage<heap_objects++; pmstats->heap_alloc += npage<npages < nelem(h->free)) runtime_MSpanList_InsertBack(&h->busy[s->npages], s); else runtime_MSpanList_InsertBack(&h->busylarge, s); } } runtime_unlock(h); if(s != nil) { if(needzero && s->needzero) runtime_memclr((byte*)(s->start<npages<needzero = 0; } return s; } static MSpan* MHeap_AllocLocked(MHeap *h, uintptr npage, int32 sizeclass) { uintptr n; MSpan *s, *t; PageID p; // To prevent excessive heap growth, before allocating n pages // we need to sweep and reclaim at least n pages. if(!h->sweepdone) MHeap_Reclaim(h, npage); // Try in fixed-size lists up to max. for(n=npage; n < nelem(h->free); n++) { if(!runtime_MSpanList_IsEmpty(&h->free[n])) { s = h->free[n].next; goto HaveSpan; } } // Best fit in list of large spans. if((s = MHeap_AllocLarge(h, npage)) == nil) { if(!MHeap_Grow(h, npage)) return nil; if((s = MHeap_AllocLarge(h, npage)) == nil) return nil; } HaveSpan: // Mark span in use. if(s->state != MSpanFree) runtime_throw("MHeap_AllocLocked - MSpan not free"); if(s->npages < npage) runtime_throw("MHeap_AllocLocked - bad npages"); runtime_MSpanList_Remove(s); runtime_atomicstore(&s->sweepgen, h->sweepgen); s->state = MSpanInUse; mstats()->heap_idle -= s->npages<heap_released -= s->npreleased<npreleased > 0) runtime_SysUsed((void*)(s->start<npages<npreleased = 0; if(s->npages > npage) { // Trim extra and put it back in the heap. t = runtime_FixAlloc_Alloc(&h->spanalloc); runtime_MSpan_Init(t, s->start + npage, s->npages - npage); s->npages = npage; p = t->start; p -= ((uintptr)h->arena_start>>PageShift); if(p > 0) h->spans[p-1] = s; h->spans[p] = t; h->spans[p+t->npages-1] = t; t->needzero = s->needzero; runtime_atomicstore(&t->sweepgen, h->sweepgen); t->state = MSpanInUse; MHeap_FreeLocked(h, t); t->unusedsince = s->unusedsince; // preserve age } s->unusedsince = 0; // Record span info, because gc needs to be // able to map interior pointer to containing span. s->sizeclass = sizeclass; s->elemsize = (sizeclass==0 ? s->npages<types.compression = MTypes_Empty; p = s->start; p -= ((uintptr)h->arena_start>>PageShift); for(n=0; nspans[p+n] = s; return s; } // Allocate a span of exactly npage pages from the list of large spans. static MSpan* MHeap_AllocLarge(MHeap *h, uintptr npage) { return BestFit(&h->freelarge, npage, nil); } // Search list for smallest span with >= npage pages. // If there are multiple smallest spans, take the one // with the earliest starting address. static MSpan* BestFit(MSpan *list, uintptr npage, MSpan *best) { MSpan *s; for(s=list->next; s != list; s=s->next) { if(s->npages < npage) continue; if(best == nil || s->npages < best->npages || (s->npages == best->npages && s->start < best->start)) best = s; } return best; } // Try to add at least npage pages of memory to the heap, // returning whether it worked. static bool MHeap_Grow(MHeap *h, uintptr npage) { uintptr ask; void *v; MSpan *s; PageID p; // Ask for a big chunk, to reduce the number of mappings // the operating system needs to track; also amortizes // the overhead of an operating system mapping. // Allocate a multiple of 64kB (16 pages). npage = (npage+15)&~15; ask = npage< (npage<heap_sys); return false; } } // Create a fake "in use" span and free it, so that the // right coalescing happens. s = runtime_FixAlloc_Alloc(&h->spanalloc); runtime_MSpan_Init(s, (uintptr)v>>PageShift, ask>>PageShift); p = s->start; p -= ((uintptr)h->arena_start>>PageShift); h->spans[p] = s; h->spans[p + s->npages - 1] = s; runtime_atomicstore(&s->sweepgen, h->sweepgen); s->state = MSpanInUse; MHeap_FreeLocked(h, s); return true; } // Look up the span at the given address. // Address is guaranteed to be in map // and is guaranteed to be start or end of span. MSpan* runtime_MHeap_Lookup(MHeap *h, void *v) { uintptr p; p = (uintptr)v; p -= (uintptr)h->arena_start; return h->spans[p >> PageShift]; } // Look up the span at the given address. // Address is *not* guaranteed to be in map // and may be anywhere in the span. // Map entries for the middle of a span are only // valid for allocated spans. Free spans may have // other garbage in their middles, so we have to // check for that. MSpan* runtime_MHeap_LookupMaybe(MHeap *h, void *v) { MSpan *s; PageID p, q; if((byte*)v < h->arena_start || (byte*)v >= h->arena_used) return nil; p = (uintptr)v>>PageShift; q = p; q -= (uintptr)h->arena_start >> PageShift; s = h->spans[q]; if(s == nil || p < s->start || (uintptr)v >= s->limit || s->state != MSpanInUse) return nil; return s; } // Free the span back into the heap. void runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct) { MStats *pmstats; runtime_lock(h); pmstats = mstats(); pmstats->heap_alloc += (intptr)runtime_m()->mcache->local_cachealloc; runtime_m()->mcache->local_cachealloc = 0; pmstats->heap_inuse -= s->npages<heap_alloc -= s->npages<heap_objects--; } MHeap_FreeLocked(h, s); runtime_unlock(h); } static void MHeap_FreeLocked(MHeap *h, MSpan *s) { MSpan *t; PageID p; s->types.compression = MTypes_Empty; if(s->state != MSpanInUse || s->ref != 0 || s->sweepgen != h->sweepgen) { runtime_printf("MHeap_FreeLocked - span %p ptr %p state %d ref %d sweepgen %d/%d\n", s, s->start<state, s->ref, s->sweepgen, h->sweepgen); runtime_throw("MHeap_FreeLocked - invalid free"); } mstats()->heap_idle += s->npages<state = MSpanFree; runtime_MSpanList_Remove(s); // Stamp newly unused spans. The scavenger will use that // info to potentially give back some pages to the OS. s->unusedsince = runtime_nanotime(); s->npreleased = 0; // Coalesce with earlier, later spans. p = s->start; p -= (uintptr)h->arena_start >> PageShift; if(p > 0 && (t = h->spans[p-1]) != nil && t->state != MSpanInUse) { s->start = t->start; s->npages += t->npages; s->npreleased = t->npreleased; // absorb released pages s->needzero |= t->needzero; p -= t->npages; h->spans[p] = s; runtime_MSpanList_Remove(t); t->state = MSpanDead; runtime_FixAlloc_Free(&h->spanalloc, t); } if((p+s->npages)*sizeof(h->spans[0]) < h->spans_mapped && (t = h->spans[p+s->npages]) != nil && t->state != MSpanInUse) { s->npages += t->npages; s->npreleased += t->npreleased; s->needzero |= t->needzero; h->spans[p + s->npages - 1] = s; runtime_MSpanList_Remove(t); t->state = MSpanDead; runtime_FixAlloc_Free(&h->spanalloc, t); } // Insert s into appropriate list. if(s->npages < nelem(h->free)) runtime_MSpanList_Insert(&h->free[s->npages], s); else runtime_MSpanList_Insert(&h->freelarge, s); } static void forcegchelper(void *vnote) { Note *note = (Note*)vnote; runtime_gc(1); runtime_notewakeup(note); } static uintptr scavengelist(MSpan *list, uint64 now, uint64 limit) { uintptr released, sumreleased, start, end, pagesize; MSpan *s; if(runtime_MSpanList_IsEmpty(list)) return 0; sumreleased = 0; for(s=list->next; s != list; s=s->next) { if((now - s->unusedsince) > limit && s->npreleased != s->npages) { released = (s->npages - s->npreleased) << PageShift; mstats()->heap_released += released; sumreleased += released; s->npreleased = s->npages; start = s->start << PageShift; end = start + (s->npages << PageShift); // Round start up and end down to ensure we // are acting on entire pages. pagesize = getpagesize(); start = ROUND(start, pagesize); end &= ~(pagesize - 1); if(end > start) runtime_SysUnused((void*)start, end - start); } } return sumreleased; } static void scavenge(int32 k, uint64 now, uint64 limit) { uint32 i; uintptr sumreleased; MHeap *h; h = &runtime_mheap; sumreleased = 0; for(i=0; i < nelem(h->free); i++) sumreleased += scavengelist(&h->free[i], now, limit); sumreleased += scavengelist(&h->freelarge, now, limit); if(runtime_debug.gctrace > 0) { if(sumreleased > 0) runtime_printf("scvg%d: %D MB released\n", k, (uint64)sumreleased>>20); runtime_printf("scvg%d: inuse: %D, idle: %D, sys: %D, released: %D, consumed: %D (MB)\n", k, mstats()->heap_inuse>>20, mstats()->heap_idle>>20, mstats()->heap_sys>>20, mstats()->heap_released>>20, (mstats()->heap_sys - mstats()->heap_released)>>20); } } // Release (part of) unused memory to OS. // Goroutine created at startup. // Loop forever. void runtime_MHeap_Scavenger(void* dummy) { G *g; MHeap *h; uint64 tick, now, forcegc, limit; int64 unixnow; uint32 k; Note note, *notep; USED(dummy); g = runtime_g(); g->issystem = true; g->isbackground = true; // If we go two minutes without a garbage collection, force one to run. forcegc = 2*60*1e9; // If a span goes unused for 5 minutes after a garbage collection, // we hand it back to the operating system. limit = 5*60*1e9; // Make wake-up period small enough for the sampling to be correct. if(forcegc < limit) tick = forcegc/2; else tick = limit/2; h = &runtime_mheap; for(k=0;; k++) { runtime_noteclear(¬e); runtime_notetsleepg(¬e, tick); runtime_lock(h); unixnow = runtime_unixnanotime(); if(unixnow - mstats()->last_gc > forcegc) { runtime_unlock(h); // The scavenger can not block other goroutines, // otherwise deadlock detector can fire spuriously. // GC blocks other goroutines via the runtime_worldsema. runtime_noteclear(¬e); notep = ¬e; __go_go(forcegchelper, (void*)notep); runtime_notetsleepg(¬e, -1); if(runtime_debug.gctrace > 0) runtime_printf("scvg%d: GC forced\n", k); runtime_lock(h); } now = runtime_nanotime(); scavenge(k, now, limit); runtime_unlock(h); } } void runtime_debug_freeOSMemory(void) __asm__("runtime_debug.freeOSMemory"); void runtime_debug_freeOSMemory(void) { runtime_gc(2); // force GC and do eager sweep runtime_lock(&runtime_mheap); scavenge(-1, ~(uintptr)0, 0); runtime_unlock(&runtime_mheap); } // Initialize a new span with the given start and npages. void runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages) { span->next = nil; span->prev = nil; span->start = start; span->npages = npages; span->freelist = nil; span->ref = 0; span->sizeclass = 0; span->incache = false; span->elemsize = 0; span->state = MSpanDead; span->unusedsince = 0; span->npreleased = 0; span->types.compression = MTypes_Empty; span->speciallock.key = 0; span->specials = nil; span->needzero = 0; span->freebuf = nil; } // Initialize an empty doubly-linked list. void runtime_MSpanList_Init(MSpan *list) { list->state = MSpanListHead; list->next = list; list->prev = list; } void runtime_MSpanList_Remove(MSpan *span) { if(span->prev == nil && span->next == nil) return; span->prev->next = span->next; span->next->prev = span->prev; span->prev = nil; span->next = nil; } bool runtime_MSpanList_IsEmpty(MSpan *list) { return list->next == list; } void runtime_MSpanList_Insert(MSpan *list, MSpan *span) { if(span->next != nil || span->prev != nil) { runtime_printf("failed MSpanList_Insert %p %p %p\n", span, span->next, span->prev); runtime_throw("MSpanList_Insert"); } span->next = list->next; span->prev = list; span->next->prev = span; span->prev->next = span; } void runtime_MSpanList_InsertBack(MSpan *list, MSpan *span) { if(span->next != nil || span->prev != nil) { runtime_printf("failed MSpanList_Insert %p %p %p\n", span, span->next, span->prev); runtime_throw("MSpanList_Insert"); } span->next = list; span->prev = list->prev; span->next->prev = span; span->prev->next = span; } // Adds the special record s to the list of special records for // the object p. All fields of s should be filled in except for // offset & next, which this routine will fill in. // Returns true if the