summaryrefslogtreecommitdiff
path: root/gcc/ada/a-cforse.adb
diff options
context:
space:
mode:
authorcharlet <charlet@138bc75d-0d04-0410-961f-82ee72b054a4>2011-08-02 09:17:46 +0000
committercharlet <charlet@138bc75d-0d04-0410-961f-82ee72b054a4>2011-08-02 09:17:46 +0000
commit992ec8bcb63d0bc997d1d012339cf871c346078f (patch)
treee10f4754a39287ad20096cfb93f40edf8cf10f77 /gcc/ada/a-cforse.adb
parent7ef6449a8e66fff3c9c967bbbe121db720e46458 (diff)
downloadgcc-992ec8bcb63d0bc997d1d012339cf871c346078f.tar.gz
2011-08-02 Yannick Moy <moy@adacore.com>
* errout.adb, errout.ads (Check_Formal_Restriction): move procedure from here... * restrict.adb, restrict.ads (Check_Formal_Restriction): ...to here * sem_aggr.adb, sem_ch5.adb, sem_util.adb: Add with/use clauses to make Check_Formal_Restriction visible 2011-08-02 Ed Schonberg <schonberg@adacore.com> * sem_ch12.adb (Check_Generic_Actuals): handle properly actual in-parameters when type of the generic formal is private in the generic spec and non-private in the body. 2011-08-02 Claire Dross <dross@adacore.com> * a-cfdlli.adb, a-cfdlli.ads, a-cfhase.adb, a-cfhase.ads, a-cfhama.adb, a-cfhama.ads, a-cforse.adb, a-cforse.ads, a-cforma.adb, a-cforma.ads, a-cofove.adb, a-cofove.ads: New files implementing formal containers. * impunit.adb, Makefile.rtl: Take new files into account. git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@177102 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/ada/a-cforse.adb')
-rw-r--r--gcc/ada/a-cforse.adb2924
1 files changed, 2924 insertions, 0 deletions
diff --git a/gcc/ada/a-cforse.adb b/gcc/ada/a-cforse.adb
new file mode 100644
index 00000000000..30a0f97a31d
--- /dev/null
+++ b/gcc/ada/a-cforse.adb
@@ -0,0 +1,2924 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT LIBRARY COMPONENTS --
+-- --
+-- A D A . C O N T A I N E R S . F O R M A L _ O R D E R E D _ S E T S --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 2010, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 3, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. --
+-- --
+-- As a special exception under Section 7 of GPL version 3, you are granted --
+-- additional permissions described in the GCC Runtime Library Exception, --
+-- version 3.1, as published by the Free Software Foundation. --
+-- --
+-- You should have received a copy of the GNU General Public License and --
+-- a copy of the GCC Runtime Library Exception along with this program; --
+-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
+-- <http://www.gnu.org/licenses/>. --
+------------------------------------------------------------------------------
+
+with Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations;
+pragma Elaborate_All
+ (Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations);
+
+with Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys;
+pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys);
+
+with Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations;
+pragma Elaborate_All
+ (Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations);
+
+with System; use type System.Address;
+
+package body Ada.Containers.Formal_Ordered_Sets is
+
+ ------------------------------
+ -- Access to Fields of Node --
+ ------------------------------
+
+ -- These subprograms provide functional notation for access to fields
+ -- of a node, and procedural notation for modifiying these fields.
+
+ function Color (Node : Node_Type) return Red_Black_Trees.Color_Type;
+ pragma Inline (Color);
+
+ function Left_Son (Node : Node_Type) return Count_Type;
+ pragma Inline (Left);
+
+ function Parent (Node : Node_Type) return Count_Type;
+ pragma Inline (Parent);
+
+ function Right_Son (Node : Node_Type) return Count_Type;
+ pragma Inline (Right);
+
+ procedure Set_Color
+ (Node : in out Node_Type;
+ Color : Red_Black_Trees.Color_Type);
+ pragma Inline (Set_Color);
+
+ procedure Set_Left (Node : in out Node_Type; Left : Count_Type);
+ pragma Inline (Set_Left);
+
+ procedure Set_Right (Node : in out Node_Type; Right : Count_Type);
+ pragma Inline (Set_Right);
+
+ procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type);
+ pragma Inline (Set_Parent);
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ generic
+ with procedure Set_Element (Node : in out Node_Type);
+ procedure Generic_Allocate
+ (Tree : in out Tree_Types.Tree_Type'Class;
+ Node : out Count_Type);
+
+ procedure Assign (Target : in out Tree_Types.Tree_Type;
+ Source : Tree_Types.Tree_Type);
+
+ procedure Clear (Container : in out Tree_Types.Tree_Type);
+
+ procedure Free (Tree : in out Tree_Types.Tree_Type; X : Count_Type);
+
+ procedure Insert_Sans_Hint
+ (Container : in out Tree_Types.Tree_Type;
