diff options
author | Richard Henderson <rth@redhat.com> | 2002-09-16 09:36:39 -0700 |
---|---|---|
committer | Richard Henderson <rth@gcc.gnu.org> | 2002-09-16 09:36:39 -0700 |
commit | efdc7e19ca67331ae7f0061c76964299db27242d (patch) | |
tree | e6577420306f750f19abf6c590eb0d8987ca7485 /contrib/paranoia.cc | |
parent | 1f73c622253e00cd295fe09e07d6acee7c943e4e (diff) | |
download | gcc-efdc7e19ca67331ae7f0061c76964299db27242d.tar.gz |
real.c, real.h: Rewrite from scratch.
gcc/
* real.c, real.h: Rewrite from scratch.
* Makefile.in (simplify-rtx.o): Depend on TREE_H.
(paranoia): New target.
* builtins.c (fold_builtin_inf): Use new real.h interface.
* c-common.c (builtin_define_with_hex_fp_value): Likewise.
* c-lex.c (interpret_float): Likewise.
* emit-rtl.c (gen_lowpart_common): Likewise.
* optabs.c (expand_float): Use real_2expN.
* config/ia64/ia64.md (divsi3, udivsi3): Likewise.
* defaults.h (INTEL_EXTENDED_IEEE_FORMAT): New.
(FLOAT_WORDS_BIG_ENDIAN): New.
* cse.c (find_comparison_args): Don't pass FLOAT_STORE_FLAG_VALUE
directly to REAL_VALUE_NEGATIVE.
* loop.c (canonicalize_condition): Likewise.
* simplify-rtx.c: Include tree.h.
(simplify_unary_operation): Don't handle FIX and UNSIGNED_FIX
with floating-point result modes.
* toplev.c (backend_init): Call init_real_once.
* fold-const.c (force_fit_type): Don't call CHECK_FLOAT_VALUE.
* tree.c (build_real): Likewise.
* config/alpha/alpha.c, config/vax/vax.c (float_strings,
float_values, inited_float_values, check_float_value): Remove.
* config/alpha/alpha.h, config/m68hc11/m68hc11.h,
config/m88k/m88k.h, config/vax/vax.h (CHECK_FLOAT_VALUE): Remove.
* doc/tm.texi (CHECK_FLOAT_VALUE): Remove.
gcc/f/
* target.c (ffetarget_real1): Don't pass FFETARGET_ATOF_
directly to ffetarget_make_real1.
(ffetarget_real2): Similarly.
* target.h (ffetarget_cvt_r1_to_rv_, ffetarget_cvt_rv_to_r2_,
ffetarget_cvt_r2_to_rv_): Use new real.h interface and simplify.
gcc/java/
* jcf-parse.c (get_constant): Runtime check for IEEE format;
use new real.h interface.
* jcf-write.c (find_constant_index): Use new real.h interface.
* lex.c (IS_ZERO): Use REAL_VALUES_EQUAL.
contrib/
* paranoia.cc: New file.
From-SVN: r57198
Diffstat (limited to 'contrib/paranoia.cc')
-rw-r--r-- | contrib/paranoia.cc | 2698 |
1 files changed, 2698 insertions, 0 deletions
diff --git a/contrib/paranoia.cc b/contrib/paranoia.cc new file mode 100644 index 00000000000..0b87da9d690 --- /dev/null +++ b/contrib/paranoia.cc @@ -0,0 +1,2698 @@ +/* A C version of Kahan's Floating Point Test "Paranoia" + +Thos Sumner, UCSF, Feb. 1985 +David Gay, BTL, Jan. 1986 + +This is a rewrite from the Pascal version by + +B. A. Wichmann, 18 Jan. 1985 + +(and does NOT exhibit good C programming style). + +Adjusted to use Standard C headers 19 Jan. 1992 (dmg); + +(C) Apr 19 1983 in BASIC version by: +Professor W. M. Kahan, +567 Evans Hall +Electrical Engineering & Computer Science Dept. +University of California +Berkeley, California 94720 +USA + +converted to Pascal by: +B. A. Wichmann +National Physical Laboratory +Teddington Middx +TW11 OLW +UK + +converted to C by: + +David M. Gay and Thos Sumner +AT&T Bell Labs Computer Center, Rm. U-76 +600 Mountain Avenue University of California +Murray Hill, NJ 07974 San Francisco, CA 94143 +USA USA + +with simultaneous corrections to the Pascal source (reflected +in the Pascal source available over netlib). +[A couple of bug fixes from dgh = sun!dhough incorporated 31 July 1986.] + +Reports of results on various systems from all the versions +of Paranoia are being collected by Richard Karpinski at the +same address as Thos Sumner. This includes sample outputs, +bug reports, and criticisms. + +You may copy this program freely if you acknowledge its source. +Comments on the Pascal version to NPL, please. + +The following is from the introductory commentary from Wichmann's work: + +The BASIC program of Kahan is written in Microsoft BASIC using many +facilities which have no exact analogy in Pascal. The Pascal +version below cannot therefore be exactly the same. Rather than be +a minimal transcription of the BASIC program, the Pascal coding +follows the conventional style of block-structured languages. Hence +the Pascal version could be useful in producing versions in other +structured languages. + +Rather than use identifiers of minimal length (which therefore have +little mnemonic significance), the Pascal version uses meaningful +identifiers as follows [Note: A few changes have been made for C]: + + +BASIC C BASIC C BASIC C + +A J S StickyBit +A1 AInverse J0 NoErrors T +B Radix [Failure] T0 Underflow +B1 BInverse J1 NoErrors T2 ThirtyTwo +B2 RadixD2 [SeriousDefect] T5 OneAndHalf +B9 BMinusU2 J2 NoErrors T7 TwentySeven +C [Defect] T8 TwoForty +C1 CInverse J3 NoErrors U OneUlp +D [Flaw] U0 UnderflowThreshold +D4 FourD K PageNo U1 +E0 L Milestone U2 +E1 M V +E2 Exp2 N V0 +E3 N1 V8 +E5 MinSqEr O Zero V9 +E6 SqEr O1 One W +E7 MaxSqEr O2 Two X +E8 O3 Three X1 +E9 O4 Four X8 +F1 MinusOne O5 Five X9 Random1 +F2 Half O8 Eight Y +F3 Third O9 Nine Y1 +F6 P Precision Y2 +F9 Q Y9 Random2 +G1 GMult Q8 Z +G2 GDiv Q9 Z0 PseudoZero +G3 GAddSub R Z1 +H R1 RMult Z2 +H1 HInverse R2 RDiv Z9 +I R3 RAddSub +IO NoTrials R4 RSqrt +I3 IEEE R9 Random9 + +SqRWrng + +All the variables in BASIC are true variables and in consequence, +the program is more difficult to follow since the "constants" must +be determined (the glossary is very helpful). The Pascal version +uses Real constants, but checks are added to ensure that the values +are correctly converted by the compiler. + +The major textual change to the Pascal version apart from the +identifiersis that named procedures are used, inserting parameters +wherehelpful. New procedures are also introduced. The +correspondence is as follows: + + +BASIC Pascal +lines + +90- 140 Pause +170- 250 Instructions +380- 460 Heading +480- 670 Characteristics +690- 870 History +2940-2950 Random +3710-3740 NewD +4040-4080 DoesYequalX +4090-4110 PrintIfNPositive +4640-4850 TestPartialUnderflow + +*/ + + /* This version of paranoia has been modified to work with GCC's internal + software floating point emulation library, as a sanity check of same. + + I'm doing this in C++ so that I can do operator overloading and not + have to modify so damned much of the existing code. */ + + extern "C" { +#include <stdio.h> +#include <stddef.h> +#include <limits.h> +#include <string.h> +#include <stdlib.h> +#include <math.h> +#include <unistd.h> +#include <float.h> + + /* This part is made all the more awful because many gcc headers are + not prepared at all to be parsed as C++. The biggest stickler + here is const structure members. So we include exactly the pieces + that we need. */ + +#define GTY(x) + +#include "ansidecl.h" +#include "auto-host.h" +#include "hwint.h" + +#undef EXTRA_MODES_FILE + + struct rtx_def; + typedef struct rtx_def *rtx; + struct rtvec_def; + typedef struct rtvec_def *rtvec; + union tree_node; + typedef union tree_node *tree; + +#define DEFTREECODE(SYM, STRING, TYPE, NARGS) SYM, + enum tree_code { +#include "tree.def" + LAST_AND_UNUSED_TREE_CODE + }; +#undef DEFTREECODE + +#include "real.h" + } + +/* We never produce signals from the library. Thus setjmp need do nothing. */ +#undef setjmp +#define setjmp(x) (0) + +static bool verbose = false; +static int verbose_index = 0; + +/* ====================================================================== */ +/* The implementation of the abstract floating point class based on gcc's + real.c. I.e. the object of this excersize. Templated so that we can + all fp sizes. */ + +template<int SIZE, enum machine_mode MODE> +class real_c_float +{ + private: + long image[SIZE / 32]; + + void from_long(long); + void from_str(const char *); + void binop(int code, const real_c_float&); + void unop(int code); + bool cmp(int code, const real_c_float&) const; + + public: + real_c_float() + { } + real_c_float(long l) + { from_long(l); } + real_c_float(const char *s) + { from_str(s); } + real_c_float(const real_c_float &b) + { memcpy(image, b.image, sizeof(image)); } + + const