special was successfully added, false otherwise. // (The add will fail only if a record with the same p and s->kind // already exists.) static bool addspecial(void *p, Special *s) { MSpan *span; Special **t, *x; uintptr offset; byte kind; span = runtime_MHeap_LookupMaybe(&runtime_mheap, p); if(span == nil) runtime_throw("addspecial on invalid pointer"); // Ensure that the span is swept. // GC accesses specials list w/o locks. And it's just much safer. runtime_m()->locks++; runtime_MSpan_EnsureSwept(span); offset = (uintptr)p - (span->start << PageShift); kind = s->kind; runtime_lock(&span->speciallock); // Find splice point, check for existing record. t = &span->specials; while((x = *t) != nil) { if(offset == x->offset && kind == x->kind) { runtime_unlock(&span->speciallock); runtime_m()->locks--; return false; // already exists } if(offset < x->offset || (offset == x->offset && kind < x->kind)) break; t = &x->next; } // Splice in record, fill in offset. s->offset = offset; s->next = x; *t = s; runtime_unlock(&span->speciallock); runtime_m()->locks--; return true; } // Removes the Special record of the given kind for the object p. // Returns the record if the record existed, nil otherwise. // The caller must FixAlloc_Free the result. static Special* removespecial(void *p, byte kind) { MSpan *span; Special *s, **t; uintptr offset; span = runtime_MHeap_LookupMaybe(&runtime_mheap, p); if(span == nil) runtime_throw("removespecial on invalid pointer"); // Ensure that the span is swept. // GC accesses specials list w/o locks. And it's just much safer. runtime_m()->locks++; runtime_MSpan_EnsureSwept(span); offset = (uintptr)p - (span->start << PageShift); runtime_lock(&span->speciallock); t = &span->specials; while((s = *t) != nil) { // This function is used for finalizers only, so we don't check for // "interior" specials (p must be exactly equal to s->offset). if(offset == s->offset && kind == s->kind) { *t = s->next; runtime_unlock(&span->speciallock); runtime_m()->locks--; return s; } t = &s->next; } runtime_unlock(&span->speciallock); runtime_m()->locks--; return nil; } // Adds a finalizer to the object p. Returns true if it succeeded. bool runtime_addfinalizer(void *p, FuncVal *f, const FuncType *ft, const PtrType *ot) { SpecialFinalizer *s; runtime_lock(&runtime_mheap.speciallock); s = runtime_FixAlloc_Alloc(&runtime_mheap.specialfinalizeralloc); runtime_unlock(&runtime_mheap.speciallock); s->kind = KindSpecialFinalizer; s->fn = f; s->ft = ft; s->ot = ot; if(addspecial(p, s)) return true; // There was an old finalizer runtime_lock(&runtime_mheap.speciallock); runtime_FixAlloc_Free(&runtime_mheap.specialfinalizeralloc, s); runtime_unlock(&runtime_mheap.speciallock); return false; } // Removes the finalizer (if any) from the object p. void runtime_removefinalizer(void *p) { SpecialFinalizer *s; s = (SpecialFinalizer*)removespecial(p, KindSpecialFinalizer); if(s == nil) return; // there wasn't a finalizer to remove runtime_lock(&runtime_mheap.speciallock); runtime_FixAlloc_Free(&runtime_mheap.specialfinalizeralloc, s); runtime_unlock(&runtime_mheap.speciallock); } // Set the heap profile bucket associated with addr to b. void runtime_setprofilebucket(void *p, Bucket *b) { SpecialProfile *s; runtime_lock(&runtime_mheap.speciallock); s = runtime_FixAlloc_Alloc(&runtime_mheap.specialprofilealloc); runtime_unlock(&runtime_mheap.speciallock); s->kind = KindSpecialProfile; s->b = b; if(!addspecial(p, s)) runtime_throw("setprofilebucket: profile already set"); } // Do whatever cleanup needs to be done to deallocate s. It has // already been unlinked from the MSpan specials list. // Returns true if we should keep working on deallocating p. bool runtime_freespecial(Special *s, void *p, uintptr size, bool