+ New_Item : Element_Type;
+ Node : out Count_Type;
+ Inserted : out Boolean);
+
+ procedure Insert_With_Hint
+ (Dst_Set : in out Tree_Types.Tree_Type;
+ Dst_Hint : Count_Type;
+ Src_Node : Node_Type;
+ Dst_Node : out Count_Type);
+
+ function Is_Greater_Element_Node
+ (Left : Element_Type;
+ Right : Node_Type) return Boolean;
+ pragma Inline (Is_Greater_Element_Node);
+
+ function Is_Less_Element_Node
+ (Left : Element_Type;
+ Right : Node_Type) return Boolean;
+ pragma Inline (Is_Less_Element_Node);
+
+ function Is_Less_Node_Node (L, R : Node_Type) return Boolean;
+ pragma Inline (Is_Less_Node_Node);
+
+ generic
+ with procedure Process (Node : Count_Type) is <>;
+ procedure Iterate_Between (Tree : Tree_Types.Tree_Type;
+ From : Count_Type;
+ To : Count_Type);
+
+ function Next_Unchecked
+ (Container : Set;
+ Position : Count_Type) return Count_Type;
+
+ procedure Replace_Element
+ (Tree : in out Tree_Types.Tree_Type;
+ Node : Count_Type;
+ Item : Element_Type);
+
+ --------------------------
+ -- Local Instantiations --
+ --------------------------
+
+ package Tree_Operations is
+ new Red_Black_Trees.Generic_Bounded_Operations
+ (Tree_Types,
+ Left => Left_Son,
+ Right => Right_Son);
+
+ use Tree_Operations;
+
+ package Element_Keys is
+ new Red_Black_Trees.Generic_Bounded_Keys
+ (Tree_Operations => Tree_Operations,
+ Key_Type => Element_Type,
+ Is_Less_Key_Node => Is_Less_Element_Node,
+ Is_Greater_Key_Node => Is_Greater_Element_Node);
+
+ package Set_Ops is
+ new Red_Black_Trees.Generic_Bounded_Set_Operations
+ (Tree_Operations => Tree_Operations,
+ Set_Type => Tree_Types.Tree_Type,
+ Assign => Assign,
+ Insert_With_Hint => Insert_With_Hint,
+ Is_Less => Is_Less_Node_Node);
+
+ ---------
+ -- "=" --
+ ---------
+
+ function "=" (Left, Right : Set) return Boolean is
+ Lst : Count_Type;
+ Node : Count_Type := First (Left).Node;
+ ENode : Count_Type;
+ begin
+
+ if Length (Left) /= Length (Right) then
+ return False;
+ end if;
+
+ if Is_Empty (Left) then
+ return True;
+ end if;
+
+ Lst := Next (Left.Tree.all, Last (Left).Node);
+ while Node /= Lst loop
+ ENode := Find (Right, Left.Tree.Nodes (Node).Element).Node;
+ if ENode = 0 or else
+ Left.Tree.Nodes (Node).Element /= Right.Tree.Nodes (ENode).Element
+ then
+ return False;
+ end if;
+ Node := Next (Left.Tree.all, Node);
+ end loop;
+
+ return True;
+
+ end "=";
+
+ ------------
+ -- Assign --
+ ------------
+
+ procedure Assign (Target : in out Tree_Types.Tree_Type;
+ Source : Tree_Types.Tree_Type) is
+ procedure Append_Element (Source_Node : Count_Type);
+
+ procedure Append_Elements is
+ new Tree_Operations.Generic_Iteration (Append_Element);
+
+ --------------------
+ -- Append_Element --
+ --------------------
+
+ procedure Append_Element (Source_Node : Count_Type) is
+ SN : Node_Type renames Source.Nodes (Source_Node);
+
+ procedure Set_Element (Node : in out Node_Type);
+ pragma Inline (Set_Element);
+
+ function New_Node return Count_Type;
+ pragma Inline (New_Node);
+
+ procedure Insert_Post is
+ new Element_Keys.Generic_Insert_Post (New_Node);
+
+ procedure Unconditional_Insert_Sans_Hint is
+ new Element_Keys.Generic_Unconditional_Insert (Insert_Post);
+
+ procedure Unconditional_Insert_Avec_Hint is
+ new Element_Keys.Generic_Unconditional_Insert_With_Hint
+ (Insert_Post,
+ Unconditional_Insert_Sans_Hint);
+
+ procedure Allocate is
+ new Generic_Allocate (Set_Element);
+
+ --------------
+ -- New_Node --
+ --------------
+
+ function New_Node return Count_Type is
+ Result : Count_Type;
+
+ begin
+ Allocate (Target, Result);
+ return Result;
+ end New_Node;
+
+ -----------------
+ -- Set_Element --
+ -----------------
+
+ procedure Set_Element (Node : in out Node_Type) is
+ begin
+ Node.Element := SN.Element;
+ end Set_Element;
+
+ Target_Node : Count_Type;
+
+ -- Start of processing for Append_Element
+
+ begin
+ Unconditional_Insert_Avec_Hint
+ (Tree => Target,
+ Hint => 0,
+ Key => SN.Element,
+ Node => Target_Node);
+ end Append_Element;
+
+ -- Start of processing for Assign
+
+ begin
+ if Target'Address = Source'Address then
+ return;
+ end if;
+
+ if Target.Capacity < Source.Length then
+ raise Constraint_Error
+ with "Target capacity is less than Source length";
+ end if;
+
+ Tree_Operations.Clear_Tree (Target);
+ Append_Elements (Source);
+ end Assign;
+
+ procedure Assign (Target : in out Set; Source : Set) is
+ X : Count_Type;
+ begin
+ if Target.K /= Plain then
+ raise Constraint_Error
+ with "Can't modify part of container";
+ end if;
+
+ if Target'Address = Source'Address then
+ return;
+ end if;
+
+ if Target.Capacity < Length (Source) then
+ raise Storage_Error with "not enough capacity"; -- SE or CE? ???