real_c_float& operator= (long l) + { from_long(l); return *this; } + const real_c_float& operator= (const char *s) + { from_str(s); return *this; } + const real_c_float& operator= (const real_c_float &b) + { memcpy(image, b.image, sizeof(image)); return *this; } + + const real_c_float& operator+= (const real_c_float &b) + { binop(PLUS_EXPR, b); return *this; } + const real_c_float& operator-= (const real_c_float &b) + { binop(MINUS_EXPR, b); return *this; } + const real_c_float& operator*= (const real_c_float &b) + { binop(MULT_EXPR, b); return *this; } + const real_c_float& operator/= (const real_c_float &b) + { binop(RDIV_EXPR, b); return *this; } + + real_c_float operator- () const + { real_c_float r(*this); r.unop(NEGATE_EXPR); return r; } + real_c_float abs () const + { real_c_float r(*this); r.unop(ABS_EXPR); return r; } + + bool operator < (const real_c_float &b) const { return cmp(LT_EXPR, b); } + bool operator <= (const real_c_float &b) const { return cmp(LE_EXPR, b); } + bool operator == (const real_c_float &b) const { return cmp(EQ_EXPR, b); } + bool operator != (const real_c_float &b) const { return cmp(NE_EXPR, b); } + bool operator >= (const real_c_float &b) const { return cmp(GE_EXPR, b); } + bool operator > (const real_c_float &b) const { return cmp(GT_EXPR, b); } + + const char * str () const; + const char * hex () const; + long integer () const; + int exp () const; + void ldexp (int); +}; + +template<int SIZE, enum machine_mode MODE> +void +real_c_float<SIZE, MODE>::from_long (long l) +{ + REAL_VALUE_TYPE f; + + real_from_integer (&f, MODE, l, l < 0 ? -1 : 0, 0); + real_to_target (image, &f, MODE); +} + +template<int SIZE, enum machine_mode MODE> +void +real_c_float<SIZE, MODE>::from_str (const char *s) +{ + REAL_VALUE_TYPE f; + char *p = s; + + if (*p == '-' || *p == '+') + p++; + if (strcasecmp(p, "inf") == 0) + { + real_inf (&f); + if (*s == '-') + real_arithmetic (&f, NEGATE_EXPR, &f, NULL); + } + else if (strcasecmp(p, "nan") == 0) + real_nan (&f, "", 1, MODE); + else + real_from_string (&f, s); + + real_to_target (image, &f, MODE); +} + +template<int SIZE, enum machine_mode MODE> +void +real_c_float<SIZE, MODE>::binop (int code, const real_c_float &b) +{ + REAL_VALUE_TYPE ai, bi, ri; + + real_from_target (&ai, image, MODE); + real_from_target (&bi, b.image, MODE); + real_arithmetic (&ri, code, &ai, &bi); + real_to_target (image, &ri, MODE); + + if (verbose) + { + char ab[64], bb[64], rb[64]; + const int digits = int(SIZE / 4); + char symbol_for_code; + + real_from_target (&ri, image, MODE); + real_to_hexadecimal (ab, &ai, digits); + real_to_hexadecimal (bb, &bi, digits); + real_to_hexadecimal (rb, &ri, digits); + + switch (code) + { + case PLUS_EXPR: + symbol_for_code = '+'; + break; + case MINUS_EXPR: + symbol_for_code = '-'; + break; + case MULT_EXPR: + symbol_for_code = '*'; + break; + case RDIV_EXPR: + symbol_for_code = '/'; + break; + default: + abort (); + } + + fprintf (stderr, "%6d: %s %c %s = %s\n", verbose_index++, + ab, symbol_for_code, bb, rb); + } +} + +template<int SIZE, enum machine_mode MODE> +void +real_c_float<SIZE, MODE>::unop (int code) +{ + REAL_VALUE_TYPE ai, ri; + + real_from_target (&ai, image, MODE); + real_arithmetic (&ri, code, &ai, NULL); + real_to_target (image, &ri, MODE); + + if (verbose) + { + char ab[64], rb[64]; + const int digits = int(SIZE / 4); + const char *symbol_for_code; + + real_from_target (&ri, image, MODE); + real_to_hexadecimal (ab, &ai, digits); + real_to_hexadecimal (rb, &ri, digits); + + switch (code) + { + case NEGATE_EXPR: + symbol_for_code = "-"; + break; + case ABS_EXPR: + symbol_for_code = "abs "; + break; + default: + abort (); + } + + fprintf (stderr, "%6d: %s%s = %s\n", verbose_index++, + symbol_for_code, ab, rb); + } +} + +template<int SIZE, enum machine_mode MODE> +bool +real_c_float<SIZE, MODE>::cmp (int code, const real_c_float &b) const +{ + REAL_VALUE_TYPE ai, bi; + bool ret; + + real_from_target (&ai, image, MODE); + real_from_target (&bi, b.image, MODE); + ret = real_compare (code, &ai, &bi); + + if (verbose) + { + char ab[64], bb[64]; + const int digits = int(SIZE / 4); + const char *symbol_for_code; + + real_to_hexadecimal (ab, &ai, digits); + real_to_hexadecimal (bb, &bi, digits); + + switch (code) + { + case LT_EXPR: + symbol_for_code = "<"; + break; + case LE_EXPR: + symbol_for_code = "<="; + break; + case EQ_EXPR: + symbol_for_code = "=="; + break; + case NE_EXPR: + symbol_for_code = "!="; + break; + case GE_EXPR: + symbol_for_code = ">="; + break; + case GT_EXPR: + symbol_for_code = ">"; + break; + default: + abort (); + } + + fprintf (stderr, "%6d: %s %s %s = %s\n", verbose_index++, + ab, symbol_for_code, bb, (ret ? "true" : "false")); + } + + return ret; +} + +template<int SIZE, enum machine_mode MODE> +const char * +real_c_float<SIZE, MODE>::str() const +{ + REAL_VALUE_TYPE f; + const int digits = int(SIZE * .30102999566398119521 + 1); + + real_from_target (&f, image, MODE); + char *buf = new char[digits + 10]; + real_to_decimal (buf, &f, digits); + + return buf; +} + +template<int SIZE, enum machine_mode MODE> +const char * +real_c_float<SIZE, MODE>::hex() const +{ + REAL_VALUE_TYPE f; + const int digits = int(SIZE / 4); + + real_from_target (&f, image, MODE); + char *buf = new char[digits + 10]; + real_to_hexadecimal (buf, &f, digits); + + return buf; +} + +template<int SIZE, enum machine_mode MODE> +long +real_c_float<SIZE, MODE>::integer() const +{ + REAL_VALUE_TYPE f; + real_from_target (&f, image, MODE); + return real_to_integer (&f); +} + +template<int SIZE, enum machine_mode MODE> +int +real_c_float<SIZE, MODE>::exp() const +{ + REAL_VALUE_TYPE f; + real_from_target (&f, image, MODE); + return real_exponent (&f); +} + +template<int SIZE, enum machine_mode MODE> +void +real_c_float<SIZE, MODE>::ldexp (int exp) +{ + REAL_VALUE_TYPE ai; + + real_from_target (&ai, image, MODE); + real_ldexp (&ai, &ai, exp); + real_to_target (image, &ai, MODE); +} + +/* ====================================================================== */ +/* An implementation of the abstract floating point class that uses native + arithmetic. Exists for reference and debugging. */ + +template<typename T> +class native_float +{ + private: + // Force intermediate results back to memory. + volatile T image; + + static T from_str (const char *); + static T do_abs (T); + static T verbose_binop (T, char, T, T); + static T verbose_unop (const char *, T, T); + static bool verbose_cmp (T, const char *, T, bool); + + public: + native_float() + { } + native_float(long l) + { image = l; } + native_float(const char *s) + { image = from_str(s); } + native_float(const native_float &b) + { image = b.image; } + + const native_float& operator= (long l) + { image = l; return *this; } + const native_float& operator= (const char *s) + { image = from_str(s); return *this; } + const native_float& operator= (const native_float &b) + { image = b.image; return *this; } + + const native_float& operator+= (const native_float &b) + { + image = verbose_binop(image, '+', b.image, image + b.image); + return *this; + } + const native_float& operator-= (const native_float &b) + { + image = verbose_binop(image, '-', b.image, image - b.image); + return *this; + } + const native_float& operator*= (const native_float &b) + { + image = verbose_binop(image, '*', b.image, image * b.image); + return *this; + } + const native_float& operator/= (const native_float &b) + { + image = verbose_binop(image, '/', b.image, image / b.image); + return *this; + } + + native_float operator- () const + { + native_float r; + r.image = verbose_unop("-", image, -image); + return r; + } + native_float abs () const + { + native_float r; + r.image = verbose_unop("abs ", image, do_abs(image)); + return r; + } + + bool operator < (const native_float &b) const + { return verbose_cmp(image, "<", b.image, image < b.image); } + bool operator <= (const native_float &b) const + { return verbose_cmp(image, "<=", b.image, image <= b.image); } + bool operator == (const native_float &b) const + { return verbose_cmp(image, "==", b.image, image == b.image); } + bool operator != (const native_float &b) const + { return verbose_cmp(image, "!