freed) { SpecialFinalizer *sf; SpecialProfile *sp; switch(s->kind) { case KindSpecialFinalizer: sf = (SpecialFinalizer*)s; runtime_queuefinalizer(p, sf->fn, sf->ft, sf->ot); runtime_lock(&runtime_mheap.speciallock); runtime_FixAlloc_Free(&runtime_mheap.specialfinalizeralloc, sf); runtime_unlock(&runtime_mheap.speciallock); return false; // don't free p until finalizer is done case KindSpecialProfile: sp = (SpecialProfile*)s; runtime_MProf_Free(sp->b, size, freed); runtime_lock(&runtime_mheap.speciallock); runtime_FixAlloc_Free(&runtime_mheap.specialprofilealloc, sp); runtime_unlock(&runtime_mheap.speciallock); return true; default: runtime_throw("bad special kind"); return true; } } // Free all special records for p. void runtime_freeallspecials(MSpan *span, void *p, uintptr size) { Special *s, **t, *list; uintptr offset; if(span->sweepgen != runtime_mheap.sweepgen) runtime_throw("runtime: freeallspecials: unswept span"); // first, collect all specials into the list; then, free them // this is required to not cause deadlock between span->specialLock and proflock list = nil; offset = (uintptr)p - (span->start << PageShift); runtime_lock(&span->speciallock); t = &span->specials; while((s = *t) != nil) { if(offset + size <= s->offset) break; if(offset <= s->offset) { *t = s->next; s->next = list; list = s; } else t = &s->next; } runtime_unlock(&span->speciallock); while(list != nil) { s = list; list = s->next; if(!runtime_freespecial(s, p, size, true)) runtime_throw("can't explicitly free an object with a finalizer"); } } // Split an allocated span into two equal parts. void runtime_MHeap_SplitSpan(MHeap *h, MSpan *s) { MSpan *t; MCentral *c; uintptr i; uintptr npages; PageID p; if(s->state != MSpanInUse) runtime_throw("MHeap_SplitSpan on a free span"); if(s->sizeclass != 0 && s->ref != 1) runtime_throw("MHeap_SplitSpan doesn't have an allocated object"); npages = s->npages; // remove the span from whatever list it is in now if(s->sizeclass > 0) { // must be in h->central[x].mempty c = &h->central[s->sizeclass]; runtime_lock(c); runtime_MSpanList_Remove(s); runtime_unlock(c); runtime_lock(h); } else { // must be in h->busy/busylarge runtime_lock(h); runtime_MSpanList_Remove(s); } // heap is locked now if(npages == 1) { // convert span of 1 PageSize object to a span of 2 PageSize/2 objects. s->ref = 2; s->sizeclass = runtime_SizeToClass(PageSize/2); s->elemsize = PageSize/2; } else { // convert span of n>1 pages into two spans of n/2 pages each. if((s->npages & 1) != 0) runtime_throw("MHeap_SplitSpan on an odd size span"); // compute position in h->spans p = s->start; p -= (uintptr)h->arena_start >> PageShift; // Allocate a new span for the first half. t = runtime_FixAlloc_Alloc(&h->spanalloc); runtime_MSpan_Init(t, s->start, npages/2); t->limit = (uintptr)((t->start + npages/2) << PageShift); t->state = MSpanInUse; t->elemsize = npages << (PageShift - 1); t->sweepgen = s->sweepgen; if(t->elemsize <= MaxSmallSize) { t->sizeclass = runtime_SizeToClass(t->elemsize); t->ref = 1; } // the old span holds the second half. s->start += npages/2; s->npages = npages/2; s->elemsize = npages << (PageShift - 1); if(s->elemsize <= MaxSmallSize) { s->sizeclass = runtime_SizeToClass(s->elemsize); s->ref = 1; } // update span lookup table for(i = p; i < p + npages/2; i++) h->spans[i] = t; } // place the span into a new list if(s->sizeclass > 0) { runtime_unlock(h); c = &h->central[s->sizeclass]; runtime_lock(c); // swept spans are at the end of the list runtime_MSpanList_InsertBack(&c->mempty, s); runtime_unlock(c); } else { // Swept spans are at the end of lists. if(s->npages < nelem(h->free)) runtime_MSpanList_InsertBack(&h->busy[s->npages], s); else runtime_MSpanList_InsertBack(&h->busylarge, s); runtime_unlock(h); } }