+ end if;
+
+ if Source.K = Plain then
+ Assign (Target => Target.Tree.all, Source => Source.Tree.all);
+ else
+ declare
+ procedure Append_Element (Source_Node : Count_Type);
+
+ procedure Append_Element (Source_Node : Count_Type) is
+ SN : Node_Type renames Source.Tree.Nodes (Source_Node);
+
+ procedure Set_Element (Node : in out Node_Type);
+ pragma Inline (Set_Element);
+
+ function New_Node return Count_Type;
+ pragma Inline (New_Node);
+
+ procedure Insert_Post is
+ new Element_Keys.Generic_Insert_Post (New_Node);
+
+ procedure Unconditional_Insert_Sans_Hint is
+ new Element_Keys.Generic_Unconditional_Insert (Insert_Post);
+
+ procedure Unconditional_Insert_Avec_Hint is
+ new Element_Keys.Generic_Unconditional_Insert_With_Hint
+ (Insert_Post,
+ Unconditional_Insert_Sans_Hint);
+
+ procedure Allocate is
+ new Generic_Allocate (Set_Element);
+
+ --------------
+ -- New_Node --
+ --------------
+
+ function New_Node return Count_Type is
+ Result : Count_Type;
+
+ begin
+ Allocate (Target.Tree.all, Result);
+ return Result;
+ end New_Node;
+
+ -----------------
+ -- Set_Element --
+ -----------------
+
+ procedure Set_Element (Node : in out Node_Type) is
+ begin
+ Node.Element := SN.Element;
+ end Set_Element;
+
+ Target_Node : Count_Type;
+
+ -- Start of processing for Append_Element
+
+ begin
+ Unconditional_Insert_Avec_Hint
+ (Tree => Target.Tree.all,
+ Hint => 0,
+ Key => SN.Element,
+ Node => Target_Node);
+ end Append_Element;
+ begin
+ Tree_Operations.Clear_Tree (Target.Tree.all);
+ X := Source.First;
+ while X /= Next (Source.Tree.all, Source.Last) loop
+ Append_Element (X);
+ X := Next (Source.Tree.all, X);
+ end loop;
+ end;
+ end if;
+ end Assign;
+
+ -------------
+ -- Ceiling --
+ -------------
+
+ function Ceiling (Container : Set; Item : Element_Type) return Cursor is
+ begin
+
+ if Container.K = Part then
+ if Container.Length = 0 then
+ return No_Element;
+ end if;
+
+ if Item < Container.Tree.Nodes (Container.First).Element then
+ return (Node => Container.First);
+ end if;
+
+ if Container.Tree.Nodes (Container.Last).Element < Item then
+ return No_Element;
+ end if;
+ end if;
+
+ declare
+ Node : constant Count_Type :=
+ Element_Keys.Ceiling (Container.Tree.all, Item);
+
+ begin
+ if Node = 0 then
+ return No_Element;
+ end if;
+
+ return (Node => Node);
+ end;
+ end Ceiling;
+
+ -----------
+ -- Clear --
+ -----------
+
+ procedure Clear (Container : in out Tree_Types.Tree_Type) is
+ begin
+ Tree_Operations.Clear_Tree (Container);
+ end Clear;
+
+ procedure Clear (Container : in out Set) is
+ begin
+ if Container.K /= Plain then
+ raise Constraint_Error
+ with "Can't modify part of container";
+ end if;
+
+ Clear (Container.Tree.all);
+ end Clear;
+
+ -----------
+ -- Color --
+ -----------
+
+ function Color (Node : Node_Type) return Red_Black_Trees.Color_Type is
+ begin
+ return Node.Color;
+ end Color;
+
+ --------------
+ -- Contains --
+ --------------
+
+ function Contains
+ (Container : Set;
+ Item : Element_Type) return Boolean
+ is
+ begin
+ return Find (Container, Item) /= No_Element;
+ end Contains;
+
+ ----------
+ -- Copy --
+ ----------
+
+ function Copy (Source : Set; Capacity : Count_Type := 0) return Set is
+ Node : Count_Type := 1;
+ N : Count_Type;
+ Cu : Cursor;
+ Target : Set (Count_Type'Max (Source.Capacity, Capacity));
+ begin
+ if Length (Source) > 0 then
+ Target.Tree.Length := Source.Tree.Length;
+ Target.Tree.Root := Source.Tree.Root;
+ Target.Tree.First := Source.Tree.First;
+ Target.Tree.Last := Source.Tree.Last;
+ Target.Tree.Free := Source.Tree.Free;
+
+ while Node <= Source.Capacity loop
+ Target.Tree.Nodes (Node).Element :=
+ Source.Tree.Nodes (Node).Element;
+ Target.Tree.Nodes (Node).Parent :=
+ Source.Tree.Nodes (Node).Parent;
+ Target.Tree.Nodes (Node).Left :=
+ Source.Tree.Nodes (Node).Left;