=", b.image, image != b.image); } + bool operator >= (const native_float &b) const + { return verbose_cmp(image, ">=", b.image, image >= b.image); } + bool operator > (const native_float &b) const + { return verbose_cmp(image, ">", b.image, image > b.image); } + + const char * str () const; + const char * hex () const; + long integer () const + { return long(image); } + int exp () const; + void ldexp (int); +}; + +template<typename T> +inline T +native_float<T>::from_str (const char *s) +{ + return strtold (s, NULL); +} + +template<> +inline float +native_float<float>::from_str (const char *s) +{ + return strtof (s, NULL); +} + +template<> +inline double +native_float<double>::from_str (const char *s) +{ + return strtod (s, NULL); +} + +template<typename T> +inline T +native_float<T>::do_abs (T image) +{ + return fabsl (image); +} + +template<> +inline float +native_float<float>::do_abs (float image) +{ + return fabsf (image); +} + +template<> +inline double +native_float<double>::do_abs (double image) +{ + return fabs (image); +} + +template<typename T> +T +native_float<T>::verbose_binop (T a, char symbol, T b, T r) +{ + if (verbose) + { + const int digits = int(sizeof(T) * CHAR_BIT / 4) - 1; +#ifdef NO_LONG_DOUBLE + fprintf (stderr, "%6d: %.*a %c %.*a = %.*a\n", verbose_index++, + digits, (double)a, symbol, + digits, (double)b, digits, (double)r); +#else + fprintf (stderr, "%6d: %.*La %c %.*La = %.*La\n", verbose_index++, + digits, (long double)a, symbol, + digits, (long double)b, digits, (long double)r); +#endif + } + return r; +} + +template<typename T> +T +native_float<T>::verbose_unop (const char *symbol, T a, T r) +{ + if (verbose) + { + const int digits = int(sizeof(T) * CHAR_BIT / 4) - 1; +#ifdef NO_LONG_DOUBLE + fprintf (stderr, "%6d: %s%.*a = %.*a\n", verbose_index++, + symbol, digits, (double)a, digits, (double)r); +#else + fprintf (stderr, "%6d: %s%.*La = %.*La\n", verbose_index++, + symbol, digits, (long double)a, digits, (long double)r); +#endif + } + return r; +} + +template<typename T> +bool +native_float<T>::verbose_cmp (T a, const char *symbol, T b, bool r) +{ + if (verbose) + { + const int digits = int(sizeof(T) * CHAR_BIT / 4) - 1; +#ifndef NO_LONG_DOUBLE + fprintf (stderr, "%6d: %.*a %s %.*a = %s\n", verbose_index++, + digits, (double)a, symbol, + digits, (double)b, (r ? "true" : "false")); +#else + fprintf (stderr, "%6d: %.*La %s %.*La = %s\n", verbose_index++, + digits, (long double)a, symbol, + digits, (long double)b, (r ? "true" : "false")); +#endif + } + return r; +} + +template<typename T> +const char * +native_float<T>::str() const +{ + char *buf = new char[50]; + const int digits = int(sizeof(T) * CHAR_BIT * .30102999566398119521 + 1); +#ifndef NO_LONG_DOUBLE + sprintf (buf, "%.*e", digits - 1, (double) image); +#else + sprintf (buf, "%.*Le", digits - 1, (long double) image); +#endif + return buf; +} + +template<typename T> +const char * +native_float<T>::hex() const +{ + char *buf = new char[50]; + const int digits = int(sizeof(T) * CHAR_BIT / 4); +#ifndef NO_LONG_DOUBLE + sprintf (buf, "%.*a", digits - 1, (double) image); +#else + sprintf (buf, "%.*La", digits - 1, (long double) image); +#endif + return buf; +} + +template<typename T> +int +native_float<T>::exp() const +{ + int e; + frexp (image, &e); + return e; +} + +template<typename T> +void +native_float<T>::ldexp (int exp) +{ + image = ldexpl (image, exp); +} + +template<> +void +native_float<float>::ldexp (int exp) +{ + image = ldexpf (image, exp); +} + +template<> +void +native_float<double>::ldexp (int exp) +{ + image = ::ldexp (image, exp); +} + +/* ====================================================================== */ +/* Some libm routines that Paranoia expects to be available. */ + +template<typename FLOAT> +inline FLOAT +FABS (const FLOAT &f) +{ + return f.abs(); +} + +template<typename FLOAT, typename RHS> +inline FLOAT +operator+ (const FLOAT &a, const RHS &b) +{ + return FLOAT(a) += FLOAT(b); +} + +template<typename FLOAT, typename RHS> +inline FLOAT +operator- (const FLOAT &a, const RHS &b) +{ + return FLOAT(a) -= FLOAT(b); +} + +template<typename FLOAT, typename RHS> +inline FLOAT +operator* (const FLOAT &a, const RHS &b) +{ + return FLOAT(a) *= FLOAT(b); +} + +template<typename FLOAT, typename RHS> +inline FLOAT +operator/ (const FLOAT &a, const RHS &b) +{ + return FLOAT(a) /= FLOAT(b); +} + +template<typename FLOAT> +FLOAT +FLOOR (const FLOAT &f) +{ + /* ??? This is only correct when F is representable as an integer. */ + long i = f.integer(); + FLOAT r; + + r = i; + if (i < 0 && f != r) + r = i - 1; + + return r; +} + +template<typename FLOAT> +FLOAT +SQRT (const FLOAT &f) +{ +#if 0 + FLOAT zero = long(0); + FLOAT two = 2; + FLOAT one = 1; + FLOAT diff, diff2; + FLOAT z, t; + + if (f == zero) + return zero; + if (f < zero) + return zero / zero; + if (f == one) + return f; + + z = f; + z.ldexp (-f.exp() / 2); + + diff2 = FABS (z * z - f); + if (diff2 > zero) + while (1) + { + t = (f / (two * z)) + (z / two); + diff = FABS (t * t - f); + if (diff >= diff2) + break; + z = t; + diff2 = diff; + } + + return z; +#elif defined(NO_LONG_DOUBLE) + double d; + char buf[64]; + + d = strtod (f.hex(), NULL); + d = sqrt (d); + sprintf(buf, "%.35a", d); + + return FLOAT(buf); +#else + long double ld; + char buf[64]; + + ld = strtold (f.hex(), NULL); + ld = sqrtl (ld); + sprintf(buf, "%.35La", ld); + + return FLOAT(buf); +#endif +} + +template<typename FLOAT> +FLOAT +LOG (FLOAT x) +{ +#if 0 + FLOAT zero = long(0); + FLOAT one = 1; + + if (x <= zero) + return zero / zero; + if (x == one) + return zero; + + int exp = x.exp() - 1; + x.ldexp(-exp); + + FLOAT xm1 = x - one; + FLOAT y = xm1; + long n = 2; + + FLOAT sum = xm1; + while (1) + { + y *= xm1; + FLOAT term = y / FLOAT (n); + FLOAT next = sum + term; + if (next == sum) + break; + sum = next; + if (++n == 1000) + break; + } + + if (exp) + sum += FLOAT (exp) * FLOAT(".69314718055994530941"); + + return sum; +#elif defined (NO_LONG_DOUBLE) + double d; + char buf[64]; + + d = strtod (x.hex(), NULL); + d = log (d); + sprintf(buf, "%.35a", d); + + return FLOAT(buf); +#else + long double ld; + char buf[64]; + + ld = strtold (x.hex(), NULL); + ld = logl (ld); + sprintf(buf, "%.35La", ld); + + return FLOAT(buf); +#endif +} + +template<typename FLOAT> +FLOAT +EXP (const FLOAT &x) +{ + /* Cheat. */ +#ifdef NO_LONG_DOUBLE + double d; + char buf[64]; + + d = strtod (x.hex(), NULL); + d = exp (d); + sprintf(buf, "%.35a", d); + + return FLOAT(buf); +#else + long double ld; + char buf[64]; + + ld = strtold (x.hex(), NULL); + ld = expl (ld); + sprintf(buf, "%.35La", ld); + + return FLOAT(buf); +#endif +} + +template<typename FLOAT> +FLOAT +POW (const FLOAT &base, const FLOAT &exp) +{ + /* Cheat. */ +#ifdef NO_LONG_DOUBLE + double d1, d2; + char buf[64]; + + d1 = strtod (base.hex(), NULL); + d2 = strtod (exp.hex(), NULL); + d1 = pow (d1, d2); + sprintf(buf, "%.35a", d1); + + return FLOAT(buf); +#else + long double ld1, ld2; + char buf[64]; + + ld1 = strtold (base.hex(), NULL); + ld2 = strtold (exp.hex(), NULL); + ld1 = powl (ld1, ld2); + sprintf(buf, "%.35La", ld1); + + return FLOAT(buf); +#endif +} + +/* ====================================================================== */ +/* Real Paranoia begins again here. We wrap the thing in a template so + that we can instantiate it for each floating point type we care for. */ + +int NoTrials = 20; /*Number of tests for commutativity. */ +bool do_pause = false; + +enum Guard { No, Yes }; +enum Rounding { Other, Rounded, Chopped }; +enum Class { Failure, Serious, Defect, Flaw }; + +template<typename FLOAT> +struct Paranoia +{ + FLOAT Radix, BInvrse, RadixD2, BMinusU2; + + /* Small floating point constants. */ + FLOAT Zero; + FLOAT Half; + FLOAT One; + FLOAT Two; + FLOAT Three; + FLOAT Four; + FLOAT Five; + FLOAT Eight; + FLOAT Nine; + FLOAT TwentySeven; + FLOAT ThirtyTwo; + FLOAT TwoForty; + FLOAT MinusOne; + FLOAT OneAndHalf; + + /* Declarations of Variables. */ + int Indx; + char ch[8]; + FLOAT AInvrse, A1; + FLOAT C, CInvrse; + FLOAT D, FourD; + FLOAT E0, E1, Exp2, E3, MinSqEr; + FLOAT SqEr, MaxSqEr, E9; + FLOAT Third; + FLOAT F6, F9; + FLOAT H, HInvrse; + int I; + FLOAT StickyBit, J; + FLOAT MyZero; + FLOAT Precision; + FLOAT Q, Q9; + FLOAT R, Random9; + FLOAT T, Underflow, S; + FLOAT OneUlp, UfThold, U1, U2; + FLOAT V, V0, V9; + FLOAT W; + FLOAT X, X1, X2, X8, Random1; + FLOAT Y, Y1, Y2, Random2; + FLOAT Z, PseudoZero, Z1, Z2, Z9; + int ErrCnt[4]; + int Milestone; + int PageNo; + int M, N, N1; + Guard GMult, GDiv, GAddSub; + Rounding RMult, RDiv, RAddSub, RSqrt; + int Break, Done, NotMonot, Monot, Anomaly, IEEE, SqRWrng, UfNGrad; + + /* Computed constants. */ + /*U1 gap below 1.0, i.e, 1.0-U1 is next number below 1.0 */ + /*U2 gap above 1.0, i.e, 1.0+U2 is next number above 1.0 */ + + int main (); + + FLOAT Sign (FLOAT); + FLOAT Random (); + void Pause (); + void BadCond (int, const char *); + void SqXMinX (int); + void TstCond (int, int, const char *); + void notify (const char *); + void IsYeqX (); + void NewD (); + void PrintIfNPositive (); + void SR3750 (); + void TstPtUf (); + + // Pretend we're bss. + Paranoia() { memset(this, 0, sizeof (*this)); } +}; + +template<typename FLOAT> +int +Paranoia<FLOAT>::main() +{ + /* First two assignments use integer right-hand sides. */ + Zero = long(0); + One = long(1); + Two = long(2); + Three = long(3); + Four = long(4); + Five = long(5); + Eight = long(8); + Nine = long(9); + TwentySeven = long(27); + ThirtyTwo = long(32); + TwoForty = long(240); + MinusOne = long(-1); + Half = "0x1p-1"; + OneAndHalf = "0x3p-1"; + ErrCnt[Failure] = 0; + ErrCnt[Serious] = 0; + ErrCnt[Defect] = 0; + ErrCnt[Flaw] = 0; + PageNo = 1; + /*=============================================*/ + Milestone = 7; + /*=============================================*/ + printf ("Program is now RUNNING tests on small integers:\n"); + + TstCond (Failure, (Zero + Zero == Zero), "0+0 != 0"); + TstCond (Failure, (One - One == Zero), "1-1 != 0"); + TstCond (Failure, (One > Zero), "1 <= 0"); + TstCond (Failure, (One + One == Two), "1+1 != 2"); + + Z = -Zero; + if (Z != Zero) + { + ErrCnt[Failure] = ErrCnt[Failure] + 1; + printf ("Comparison alleges that -0.0 is Non-zero!\n"); + U2 = "0.001"; + Radix = 1; + TstPtUf (); + } + + TstCond (Failure, (Three == Two + One), "3 != 2+1"); + TstCond (Failure, (Four == Three + One), "4 != 3+1"); + TstCond (Failure, (Four + Two * (-Two) == Zero), "4 + 2*(-2) != 0"); + TstCond (Failure, (Four - Three - One == Zero), "4-3-1 != 0"); + + TstCond (Failure, (MinusOne == (Zero - One)), "-1 != 0-1"); + TstCond (Failure, (MinusOne + One == Zero), "-1+1 != 0"); + TstCond (Failure, (One + MinusOne == Zero), "1+(-1) != 0"); + TstCond (Failure, (MinusOne + FABS (One) == Zero), "-1+abs(1) != 0"); + TstCond (Failure, (MinusOne + MinusOne * MinusOne == Zero), + "-1+(-1)*(-1) != 0"); + + TstCond (Failure, Half + MinusOne + Half == Zero, "1/2 + (-1) + 1/2 != 0"); + + /*=============================================*/ + Milestone = 10; + /*=============================================*/ + + TstCond (Failure, (Nine == Three * Three), "9 != 3*3"); + TstCond (Failure, (TwentySeven == Nine * Three), "27 != 9*3"); + TstCond (Failure, (Eight == Four + Four), "8 != 4+4"); + TstCond (Failure, (ThirtyTwo == Eight * Four), "32 != 8*4"); + TstCond (Failure, (ThirtyTwo - TwentySeven - Four - One == Zero), + "32-27-4-1 != 0"); + + TstCond (Failure, Five == Four + One, "5 != 4+1"); + TstCond (Failure, TwoForty == Four * Five * Three * Four, "240 != 4*5*3*4"); + TstCond (Failure, TwoForty / Three - Four * Four * Five == Zero, + "240/3 - 4*4*5 != 0"); + TstCond (Failure, TwoForty / Four - Five * Three * Four == Zero, + "240/4 - 5*3*4 != 0"); + TstCond (Failure, TwoForty / Five - Four * Three * Four == Zero, + "240/5 - 4*3*4 != 0"); + + if (ErrCnt[Failure] == 0) + { + printf ("-1, 0, 1/2, 1, 2, 3, 4, 5, 9, 27, 32 & 240 are O.K.\n"); + printf ("\n"); + } + printf ("Searching for Radix and Precision.\n"); + W = One; + do + { + W = W + W; + Y = W + One; + Z = Y - W; + Y = Z - One; + } + while (MinusOne + FABS (Y) < Zero); + /*.. now W is just big enough that |((W+1)-W)-1| >= 1 ... */ + Precision = Zero; + Y = One; + do + { + Radix = W + Y; + Y = Y + Y; + Radix = Radix - W; + } + while (Radix == Zero); + if (Radix < Two) + Radix = One; + printf ("Radix = %s .\n", Radix.str()); + if (Radix != One) + { + W = One; + do + { + Precision = Precision + One; + W = W * Radix; + Y = W + One; + } + while ((Y - W) == One); + } + /*... now W == Radix^Precision is barely too big to satisfy (W+1)-W == 1 + ... */ + U1 = One / W; + U2 = Radix * U1; + printf ("Closest relative separation found is U1 = %s .\n\n", U1.str()); + printf ("Recalculating radix and precision\n "); + + /*save old values */ + E0 = Radix; + E1 = U1; + E9 = U2; + E3 = Precision; + + X = Four / Three; + Third = X - One; + F6 = Half - Third; + X = F6 + F6; + X = FABS (X - Third); + if (X < U2) + X = U2; + + /*... now X = (unknown no.) ulps of 1+... */ + do + { + U2 = X; + Y = Half * U2 + ThirtyTwo * U2 * U2; + Y = One + Y; + X = Y - One; + } + while (!((U2 <= X) || (X <= Zero))); + + /*... now U2 == 1 ulp of 1 + ... */ + X = Two / Three; + F6 = X - Half; + Third = F6 + F6; + X = Third - Half; + X = FABS (X + F6); + if (X < U1) + X = U1; + + /*... now X == (unknown no.) ulps of 1 -... */ + do + { + U1 = X; + Y = Half * U1 + ThirtyTwo * U1 * U1; + Y = Half - Y; + X = Half + Y; + Y = Half - X; + X = Half + Y; + } + while (!((U1 <= X) || (X <= Zero))); + /*... now U1 == 1 ulp of 1 - ... */ + if (U1 == E1) + printf ("confirms closest relative separation U1 .\n"); + else + printf ("gets better closest relative separation U1 = %s .\n", U1.str()); + W = One / U1; + F9 = (Half - U1) + Half; + + Radix = FLOOR (FLOAT ("0.01") + U2 / U1); + if (Radix == E0) + printf ("Radix confirmed.\n"); + else + printf ("MYSTERY: recalculated Radix = %s .\n", Radix.str()); + TstCond (Defect, Radix <= Eight + Eight, + "Radix is too big: roundoff problems"); + TstCond (Flaw, (Radix == Two) || (Radix == 10) + || (Radix == One), "Radix is not as good as 2 or 10"); + /*=============================================*/ + Milestone = 20; + /*=============================================*/ + TstCond (Failure, F9 - Half < Half, + "(1-U1)-1/2 < 1/2 is FALSE, prog. fails?"); + X = F9; + I = 1; + Y = X - Half; + Z = Y - Half; + TstCond (Failure, (X != One) + || (Z == Zero), "Comparison is fuzzy,X=1 but X-1/2-1/2 != 0"); + X = One + U2; + I = 0; + /*=============================================*/ + Milestone = 25; + /*=============================================*/ + /*... BMinusU2 = nextafter(Radix, 0) */ + BMinusU2 = Radix - One; + BMinusU2 = (BMinusU2 - U2) + One; + /* Purify Integers */ + if (Radix != One) + { + X = -TwoForty * LOG (U1) / LOG (Radix); + Y = FLOOR (Half + X); + if (FABS (X - Y) * Four < One) + X = Y; + Precision = X / TwoForty; + Y = FLOOR (Half + Precision); + if (FABS (Precision - Y) * TwoForty < Half) + Precision = Y; + } + if ((Precision != FLOOR (Precision)) || (Radix == One)) + { + printf ("Precision cannot be characterized by an Integer number\n"); + printf + ("of significant digits but, by itself, this is a minor flaw.\n"); + } + if (Radix == One) + printf + ("logarithmic encoding has precision characterized solely by U1.\n"); + else + printf ("The number of significant digits of the Radix is %s .\n", + Precision.str()); + TstCond (Serious, U2 * Nine * Nine * TwoForty < One, + "Precision worse than 5 decimal figures "); + /*=============================================*/ + Milestone = 30; + /*=============================================*/ + /* Test for extra-precise subexpressions */ + X = FABS (((Four / Three - One) - One / Four) * Three - One / Four); + do + { + Z2 = X; + X = (One + (Half * Z2 + ThirtyTwo * Z2 * Z2)) - One; + } + while (!((Z2 <= X) || (X <= Zero))); + X = Y = Z = FABS ((Three / Four - Two / Three) * Three - One / Four); + do + { + Z1 = Z; + Z = (One / Two - ((One / Two - (Half * Z1 + ThirtyTwo * Z1 * Z1)) + + One / Two)) + One / Two; + } + while (!