+ Target.Tree.Nodes (Node).Right :=
+ Source.Tree.Nodes (Node).Right;
+ Target.Tree.Nodes (Node).Color :=
+ Source.Tree.Nodes (Node).Color;
+ Target.Tree.Nodes (Node).Has_Element :=
+ Source.Tree.Nodes (Node).Has_Element;
+ Node := Node + 1;
+ end loop;
+
+ while Node <= Target.Capacity loop
+ N := Node;
+ Formal_Ordered_Sets.Free (Tree => Target.Tree.all, X => N);
+ Node := Node + 1;
+ end loop;
+
+ if Source.K = Part then
+ Node := Target.Tree.First;
+ while Node /= Source.First loop
+ Cu := (Node => Node);
+ Node := Next (Target.Tree.all, Node);
+ Delete (Target, Cu);
+ end loop;
+
+ Node := Next (Target.Tree.all, Source.Last);
+
+ while Node /= 0 loop
+ Cu := (Node => Node);
+ Node := Next (Target.Tree.all, Node);
+ Delete (Target, Cu);
+ end loop;
+ end if;
+ Node := 1;
+
+ end if;
+ return Target;
+ end Copy;
+
+ ------------
+ -- Delete --
+ ------------
+
+ procedure Delete (Container : in out Set; Position : in out Cursor) is
+ begin
+ if Container.K /= Plain then
+ raise Constraint_Error
+ with "Can't modify part of container";
+ end if;
+
+ if not Has_Element (Container, Position) then
+ raise Constraint_Error with "Position cursor has no element";
+ end if;
+
+ pragma Assert (Vet (Container.Tree.all, Position.Node),
+ "bad cursor in Delete");
+
+ Tree_Operations.Delete_Node_Sans_Free (Container.Tree.all,
+ Position.Node);
+ Formal_Ordered_Sets.Free (Container.Tree.all, Position.Node);
+ Position := No_Element;
+ end Delete;
+
+ procedure Delete (Container : in out Set; Item : Element_Type) is
+ X : constant Count_Type := Element_Keys.Find (Container.Tree.all, Item);
+
+ begin
+ if Container.K /= Plain then
+ raise Constraint_Error
+ with "Can't modify part of container";
+ end if;
+
+ if X = 0 then
+ raise Constraint_Error with "attempt to delete element not in set";
+ end if;
+
+ Tree_Operations.Delete_Node_Sans_Free (Container.Tree.all, X);
+ Formal_Ordered_Sets.Free (Container.Tree.all, X);
+ end Delete;
+
+ ------------------
+ -- Delete_First --
+ ------------------
+
+ procedure Delete_First (Container : in out Set) is
+ Tree : Tree_Types.Tree_Type renames Container.Tree.all;
+ X : constant Count_Type := Tree.First;
+
+ begin
+ if Container.K /= Plain then
+ raise Constraint_Error
+ with "Can't modify part of container";
+ end if;
+
+ if X /= 0 then
+ Tree_Operations.Delete_Node_Sans_Free (Tree, X);
+ Formal_Ordered_Sets.Free (Tree, X);
+ end if;
+ end Delete_First;
+
+ -----------------
+ -- Delete_Last --
+ -----------------
+
+ procedure Delete_Last (Container : in out Set) is
+ Tree : Tree_Types.Tree_Type renames Container.Tree.all;
+ X : constant Count_Type := Tree.Last;
+
+ begin
+ if Container.K /= Plain then
+ raise Constraint_Error
+ with "Can't modify part of container";
+ end if;
+
+ if X /= 0 then
+ Tree_Operations.Delete_Node_Sans_Free (Tree, X);
+ Formal_Ordered_Sets.Free (Tree, X);
+ end if;
+ end Delete_Last;
+
+ ----------------
+ -- Difference --
+ ----------------
+
+ procedure Difference (Target : in out Set; Source : Set) is
+ begin
+ if Target.K /= Plain then
+ raise Constraint_Error
+ with "Can't modify part of container";
+ end if;
+
+ if Source.K = Plain then
+ Set_Ops.Set_Difference (Target.Tree.all, Source.Tree.all);
+ else
+ declare
+ Tgt : Count_Type := Target.Tree.First;
+ Src : Count_Type := Source.First;
+ begin
+ if Target'Address = Source'Address then
+ if Target.Tree.Busy > 0 then
+ raise Program_Error with
+ "attempt to tamper with cursors (container is busy)";
+ end if;
+
+ Clear (Target.Tree.all);
+ return;
+ end if;
+
+ if Source.Length = 0 then
+ return;
+ end if;
+
+ if Target.Tree.Busy > 0 then
+ raise Program_Error with
+ "attempt to tamper with cursors (container is busy)";
+ end if;
+
+ loop
+ if Tgt = 0 then
+ return;
+ end if;
+
+ if Src = Next (Source.Tree.all, Source.Last) then
+ return;
+ end if;
+