((Z1 <= Z) || (Z <= Zero))); + do + { + do + { + Y1 = Y; + Y = + (Half - ((Half - (Half * Y1 + ThirtyTwo * Y1 * Y1)) + Half)) + + Half; + } + while (!((Y1 <= Y) || (Y <= Zero))); + X1 = X; + X = ((Half * X1 + ThirtyTwo * X1 * X1) - F9) + F9; + } + while (!((X1 <= X) || (X <= Zero))); + if ((X1 != Y1) || (X1 != Z1)) + { + BadCond (Serious, "Disagreements among the values X1, Y1, Z1,\n"); + printf ("respectively %s, %s, %s,\n", X1.str(), Y1.str(), Z1.str()); + printf ("are symptoms of inconsistencies introduced\n"); + printf ("by extra-precise evaluation of arithmetic subexpressions.\n"); + notify ("Possibly some part of this"); + if ((X1 == U1) || (Y1 == U1) || (Z1 == U1)) + printf ("That feature is not tested further by this program.\n"); + } + else + { + if ((Z1 != U1) || (Z2 != U2)) + { + if ((Z1 >= U1) || (Z2 >= U2)) + { + BadCond (Failure, ""); + notify ("Precision"); + printf ("\tU1 = %s, Z1 - U1 = %s\n", U1.str(), (Z1 - U1).str()); + printf ("\tU2 = %s, Z2 - U2 = %s\n", U2.str(), (Z2 - U2).str()); + } + else + { + if ((Z1 <= Zero) || (Z2 <= Zero)) + { + printf ("Because of unusual Radix = %s", Radix.str()); + printf (", or exact rational arithmetic a result\n"); + printf ("Z1 = %s, or Z2 = %s ", Z1.str(), Z2.str()); + notify ("of an\nextra-precision"); + } + if (Z1 != Z2 || Z1 > Zero) + { + X = Z1 / U1; + Y = Z2 / U2; + if (Y > X) + X = Y; + Q = -LOG (X); + printf ("Some subexpressions appear to be calculated " + "extra precisely\n"); + printf ("with about %s extra B-digits, i.e.\n", + (Q / LOG (Radix)).str()); + printf ("roughly %s extra significant decimals.\n", + (Q / LOG (FLOAT (10))).str()); + } + printf + ("That feature is not tested further by this program.\n"); + } + } + } + Pause (); + /*=============================================*/ + Milestone = 35; + /*=============================================*/ + if (Radix >= Two) + { + X = W / (Radix * Radix); + Y = X + One; + Z = Y - X; + T = Z + U2; + X = T - Z; + TstCond (Failure, X == U2, + "Subtraction is not normalized X=Y,X+Z != Y+Z!"); + if (X == U2) + printf ("Subtraction appears to be normalized, as it should be."); + } + printf ("\nChecking for guard digit in *, /, and -.\n"); + Y = F9 * One; + Z = One * F9; + X = F9 - Half; + Y = (Y - Half) - X; + Z = (Z - Half) - X; + X = One + U2; + T = X * Radix; + R = Radix * X; + X = T - Radix; + X = X - Radix * U2; + T = R - Radix; + T = T - Radix * U2; + X = X * (Radix - One); + T = T * (Radix - One); + if ((X == Zero) && (Y == Zero) && (Z == Zero) && (T == Zero)) + GMult = Yes; + else + { + GMult = No; + TstCond (Serious, false, "* lacks a Guard Digit, so 1*X != X"); + } + Z = Radix * U2; + X = One + Z; + Y = FABS ((X + Z) - X * X) - U2; + X = One - U2; + Z = FABS ((X - U2) - X * X) - U1; + TstCond (Failure, (Y <= Zero) + && (Z <= Zero), "* gets too many final digits wrong.\n"); + Y = One - U2; + X = One + U2; + Z = One / Y; + Y = Z - X; + X = One / Three; + Z = Three / Nine; + X = X - Z; + T = Nine / TwentySeven; + Z = Z - T; + TstCond (Defect, X == Zero && Y == Zero && Z == Zero, + "Division lacks a Guard Digit, so error can exceed 1 ulp\n" + "or 1/3 and 3/9 and 9/27 may disagree"); + Y = F9 / One; + X = F9 - Half; + Y = (Y - Half) - X; + X = One + U2; + T = X / One; + X = T - X; + if ((X == Zero) && (Y == Zero) && (Z == Zero)) + GDiv = Yes; + else + { + GDiv = No; + TstCond (Serious, false, "Division lacks a Guard Digit, so X/1 != X"); + } + X = One / (One + U2); + Y = X - Half - Half; + TstCond (Serious, Y < Zero, "Computed value of 1/1.000..1 >= 1"); + X = One - U2; + Y = One + Radix * U2; + Z = X * Radix; + T = Y * Radix; + R = Z / Radix; + StickyBit = T / Radix; + X = R - X; + Y = StickyBit - Y; + TstCond (Failure, X == Zero && Y == Zero, + "* and/or / gets too many last digits wrong"); + Y = One - U1; + X = One - F9; + Y = One - Y; + T = Radix - U2; + Z = Radix - BMinusU2; + T = Radix - T; + if ((X == U1) && (Y == U1) && (Z == U2) && (T == U2)) + GAddSub = Yes; + else + { + GAddSub = No; + TstCond (Serious, false, + "- lacks Guard Digit, so cancellation is obscured"); + } + if (F9 != One && F9 - One >= Zero) + { + BadCond (Serious, "comparison alleges (1-U1) < 1 although\n"); + printf (" subtraction yields (1-U1) - 1 = 0 , thereby vitiating\n"); + printf (" such precautions against division by zero as\n"); + printf (" ... if (X == 1.0) {.....} else {.../(X-1.0)...}\n"); + } + if (GMult == Yes && GDiv == Yes && GAddSub == Yes) + printf + (" *, /, and - appear to have guard digits, as they should.\n"); + /*=============================================*/ + Milestone = 40; + /*=============================================*/ + Pause (); + printf ("Checking rounding on multiply, divide and add/subtract.\n"); + RMult = Other; + RDiv = Other; + RAddSub = Other; + RadixD2 = Radix / Two; + A1 = Two; + Done = false; + do + { + AInvrse = Radix; + do + { + X = AInvrse; + AInvrse = AInvrse / A1; + } + while (!(FLOOR (AInvrse) != AInvrse)); + Done = (X == One) || (A1 > Three); + if (!Done) + A1 = Nine + One; + } + while (!(Done)); + if (X == One) + A1 = Radix; + AInvrse = One / A1; + X = A1; + Y = AInvrse; + Done = false; + do + { + Z = X * Y - Half; + TstCond (Failure, Z == Half, "X * (1/X) differs from 1"); + Done = X == Radix; + X = Radix; + Y = One / X; + } + while (!(Done)); + Y2 = One + U2; + Y1 = One - U2; + X = OneAndHalf - U2; + Y = OneAndHalf + U2; + Z = (X - U2) * Y2; + T = Y * Y1; + Z = Z - X; + T = T - X; + X = X * Y2; + Y = (Y + U2) * Y1; + X = X - OneAndHalf; + Y = Y - OneAndHalf; + if ((X == Zero) && (Y == Zero) && (Z == Zero) && (T <= Zero)) + { + X = (OneAndHalf + U2) * Y2; + Y = OneAndHalf - U2 - U2; + Z = OneAndHalf + U2 + U2; + T = (OneAndHalf - U2) * Y1; + X = X - (Z + U2); + StickyBit = Y * Y1; + S = Z * Y2; + T = T - Y; + Y = (U2 - Y) + StickyBit; + Z = S - (Z + U2 + U2); + StickyBit = (Y2 + U2) * Y1; + Y1 = Y2 * Y1; + StickyBit = StickyBit - Y2; + Y1 = Y1 - Half; + if ((X == Zero) && (Y == Zero) && (Z == Zero) && (T == Zero) + && (StickyBit == Zero) && (Y1 == Half)) + { + RMult = Rounded; + printf ("Multiplication appears to round correctly.\n"); + } + else if ((X + U2 == Zero) && (Y < Zero) && (Z + U2 == Zero) + && (T < Zero) && (StickyBit + U2 == Zero) && (Y1 < Half)) + { + RMult = Chopped; + printf ("Multiplication appears to chop.\n"); + } + else + printf ("* is neither chopped nor correctly rounded.\n"); + if ((RMult == Rounded) && (GMult == No)) + notify ("Multiplication"); + } + else + printf ("* is neither chopped nor correctly rounded.\n"); + /*=============================================*/ + Milestone = 45; + /*=============================================*/ + Y2 = One + U2; + Y1 = One - U2; + Z = OneAndHalf + U2 + U2; + X = Z / Y2; + T = OneAndHalf - U2 - U2; + Y = (T - U2) / Y1; + Z = (Z + U2) / Y2; + X = X - OneAndHalf; + Y = Y - T; + T = T / Y1; + Z = Z - (OneAndHalf + U2); + T = (U2 - OneAndHalf) + T; + if (!((X > Zero) || (Y > Zero) || (Z > Zero) || (T > Zero))) + { + X = OneAndHalf / Y2; + Y = OneAndHalf - U2; + Z = OneAndHalf + U2; + X = X - Y; + T = OneAndHalf / Y1; + Y = Y / Y1; + T = T - (Z + U2); + Y = Y - Z; + Z = Z / Y2; + Y1 = (Y2 + U2) / Y2; + Z = Z - OneAndHalf; + Y2 = Y1 - Y2; + Y1 = (F9 - U1) / F9; + if ((X == Zero) && (Y == Zero) && (Z == Zero) && (T == Zero) + && (Y2 == Zero) && (Y2 == Zero) && (Y1 - Half == F9 - Half)) + { + RDiv = Rounded; + printf ("Division appears to round correctly.\n"); + if (GDiv == No) + notify ("Division"); + } + else if ((X < Zero) && (Y < Zero) && (Z < Zero) && (T < Zero) + && (Y2 < Zero) && (Y1 - Half < F9 - Half)) + { + RDiv = Chopped; + printf ("Division appears to chop.\n"); + } + } + if (RDiv == Other) + printf ("/ is neither chopped nor correctly rounded.\n"); + BInvrse = One / Radix; + TstCond (Failure, (BInvrse * Radix - Half == Half), + "Radix * ( 1 / Radix ) differs from 1"); + /*=============================================*/ + Milestone = 50; + /*=============================================*/ + TstCond (Failure, ((F9 + U1) - Half == Half) + && ((BMinusU2 + U2) - One == Radix - One), + "Incomplete carry-propagation in Addition"); + X = One - U1 * U1; + Y = One + U2 * (One - U2); + Z = F9 - Half; + X = (X - Half) - Z; + Y = Y - One; + if ((X == Zero) && (Y == Zero)) + { + RAddSub = Chopped; + printf ("Add/Subtract appears to be chopped.\n"); + } + if (GAddSub == Yes) + { + X = (Half + U2) * U2; + Y = (Half - U2) * U2; + X = One + X; + Y = One + Y; + X = (One + U2) - X; + Y = One - Y; + if ((X == Zero) && (Y == Zero)) + { + X = (Half + U2) * U1; + Y = (Half - U2) * U1; + X = One - X; + Y = One - Y; + X = F9 - X; + Y = One - Y; + if ((X == Zero) && (Y == Zero)) + { + RAddSub = Rounded; + printf ("Addition/Subtraction appears to round correctly.\n"); + if (GAddSub == No) + notify ("Add/Subtract"); + } + else + printf ("Addition/Subtraction neither rounds nor chops.\n"); + } + else + printf ("Addition/Subtraction neither rounds nor chops.\n"); + } + else + printf ("Addition/Subtraction neither rounds nor chops.\n"); + S = One; + X = One + Half * (One + Half); + Y = (One + U2) * Half; + Z = X - Y; + T = Y - X; + StickyBit = Z + T; + if (StickyBit != Zero) + { + S = Zero; + BadCond (Flaw, "(X - Y) + (Y - X) is non zero!\n"); + } + StickyBit = Zero; + if ((GMult == Yes) && (GDiv == Yes) && (GAddSub == Yes) + && (RMult == Rounded) && (RDiv == Rounded) + && (RAddSub == Rounded) && (FLOOR (RadixD2) == RadixD2)) + { + printf ("Checking for sticky bit.\n"); + X = (Half + U1) * U2; + Y = Half * U2; + Z = One + Y; + T = One + X; + if ((Z - One <= Zero) && (T - One >= U2)) + { + Z = T + Y; + Y = Z - X; + if ((Z - T >= U2) && (Y - T == Zero)) + { + X = (Half + U1) * U1; + Y = Half * U1; + Z = One - Y; + T = One - X; + if ((Z - One == Zero) && (T - F9 == Zero)) + { + Z = (Half - U1) * U1; + T = F9 - Z; + Q = F9 - Y; + if ((T - F9 == Zero) && (F9 - U1 - Q == Zero)) + { + Z = (One + U2) * OneAndHalf; + T = (OneAndHalf + U2) - Z + U2; + X = One + Half / Radix; + Y = One + Radix * U2; + Z = X * Y; + if (T == Zero && X + Radix * U2 - Z == Zero) + { + if (Radix != Two) + { + X = Two + U2; + Y = X / Two; + if ((Y - One == Zero)) + StickyBit = S; + } + else + StickyBit = S; + } + } + } + } + } + } + if (StickyBit == One) + printf ("Sticky bit apparently used correctly.\n"); + else + printf ("Sticky bit used incorrectly or not at all.\n"); + TstCond (Flaw, !(GMult == No || GDiv == No || GAddSub == No || + RMult == Other || RDiv == Other || RAddSub == Other), + "lack(s) of guard digits or failure(s) to correctly round or chop\n\ +(noted above) count as one flaw in the final tally below"); + /*=============================================*/ + Milestone = 60; + /*=============================================*/ + printf ("\n"); + printf ("Does Multiplication commute? "); + printf ("Testing on %d random pairs.\n", NoTrials); + Random9 = SQRT (FLOAT (3)); + Random1 = Third; + I = 1; + do + { + X = Random (); + Y = Random (); + Z9 = Y * X; + Z = X * Y; + Z9 = Z - Z9; + I = I + 1; + } + while (!((I > NoTrials) || (Z9 != Zero))); + if (I == NoTrials) + { + Random1 = One + Half / Three; + Random2 = (U2 + U1) + One; + Z = Random1 * Random2; + Y = Random2 * Random1; + Z9 = (One + Half / Three) * ((U2 + U1) + One) - (One + Half / + Three) * ((U2 + U1) + + One); + } + if (!((I == NoTrials) || (Z9 == Zero))) + BadCond (Defect, "X * Y == Y * X trial fails.\n"); + else + printf (" No failures found in %d integer pairs.\n", NoTrials); + /*=============================================*/ + Milestone = 70; + /*=============================================*/ + printf ("\nRunning test of square root(x).\n"); + TstCond (Failure, (Zero == SQRT (Zero)) + && (-Zero == SQRT (-Zero)) + && (One == SQRT (One)), "Square root of 0.0, -0.0 or 1.0 wrong"); + MinSqEr = Zero; + MaxSqEr = Zero; + J = Zero; + X = Radix; + OneUlp = U2; + SqXMinX (Serious); + X = BInvrse; + OneUlp = BInvrse * U1; + SqXMinX (Serious); + X = U1; + OneUlp = U1 * U1; + SqXMinX (Serious); + if (J != Zero) + Pause (); + printf ("Testing if sqrt(X * X) == X for %d Integers X.\n", NoTrials); + J = Zero; + X = Two; + Y = Radix; + if ((Radix != One)) + do + { + X = Y; + Y = Radix * Y; + } + while (!((Y - X >= NoTrials))); + OneUlp = X * U2; + I = 1; + while (I <= NoTrials) + { + X = X + One; + SqXMinX (Defect); + if (J > Zero) + break; + I = I + 1; + } + printf ("Test for sqrt monotonicity.\n"); + I = -1; + X = BMinusU2; + Y = Radix; + Z = Radix + Radix * U2; + NotMonot = false; + Monot = false; + while (!(NotMonot || Monot)) + { + I = I + 1; + X = SQRT (X); + Q = SQRT (Y); + Z = SQRT (Z); + if ((X > Q) || (Q > Z)) + NotMonot = true; + else + { + Q = FLOOR (Q + Half); + if (!(I > 0 || Radix == Q * Q)) + Monot = true; + else if (I > 0) + { + if (I > 1) + Monot = true; + else + { + Y = Y * BInvrse; + X = Y - U1; + Z = Y + U1; + } + } + else + { + Y = Q; + X = Y - U2; + Z = Y + U2; + } + } + } + if (Monot) + printf ("sqrt has passed a test for Monotonicity.\n"); + else + { + BadCond (Defect, ""); + printf ("sqrt(X) is non-monotonic for X near %s .\n", Y.str()); + } + /*=============================================*/ + Milestone = 110; + /*=============================================*/ + printf ("Seeking Underflow thresholds UfThold and E0.\n"); + D = U1; + if (Precision != FLOOR (Precision)) + { + D = BInvrse; + X = Precision; + do + { + D = D * BInvrse; + X = X - One; + } + while (X > Zero); + } + Y = One; + Z = D; + /* ... D is power of 1/Radix < 1. */ + do + { + C = Y; + Y = Z; + Z = Y * Y; + } + while ((Y > Z) && (Z + Z > Z)); + Y = C; + Z = Y * D; + do + { + C = Y; + Y = Z; + Z = Y * D; + } + while ((Y > Z) && (Z + Z > Z)); + if (Radix < Two) + HInvrse = Two; + else + HInvrse = Radix; + H = One / HInvrse; + /* ... 1/HInvrse == H == Min(1/Radix, 1/2) */ + CInvrse = One / C; + E0 = C; + Z = E0 * H; + /* ...1/Radix^(BIG Integer) << 1 << CInvrse == 1/C */ + do + { + Y = E0; + E0 = Z; + Z = E0 * H; + } + while ((E0 > Z) && (Z + Z > Z)); + UfThold = E0; + E1 = Zero; + Q = Zero; + E9 = U2; + S = One + E9; + D = C * S; + if (D <= C) + { + E9 = Radix * U2; + S = One + E9; + D = C * S; + if (D <= C) + { + BadCond (Failure, + "multiplication gets too many last digits wrong.\n"); + Underflow = E0; + Y1 = Zero; + PseudoZero = Z; + Pause (); + } + } + else + { + Underflow = D; + PseudoZero = Underflow * H; + UfThold = Zero; + do + { + Y1 = Underflow; + Underflow = PseudoZero; + if (E1 + E1 <= E1) + { + Y2 = Underflow * HInvrse; + E1 = FABS (Y1 - Y2); + Q = Y1; + if ((UfThold == Zero) && (Y1 != Y2)) + UfThold = Y1; + } + PseudoZero = PseudoZero * H; + } + while ((Underflow > PseudoZero) + && (PseudoZero + PseudoZero > PseudoZero)); + } + /* Comment line 4530 .. 4560 */ + if (PseudoZero != Zero) + { + printf ("\n"); + Z = PseudoZero; + /* ... Test PseudoZero for "phoney- zero" violates */ + /* ... PseudoZero < Underflow or PseudoZero < PseudoZero + PseudoZero + ... */ + if (PseudoZero <= Zero) + { + BadCond (Failure, "Positive expressions can underflow to an\n"); + printf ("allegedly negative value\n"); + printf ("PseudoZero that prints out as: %s .\n", PseudoZero.str()); + X = -PseudoZero; + if (X <= Zero) + { + printf ("But -PseudoZero, which should be\n"); + printf ("positive, isn't; it prints out as %s .\n", X.str()); + } + } + else + { + BadCond (Flaw, "Underflow can stick at an allegedly positive\n"); + printf ("value PseudoZero that prints out as %s .\n", + PseudoZero.str()); + } + TstPtUf (); + } + /*=============================================*/ + Milestone = 120; + /*=============================================*/ + if (CInvrse * Y > CInvrse * Y1) + { + S = H * S; + E0 = Underflow; + } + if (!((E1 == Zero) || (E1 == E0))) + { + BadCond (Defect, ""); + if (E1 < E0) + { + printf ("Products underflow at a higher"); + printf (" threshold than differences.\n"); + if (PseudoZero == Zero) + E0 = E1; + } + else + { + printf ("Difference underflows at a higher"); + printf (" threshold than products.\n"); + } + } + printf ("Smallest strictly positive number found is E0 = %s .