+ if Target.Tree.Nodes (Tgt).Element <
+ Source.Tree.Nodes (Src).Element then
+ Tgt := Next (Target.Tree.all, Tgt);
+
+ elsif Source.Tree.Nodes (Src).Element <
+ Target.Tree.Nodes (Tgt).Element then
+ Src := Next (Source.Tree.all, Src);
+
+ else
+ declare
+ X : constant Count_Type := Tgt;
+ begin
+ Tgt := Next (Target.Tree.all, Tgt);
+ Delete_Node_Sans_Free (Target.Tree.all, X);
+ Formal_Ordered_Sets.Free (Target.Tree.all, X);
+ end;
+
+ Src := Next (Source.Tree.all, Src);
+ end if;
+ end loop;
+ end;
+ end if;
+ end Difference;
+
+ function Difference (Left, Right : Set) return Set is
+ begin
+ if Left'Address = Right'Address then
+ return Empty_Set;
+ end if;
+
+ if Length (Left) = 0 then
+ return Empty_Set;
+ end if;
+
+ if Length (Right) = 0 then
+ return Left.Copy;
+ end if;
+
+ return S : Set (Length (Left)) do
+ if Left.K = Plain and Right.K = Plain then
+ Assign (S.Tree.all,
+ Set_Ops.Set_Difference (Left.Tree.all, Right.Tree.all));
+ else
+ declare
+ Tree : Tree_Types.Tree_Type renames S.Tree.all;
+
+ L_Node : Count_Type := First (Left).Node;
+ R_Node : Count_Type := First (Right).Node;
+
+ L_Last : constant Count_Type := Next (Left.Tree.all,
+ Last (Left).Node);
+ R_Last : constant Count_Type := Next (Right.Tree.all,
+ Last (Right).Node);
+
+ Dst_Node : Count_Type;
+
+ begin
+ loop
+ if L_Node = L_Last then
+ return;
+ end if;
+
+ if R_Node = R_Last then
+ while L_Node /= L_Last loop
+ Insert_With_Hint
+ (Dst_Set => Tree,
+ Dst_Hint => 0,
+ Src_Node => Left.Tree.Nodes (L_Node),
+ Dst_Node => Dst_Node);
+
+ L_Node := Next (Left.Tree.all, L_Node);
+
+ end loop;
+
+ return;
+ end if;
+
+ if Left.Tree.Nodes (L_Node).Element <
+ Right.Tree.Nodes (R_Node).Element then
+ Insert_With_Hint
+ (Dst_Set => Tree,
+ Dst_Hint => 0,
+ Src_Node => Left.Tree.Nodes (L_Node),
+ Dst_Node => Dst_Node);
+
+ L_Node := Next (Left.Tree.all, L_Node);
+
+ elsif Right.Tree.Nodes (R_Node).Element <
+ Left.Tree.Nodes (L_Node).Element then
+ R_Node := Next (Right.Tree.all, R_Node);
+
+ else
+ L_Node := Next (Left.Tree.all, L_Node);
+ R_Node := Next (Right.Tree.all, R_Node);
+ end if;
+ end loop;
+ end;
+ end if;
+ end return;
+ end Difference;
+
+ -------------
+ -- Element --
+ -------------
+
+ function Element (Container : Set; Position : Cursor) return Element_Type is
+ begin
+ if not Has_Element (Container, Position) then
+ raise Constraint_Error with "Position cursor has no element";
+ end if;
+
+ pragma Assert (Vet (Container.Tree.all, Position.Node),
+ "bad cursor in Element");
+
+ declare
+ N : Tree_Types.Nodes_Type renames Container.Tree.Nodes;
+ begin
+ return N (Position.Node).Element;
+ end;
+ end Element;
+
+ -------------------------
+ -- Equivalent_Elements --
+ -------------------------
+
+ function Equivalent_Elements (Left, Right : Element_Type) return Boolean is
+ begin
+ if Left < Right
+ or else Right < Left
+ then
+ return False;
+ else
+ return True;
+ end if;
+ end Equivalent_Elements;
+
+ ---------------------
+ -- Equivalent_Sets --
+ ---------------------
+
+ function Equivalent_Sets (Left, Right : Set) return Boolean is
+ function Is_Equivalent_Node_Node
+ (L, R : Node_Type) return Boolean;
+ pragma Inline (Is_Equivalent_Node_Node);
+
+ function Is_Equivalent is
+ new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node);
+
+ -----------------------------
+ -- Is_Equivalent_Node_Node --
+ -----------------------------
+
+ function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean is
+ begin
+ if L.Element < R.Element then
+ return False;
+ elsif R.Element < L.Element then
+ return False;
+ else
+ return True;
+ end if;
+ end Is_Equivalent_Node_Node;
+
+ -- Start of processing for Equivalent_Sets
+
+ begin
+ if Left.K = Plain and Right.K = Plain then
+ return Is_Equivalent (Left.Tree.all, Right.Tree.all);
+ end if;
+
+ if Left'Address = Right'Address then