\n", E0.str()); + Z = E0; + TstPtUf (); + Underflow = E0; + if (N == 1) + Underflow = Y; + I = 4; + if (E1 == Zero) + I = 3; + if (UfThold == Zero) + I = I - 2; + UfNGrad = true; + switch (I) + { + case 1: + UfThold = Underflow; + if ((CInvrse * Q) != ((CInvrse * Y) * S)) + { + UfThold = Y; + BadCond (Failure, "Either accuracy deteriorates as numbers\n"); + printf ("approach a threshold = %s\n", UfThold.str()); + printf (" coming down from %s\n", C.str()); + printf + (" or else multiplication gets too many last digits wrong.\n"); + } + Pause (); + break; + + case 2: + BadCond (Failure, + "Underflow confuses Comparison, which alleges that\n"); + printf ("Q == Y while denying that |Q - Y| == 0; these values\n"); + printf ("print out as Q = %s, Y = %s .\n", Q.str(), Y2.str()); + printf ("|Q - Y| = %s .\n", FABS (Q - Y2).str()); + UfThold = Q; + break; + + case 3: + X = X; + break; + + case 4: + if ((Q == UfThold) && (E1 == E0) && (FABS (UfThold - E1 / E9) <= E1)) + { + UfNGrad = false; + printf ("Underflow is gradual; it incurs Absolute Error =\n"); + printf ("(roundoff in UfThold) < E0.\n"); + Y = E0 * CInvrse; + Y = Y * (OneAndHalf + U2); + X = CInvrse * (One + U2); + Y = Y / X; + IEEE = (Y == E0); + } + } + if (UfNGrad) + { + printf ("\n"); + if (setjmp (ovfl_buf)) + { + printf ("Underflow / UfThold failed!\n"); + R = H + H; + } + else + R = SQRT (Underflow / UfThold); + if (R <= H) + { + Z = R * UfThold; + X = Z * (One + R * H * (One + H)); + } + else + { + Z = UfThold; + X = Z * (One + H * H * (One + H)); + } + if (!((X == Z) || (X - Z != Zero))) + { + BadCond (Flaw, ""); + printf ("X = %s\n\tis not equal to Z = %s .\n", X.str(), Z.str()); + Z9 = X - Z; + printf ("yet X - Z yields %s .\n", Z9.str()); + printf (" Should this NOT signal Underflow, "); + printf ("this is a SERIOUS DEFECT\nthat causes "); + printf ("confusion when innocent statements like\n");; + printf (" if (X == Z) ... else"); + printf (" ... (f(X) - f(Z)) / (X - Z) ...\n"); + printf ("encounter Division by Zero although actually\n"); + if (setjmp (ovfl_buf)) + printf ("X / Z fails!\n"); + else + printf ("X / Z = 1 + %s .\n", ((X / Z - Half) - Half).str()); + } + } + printf ("The Underflow threshold is %s, below which\n", UfThold.str()); + printf ("calculation may suffer larger Relative error than "); + printf ("merely roundoff.\n"); + Y2 = U1 * U1; + Y = Y2 * Y2; + Y2 = Y * U1; + if (Y2 <= UfThold) + { + if (Y > E0) + { + BadCond (Defect, ""); + I = 5; + } + else + { + BadCond (Serious, ""); + I = 4; + } + printf ("Range is too narrow; U1^%d Underflows.\n", I); + } + /*=============================================*/ + Milestone = 130; + /*=============================================*/ + Y = -FLOOR (Half - TwoForty * LOG (UfThold) / LOG (HInvrse)) / TwoForty; + Y2 = Y + Y; + printf ("Since underflow occurs below the threshold\n"); + printf ("UfThold = (%s) ^ (%s)\nonly underflow ", HInvrse.str(), Y.str()); + printf ("should afflict the expression\n\t(%s) ^ (%s);\n", + HInvrse.str(), Y2.str()); + printf ("actually calculating yields:"); + if (setjmp (ovfl_buf)) + { + BadCond (Serious, "trap on underflow.\n"); + } + else + { + V9 = POW (HInvrse, Y2); + printf (" %s .\n", V9.str()); + if (!((V9 >= Zero) && (V9 <= (Radix + Radix + E9) * UfThold))) + { + BadCond (Serious, "this is not between 0 and underflow\n"); + printf (" threshold = %s .\n", UfThold.str()); + } + else if (!(V9 > UfThold * (One + E9))) + printf ("This computed value is O.K.\n"); + else + { + BadCond (Defect, "this is not between 0 and underflow\n"); + printf (" threshold = %s .\n", UfThold.str()); + } + } + /*=============================================*/ + Milestone = 160; + /*=============================================*/ + Pause (); + printf ("Searching for Overflow threshold:\n"); + printf ("This may generate an error.\n"); + Y = -CInvrse; + V9 = HInvrse * Y; + if (setjmp (ovfl_buf)) + { + I = 0; + V9 = Y; + goto overflow; + } + do + { + V = Y; + Y = V9; + V9 = HInvrse * Y; + } + while (V9 < Y); + I = 1; +overflow: + Z = V9; + printf ("Can `Z = -Y' overflow?\n"); + printf ("Trying it on Y = %s .\n", Y.str()); + V9 = -Y; + V0 = V9; + if (V - Y == V + V0) + printf ("Seems O.K.\n"); + else + { + printf ("finds a "); + BadCond (Flaw, "-(-Y) differs from Y.\n"); + } + if (Z != Y) + { + BadCond (Serious, ""); + printf ("overflow past %s\n\tshrinks to %s .\n", Y.str(), Z.str()); + } + if (I) + { + Y = V * (HInvrse * U2 - HInvrse); + Z = Y + ((One - HInvrse) * U2) * V; + if (Z < V0) + Y = Z; + if (Y < V0) + V = Y; + if (V0 - V < V0) + V = V0; + } + else + { + V = Y * (HInvrse * U2 - HInvrse); + V = V + ((One - HInvrse) * U2) * Y; + } + printf ("Overflow threshold is V = %s .\n", V.str()); + if (I) + printf ("Overflow saturates at V0 = %s .\n", V0.str()); + else + printf ("There is no saturation value because " + "the system traps on overflow.\n"); + V9 = V * One; + printf ("No Overflow should be signaled for V * 1 = %s\n", V9.str()); + V9 = V / One; + printf (" nor for V / 1 = %s.\n", V9.str()); + printf ("Any overflow signal separating this * from the one\n"); + printf ("above is a DEFECT.\n"); + /*=============================================*/ + Milestone = 170; + /*=============================================*/ + if (!(-V < V && -V0 < V0 && -UfThold < V && UfThold < V)) + { + BadCond (Failure, "Comparisons involving "); + printf ("+-%s, +-%s\nand +-%s are confused by Overflow.", + V.str(), V0.str(), UfThold.str()); + } + /*=============================================*/ + Milestone = 175; + /*=============================================*/ + printf ("\n"); + for (Indx = 1; Indx <= 3; ++Indx) + { + switch (Indx) + { + case 1: + Z = UfThold; + break; + case 2: + Z = E0; + break; + case 3: + Z = PseudoZero; + break; + } + if (Z != Zero) + { + V9 = SQRT (Z); + Y = V9 * V9; + if (Y / (One - Radix * E9) < Z || Y > (One + Radix * E9) * Z) + { /* dgh: + E9 --> * E9 */ + if (V9 > U1) + BadCond (Serious, ""); + else + BadCond (Defect, ""); + printf ("Comparison alleges that what prints as Z = %s\n", + Z.str()); + printf (" is too far from sqrt(Z) ^ 2 = %s .\n", Y.str()); + } + } + } + /*=============================================*/ + Milestone = 180; + /*=============================================*/ + for (Indx = 1; Indx <= 2; ++Indx) + { + if (Indx == 1) + Z = V; + else + Z = V0; + V9 = SQRT (Z); + X = (One - Radix * E9) * V9; + V9 = V9 * X; + if (((V9 < (One - Two * Radix * E9) * Z) || (V9 > Z))) + { + Y = V9; + if (X < W) + BadCond (Serious, ""); + else + BadCond (Defect, ""); + printf ("Comparison alleges that Z = %s\n", Z.str()); + printf (" is too far from sqrt(Z) ^ 2 (%s) .\n", Y.str()); + } + } + /*=============================================*/ + Milestone = 190; + /*=============================================*/ + Pause (); + X = UfThold * V; + Y = Radix * Radix; + if (X * Y < One || X > Y) + { + if (X * Y < U1 || X > Y / U1) + BadCond (Defect, "Badly"); + else + BadCond (Flaw, ""); + + printf (" unbalanced range; UfThold * V = %s\n\t%s\n", + X.str(), "is too far from 1.\n"); + } + /*=============================================*/ + Milestone = 200; + /*=============================================*/ + for (Indx = 1; Indx <= 5; ++Indx) + { + X = F9; + switch (Indx) + { + case 2: + X = One + U2; + break; + case 3: + X = V; + break; + case 4: + X = UfThold; + break; + case 5: + X = Radix; + } + Y = X; + if (setjmp (ovfl_buf)) + printf (" X / X traps when X = %s\n", X.str()); + else + { + V9 = (Y / X - Half) - Half; + if (V9 == Zero) + continue; + if (V9 == -U1 && Indx < 5) + BadCond (Flaw, ""); + else + BadCond (Serious, ""); + printf (" X / X differs from 1 when X = %s\n", X.str()); + printf (" instead, X / X - 1/2 - 1/2 = %s .\n", V9.str()); + } + } + /*=============================================*/ + Milestone = 210; + /*=============================================*/ + MyZero = Zero; + printf ("\n"); + printf ("What message and/or values does Division by Zero produce?\n"); + printf (" Trying to compute 1 / 0 produces ..."); + if (!setjmp (ovfl_buf)) + printf (" %s .\n", (One / MyZero).str()); + printf ("\n Trying to compute 0 / 0 produces ..."); + if (!setjmp (ovfl_buf)) + printf (" %s .\n", (Zero / MyZero).str()); + /*=============================================*/ + Milestone = 220; + /*=============================================*/ + Pause (); + printf ("\n"); + { + static const char *msg[] = { + "FAILUREs encountered =", + "SERIOUS DEFECTs discovered =", + "DEFECTs discovered =", + "FLAWs discovered =" + }; + int i; + for (i = 0; i < 4; i++) + if (ErrCnt[i]) + printf ("The number of %-29s %d.\n", msg[i], ErrCnt[i]); + } + printf ("\n"); + if ((ErrCnt[Failure] + ErrCnt[Serious] + ErrCnt[Defect] + ErrCnt[Flaw]) > 0) + { + if ((ErrCnt[Failure] + ErrCnt[Serious] + ErrCnt[Defect] == 0) + && (ErrCnt[Flaw] > 0)) + { + printf ("The arithmetic diagnosed seems "); + printf ("Satisfactory though flawed.\n"); + } + if ((ErrCnt[Failure] + ErrCnt[Serious] == 0) && (ErrCnt[Defect] > 0)) + { + printf ("The arithmetic diagnosed may be Acceptable\n"); + printf ("despite inconvenient Defects.\n"); + } + if ((ErrCnt[Failure] + ErrCnt[Serious]) > 0) + { + printf ("The arithmetic diagnosed has "); + printf ("unacceptable Serious Defects.\n"); + } + if (ErrCnt[Failure] > 0) + { + printf ("Potentially fatal FAILURE may have spoiled this"); + printf (" program's subsequent diagnoses.\n"); + } + } + else + { + printf ("No failures, defects nor flaws have been discovered.\n"); + if (!((RMult == Rounded) && (RDiv == Rounded) + && (RAddSub == Rounded) && (RSqrt == Rounded))) + printf ("The arithmetic diagnosed seems Satisfactory.\n"); + else + { + if (StickyBit >= One && + (Radix - Two) * (Radix - Nine - One) == Zero) + { + printf ("Rounding appears to conform to "); + printf ("the proposed IEEE standard P"); + if ((Radix == Two) && + ((Precision - Four * Three * Two) * + (Precision - TwentySeven - TwentySeven + One) == Zero)) + printf ("754"); + else + printf ("854"); + if (IEEE) + printf (".\n"); + else + { + printf (",\nexcept for possibly Double Rounding"); + printf (" during Gradual Underflow.\n"); + } + } + printf ("The arithmetic diagnosed appears to be Excellent!\n"); + } + } + printf ("END OF TEST.\n"); + return 0; +} + +template<typename FLOAT> +FLOAT +Paranoia<FLOAT>::Sign (FLOAT X) +{ + return X >= FLOAT (long (0)) ? 1 : -1; +} + +template<typename FLOAT> +void +Paranoia<FLOAT>::Pause () +{ + if (do_pause) + { + fputs ("Press return...", stdout); + fflush (stdout); + getchar(); + } + printf ("\nDiagnosis resumes after milestone Number %d", Milestone); + printf (" Page: %d\n\n", PageNo); + ++Milestone; + ++PageNo; +} + +template<typename FLOAT> +void +Paranoia<FLOAT>::TstCond (int K, int Valid, const char *T) +{ + if (!Valid) + { + BadCond (K, T); + printf (".\n"); + } +} + +template<typename FLOAT> +void +Paranoia<FLOAT>::BadCond (int K, const char *T) +{ + static const char *msg[] = { "FAILURE", "SERIOUS DEFECT", "DEFECT", "FLAW" }; + + ErrCnt[K] = ErrCnt[K] + 1; + printf ("%s: %s", msg[K], T); +} + +/* Random computes + X = (Random1 + Random9)^5 + Random1 = X - FLOOR(X) + 0.000005 * X; + and returns the new value of Random1. */ + +template<typename FLOAT> +FLOAT +Paranoia<FLOAT>::Random () +{ + FLOAT X, Y; + + X = Random1 + Random9; + Y = X * X; + Y = Y * Y; + X = X * Y; + Y = X - FLOOR (X); + Random1 = Y + X * FLOAT ("0.000005"); + return (Random1); +} + +template<typename FLOAT> +void +Paranoia<FLOAT>::SqXMinX (int ErrKind) +{ + FLOAT XA, XB; + + XB = X * BInvrse; + XA = X - XB; + SqEr = ((SQRT (X * X) - XB) - XA) / OneUlp; + if (SqEr != Zero) + { + if (SqEr < MinSqEr) + MinSqEr = SqEr; + if (SqEr > MaxSqEr) + MaxSqEr = SqEr; + J = J + 1; + BadCond (ErrKind, "\n"); + printf ("sqrt(%s) - %s = %s\n", (X * X).str(), X.str(), + (OneUlp * SqEr).str()); + printf ("\tinstead of correct value 0 .\n"); + } +} + +template<typename FLOAT> +void +Paranoia<FLOAT>::NewD () +{ + X = Z1 * Q; + X = FLOOR (Half - X / Radix) * Radix + X; + Q = (Q - X * Z) / Radix + X * X * (D / Radix); + Z = Z - Two * X * D; + if (Z <= Zero) + { + Z = -Z; + Z1 = -Z1; + } + D = Radix * D; +} + +template<typename FLOAT> +void +Paranoia<FLOAT>::SR3750 () +{ + if (!((X - Radix < Z2 - Radix) || (X - Z2 > W - Z2))) + { + I = I + 1; + X2 = SQRT (X * D); + Y2 = (X2 - Z2) - (Y - Z2); + X2 = X8 / (Y - Half); + X2 = X2 - Half * X2 * X2; + SqEr = (Y2 + Half) + (Half - X2); + if (SqEr < MinSqEr) + MinSqEr = SqEr; + SqEr = Y2 - X2; + if (SqEr > MaxSqEr) + MaxSqEr = SqEr; + } +} + +template<typename FLOAT> +void +Paranoia<FLOAT>::IsYeqX () +{ + if (Y != X) + { + if (N <= 0) + { + if (Z == Zero && Q <= Zero) + printf ("WARNING: computing\n"); + else + BadCond (Defect, "computing\n"); + printf ("\t(%s) ^ (%s)\n", Z.str(), Q.str()); + printf ("\tyielded %s;\n", Y.str()); + printf ("\twhich compared unequal to correct %s ;\n", X.str()); + printf ("\t\tthey differ by %s .\n", (Y - X).str()); + } + N = N + 1; /* ... count discrepancies. */ + } +} + +template<typename FLOAT> +void +Paranoia<FLOAT>::PrintIfNPositive () +{ + if (N > 0) + printf ("Similar discrepancies have occurred %d times.\n", N); +} + +template<typename FLOAT> +void +Paranoia<FLOAT>::TstPtUf () +{ + N = 0; + if (Z != Zero) + { + printf ("Since comparison denies Z = 0, evaluating "); + printf ("(Z + Z) / Z should be safe.\n"); + if (setjmp (ovfl_buf)) + goto very_serious; + Q9 = (Z + Z) / Z; + printf ("What the machine gets for (Z + Z) / Z is %s .\n", Q9.str()); + if (FABS (Q9 - Two) < Radix * U2) + { + printf ("This is O.K., provided Over/Underflow"); + printf (" has NOT just been signaled.\n"); + } + else + { + if ((Q9 < One) || (Q9 > Two)) + { + very_serious: + N = 1; + ErrCnt[Serious] = ErrCnt[Serious] + 1; + printf ("This is a VERY SERIOUS DEFECT!\n"); + } + else + { + N = 1; + ErrCnt[Defect] = ErrCnt[Defect] + 1; + printf ("This is a DEFECT!\n"); + } + } + V9 = Z * One; + Random1 = V9; + V9 = One * Z; + Random2 = V9; + V9 = Z / One; + if ((Z == Random1) && (Z == Random2) && (Z == V9)) + { + if (N > 0) + Pause (); + } + else + { + N = 1; + BadCond (Defect, "What prints as Z = "); + printf ("%s\n\tcompares different from ", Z.str()); + if (Z != Random1) + printf ("Z * 1 = %s ", Random1.str()); + if (!((Z == Random2) || (Random2 == Random1))) + printf ("1 * Z == %s\n", Random2.str()); + if (!(Z == V9)) + printf ("Z / 1 = %s\n", V9.str()); + if (Random2 != Random1) + { + ErrCnt[Defect] = ErrCnt[Defect] + 1; + BadCond (Defect, "Multiplication does not commute!\n"); + printf ("\tComparison alleges that 1 * Z = %s\n", Random2.str()); + printf ("\tdiffers from Z * 1 = %s\n", Random1.str()); + } + Pause (); + } + } +} + +template<typename FLOAT> +void +Paranoia<FLOAT>::notify (const char *s) +{ + printf ("%s test appears to be inconsistent...\n", s); + printf (" PLEASE NOTIFY KARPINKSI!\n"); +} + +/* ====================================================================== */ + +int main(int ac, char **av) +{ + init_real_once (); + + while (1) + switch (getopt (ac, av, "pvg:fdl")) + { + case -1: + return 0; + case 'p': + do_pause = true; + break; + case 'v': + verbose = true; + break; + case 'g': + { + int size = strtol (optarg, 0, 0); + + switch (size) + { + case 32: + Paranoia< real_c_float<32, SFmode> >().main(); + break; + + case 64: + Paranoia< real_c_float<64, DFmode> >().main(); + break; + + case 96: + Paranoia< real_c_float<96, XFmode> >().main(); + break; + + case 128: + Paranoia< real_c_float<128, TFmode> >().main(); + break; + + default: + puts ("Invalid gcc implementation size."); + return 1; + } + break; + } + + case 'f': + Paranoia < native_float<float> >().main(); + break; + case 'd': + Paranoia < native_float<double> >().main(); + break; + case 'l': +#ifndef NO_LONG_DOUBLE + Paranoia < native_float<long double> >().main(); +#endif + break; + + case '?': + puts ("-p\tpause between pages"); + puts ("-g<N>\treal.c implementation size N"); + puts ("-f\tnative float"); + puts ("-d\tnative double"); + puts ("-l\tnative long double"); + return 0; + } +} + +/* GCC stuff referenced by real.o. */ + +extern "C" void +fancy_abort () +{ + abort (); +} + +int target_flags = 0; + +extern "C" +enum machine_mode +mode_for_size (unsigned int size, enum mode_class, int) +{ + switch (size) + { + case 32: + return SFmode; + case 64: + return DFmode; + case 96: + return XFmode; + case 128: + return TFmode; + } + abort (); +} |