+ return True;
+ end if;
+
+ if Length (Left) /= Length (Right) then
+ return False;
+ end if;
+
+ if Length (Left) = 0 then
+ return True;
+ end if;
+
+ declare
+ L_Node : Count_Type;
+ R_Node : Count_Type;
+
+ L_Last : constant Count_Type := Next (Left.Tree.all,
+ Last (Left).Node);
+ begin
+
+ L_Node := First (Left).Node;
+ R_Node := First (Right).Node;
+ while L_Node /= L_Last loop
+ if not Is_Equivalent_Node_Node (Left.Tree.Nodes (L_Node),
+ Right.Tree.Nodes (R_Node)) then
+ return False;
+ end if;
+
+ L_Node := Next (Left.Tree.all, L_Node);
+ R_Node := Next (Right.Tree.all, R_Node);
+ end loop;
+
+ return True;
+ end;
+ end Equivalent_Sets;
+
+ -------------
+ -- Exclude --
+ -------------
+
+ procedure Exclude (Container : in out Set; Item : Element_Type) is
+ X : constant Count_Type := Element_Keys.Find (Container.Tree.all, Item);
+
+ begin
+ if Container.K /= Plain then
+ raise Constraint_Error
+ with "Can't modify part of container";
+ end if;
+
+ if X /= 0 then
+ Tree_Operations.Delete_Node_Sans_Free (Container.Tree.all, X);
+ Formal_Ordered_Sets.Free (Container.Tree.all, X);
+ end if;
+ end Exclude;
+
+ ----------
+ -- Find --
+ ----------
+
+ function Find (Container : Set; Item : Element_Type) return Cursor is
+ begin
+
+ if Container.K = Part then
+ if Container.Length = 0 then
+ return No_Element;
+ end if;
+
+ if Item < Container.Tree.Nodes (Container.First).Element or
+ Container.Tree.Nodes (Container.Last).Element < Item then
+ return No_Element;
+ end if;
+ end if;
+
+ declare
+ Node : constant Count_Type :=
+ Element_Keys.Find (Container.Tree.all, Item);
+
+ begin
+ if Node = 0 then
+ return No_Element;
+ end if;
+
+ return (Node => Node);
+ end;
+ end Find;
+
+ -----------
+ -- First --
+ -----------
+
+ function First (Container : Set) return Cursor is
+ begin
+ if Length (Container) = 0 then
+ return No_Element;
+ end if;
+
+ if Container.K = Plain then
+ return (Node => Container.Tree.First);
+ else
+ return (Node => Container.First);
+ end if;
+
+ end First;
+
+ -------------------
+ -- First_Element --
+ -------------------
+
+ function First_Element (Container : Set) return Element_Type is
+ Fst : constant Count_Type := First (Container).Node;
+ begin
+ if Fst = 0 then
+ raise Constraint_Error with "set is empty";
+ end if;
+
+ declare
+ N : Tree_Types.Nodes_Type renames Container.Tree.Nodes;
+ begin
+ return N (Fst).Element;
+ end;
+ end First_Element;
+
+ -----------
+ -- Floor --
+ -----------
+
+ function Floor (Container : Set; Item : Element_Type) return Cursor is
+ begin
+
+ if Container.K = Part then
+ if Container.Length = 0 then
+ return No_Element;
+ end if;
+
+ if Item < Container.Tree.Nodes (Container.First).Element then
+ return No_Element;
+ end if;
+
+ if Container.Tree.Nodes (Container.Last).Element < Item then
+ return (Node => Container.Last);
+ end if;
+ end if;
+
+ declare
+ Node : constant Count_Type :=
+ Element_Keys.Floor (Container.Tree.all, Item);
+
+ begin
+ if Node = 0 then
+ return No_Element;
+ end if;
+
+ return (Node => Node);
+ end;
+ end Floor;
+
+ ----------
+ -- Free --
+ ----------
+
+ procedure Free
+ (Tree : in out Tree_Types.Tree_Type;
+ X : Count_Type)
+ is
+ begin
+ Tree.Nodes (X).Has_Element := False;
+ Tree_Operations.Free (Tree, X);
+ end Free;
+
+ ----------------------
+ -- Generic_Allocate --
+ ----------------------
+
+ procedure Generic_Allocate
+ (Tree : in out Tree_Types.Tree_Type'Class;
+ Node : out Count_Type)
+ is
+
+ procedure Allocate is
+ new Tree_Operations.Generic_Allocate (Set_Element);
+
+ begin
+ Allocate (Tree, Node);
+ Tree.Nodes (Node).Has_Element := True;
+ end Generic_Allocate;
+
+ ------------------
+ -- Generic_Keys --
+ ------------------
+
+ package body Generic_Keys is
+
+ -----------------------
+ -- Local Subprograms --
+ -----------------------
+
+ function Is_Greater_Key_Node
+ (Left : Key_Type;
+ Right : Node_Type) return Boolean;
+ pragma Inline (Is_Greater_Key_Node);
+
+ function Is_Less_Key_Node
+ (Left : Key_Type;
+ Right : Node_Type) return Boolean;
+ pragma Inline (Is_Less_Key_Node);
+
+ --------------------------
+ -- Local Instantiations --
+ --------------------------
+
+ package Key_Keys is
+ new Red_Black_Trees.Generic_Bounded_Keys
+ (Tree_Operations => Tree_Operations,
+ Key_Type => Key_Type,
+ Is_Less_Key_Node => Is_Less_Key_Node,
+ Is_Greater_Key_Node => Is_Greater_Key_Node);
+
+ -------------
+ -- Ceiling --
+ -------------
+
+ function Ceiling (Container : Set; Key : Key_Type) return Cursor is
+ begin
+
+ if Container.K = Part then
+ if Container.Length = 0 then
+ return No_Element;
+ end if;
+
+ if Key < Generic_Keys.Key
+ (Container.Tree.Nodes (Container.First).Element) then
+ return (Node => Container.First);
+ end if;
+
+ if Generic_Keys.Key
+ (Container.Tree.Nodes (Container.Last).Element) < Key then
+ return No_Element;
+ end if;
+ end if;
+
+ declare
+ Node : constant Count_Type :=
+ Key_Keys.Ceiling (Container.Tree.all, Key);
+
+ begin
+ if Node = 0 then
+ return No_Element;
+ end if;
+
+ return (Node => Node);
+ end;
+ end Ceiling;
+
+ --------------
+ -- Contains --
+ --------------
+
+ function Contains (Container : Set; Key : Key_Type) return Boolean is
+ begin
+ return Find (Container, Key) /= No_Element;
+ end Contains;
+
+ ------------
+ -- Delete --
+ ------------
+
+ procedure Delete (Container : in out Set; Key : Key_Type) is
+ begin
+ if Container.K /= Plain then
+ raise Constraint_Error
+ with "Can't modify part of container";
+ end if;
+
+ declare
+ X : constant Count_Type := Key_Keys.Find (Container.Tree.all, Key);
+
+ begin
+ if X = 0 then
+ raise Constraint_Error with "attempt to delete key not in set";
+ end if;
+
+ Delete_Node_Sans_Free (Container.Tree.all, X);
+ Formal_Ordered_Sets.Free (Container.Tree.all, X);
+ end;
+ end Delete;
+
+ -------------
+ -- Element --
+ -------------
+
+ function Element (Container : Set; Key : Key_Type) return Element_Type is
+ begin
+
+ if Container.K = Part then
+ if Container.Length = 0 or else
+ (Key < Generic_Keys.Key
+ (Container.Tree.Nodes (Container.First).Element) or
+ Generic_Keys.Key
+ (Container.Tree.Nodes (Container.Last).Element) < Key) then
+ raise Constraint_Error with "key not in set";
+ end if;
+ end if;
+
+ declare
+ Node : constant Count_Type :=
+ Key_Keys.Find (Container.Tree.all, Key);
+
+ begin
+ if Node = 0 then
+ raise Constraint_Error with "key not in set";
+ end if;
+
+ declare
+ N : Tree_Types.Nodes_Type renames Container.Tree.Nodes;
+ begin
+ return N (Node).Element;
+ end;
+ end;
+ end Element;
+
+ ---------------------
+ -- Equivalent_Keys --
+ ---------------------
+
+ function Equivalent_Keys (Left, Right : Key_Type) return Boolean is
+ begin
+ if Left < Right
+ or else Right < Left
+ then
+ return False;
+ else
+ return True;
+ end if;
+ end Equivalent_Keys;
+
+ -------------
+ -- Exclude --
+ -------------
+
+ procedure Exclude (Container : in out Set; Key : Key_Type) is
+ begin
+ if Container.K /= Plain then
+ raise Constraint_Error
+ with "Can't modify part of container";
+ end if;
+
+ declare
+
+ X : constant Count_Type := Key_Keys.Find (Container.Tree.all, Key);
+
+ begin
+ if X /= 0 then
+ Delete_Node_Sans_Free (Container.Tree.all, X);
+ Formal_Ordered_Sets.Free (Container.Tree.all, X);
+ end if;
+ end;
+ end Exclude;
+
+ ----------
+ -- Find --
+ ----------
+
+ function Find (Container : Set; Key : Key_Type) return Cursor is
+ begin
+
+ if Container.K = Part then
+ if Container.Length = 0 or else
+ (Key < Generic_Keys.Key
+ (Container.Tree.Nodes (Container.First).Element) or
+ Generic_Keys.Key
+ (Container.Tree.Nodes (Container.Last).Element) < Key) then
+ return No_Element;
+ end if;
+ end if;
+
+ declare
+
+ Node : constant Count_Type := Key_Keys.Find (Container.Tree.all,
+ Key);
+
+ begin
+ if Node = 0 then
+ return No_Element;
+ end if;
+
+ return (Node => Node);
+ end;
+ end Find;
+
+ -----------
+ -- Floor --
+ -----------
+
+ function Floor (Container : Set; Key : Key_Type) return Cursor is
+ begin
+ if Container.K = Part then
+ if Container.Length = 0 or else
+ Key < Generic_Keys.Key
+ (Container.Tree.Nodes (Container.First).Element) then
+ return No_Element;
+ end if;
+
+ if Generic_Keys.Key
+ (Container.Tree.Nodes (Container.Last).Element) < Key then
+ return (Node => Container.Last);
+ end if;
+ end if;
+
+ declare
+ Node : constant Count_Type :=
+ Key_Keys.Floor (Container.Tree.all, Key);
+
+ begin
+ if Node = 0 then
+ return No_Element;
+ end if;
+
+ return (Node => Node);
+ end;
+ end Floor;
+
+ -------------------------
+ -- Is_Greater_Key_Node --
+ -------------------------
+
+ function Is_Greater_Key_Node
+ (Left : Key_Type;
+ Right : Node_Type) return Boolean
+ is
+ begin
+ return Key (Right.Element) < Left;
+ end Is_Greater_Key_Node;
+
+ ----------------------
+ -- Is_Less_Key_Node --
+ ----------------------
+
+ function Is_Less_Key_Node
+ (Left : Key_Type;
+ Right : Node_Type) return Boolean
+ is
+ begin
+ return Left < Key (Right.Element);
+ end Is_Less_Key_Node;
+
+ ---------
+ -- Key --
+ ---------
+
+ function Key (Container : Set; Position : Cursor) return Key_Type is
+ begin
+ if not Has_Element (Container, Position) then
+ raise Constraint_Error with
+ "Position cursor has no element";
+ end if;
+
+ pragma Assert (Vet (Container.Tree.all, Position.Node),
+ "bad cursor in Key");
+
+ declare
+ N : Tree_Types.Nodes_Type renames Container.Tree.Nodes;
+ begin
+ return Key (N (Position.Node).Element);
+ end;
+ end Key;
+
+ -------------
+ -- Replace --
+ -------------
+
+ procedure Replace
+ (Container : in out Set;
+ Key : Key_Type;
+ New_Item : Element_Type)
+ is
+ Node : constant Count_Type := Key_Keys.Find (Container.Tree.all, Key);
+
+ begin
+ if Container.K /= Plain then
+ raise Constraint_Error
+ with "Can't modify part of container";
+ end if;
+
+ if not Has_Element (Container, (Node => Node)) then
+ raise Constraint_Error with
+ "attempt to replace key not in set";
+ end if;
+
+ Replace_Element (Container.Tree.all, Node, New_Item);
+ end Replace;
+
+ -----------------------------------
+ -- Update_Element_Preserving_Key --
+ -----------------------------------
+
+ procedure Update_Element_Preserving_Key
+ (Container : in out Set;
+ Position : Cursor;
+ Process : not null access procedure (Element : in out Element_Type))
+ is
+ Tree : Tree_Types.Tree_Type renames Container.Tree.all;
+
+ begin
+ if Container.K /= Plain then
+ raise Constraint_Error
+ with "Can't modify part of container";
+ end if;
+
+ if not Has_Element (Container, Position) then
+ raise Constraint_Error with
+ "Position cursor has no element";
+ end if;
+
+ pragma Assert (Vet (Container.Tree.all, Position.Node),
+ "bad cursor in Update_Element_Preserving_Key");
+
+ declare
+ N : Tree_Types.Nodes_Type renames Container.Tree.Nodes;
+
+ E : Element_Type renames N (Position.Node).Element;
+ K : constant Key_Type := Key (E);
+
+ B : Natural renames Tree.Busy;
+ L : Natural renames Tree.Lock;
+
+ begin
+ B := B + 1;
+ L := L + 1;
+
+ begin
+ Process (E);
+ exception
+ when others =>
+ L := L - 1;
+ B := B - 1;
+ raise;
+ end;
+
+ L := L - 1;
+ B := B - 1;
+
+ if Equivalent_Keys (K, Key (E)) then
+ return;
+ end if;
+ end;
+
+ declare
+ X : constant Count_Type := Position.Node;
+ begin
+ Tree_Operations.Delete_Node_Sans_Free (Tree, X);
+ Formal_Ordered_Sets.Free (Tree, X);
+ end;
+
+ raise Program_Error with "key was modified";
+ end Update_Element_Preserving_Key;
+
+ end Generic_Keys;
+
+ -----------------
+ -- Has_Element --
+ -----------------
+
+ function Has_Element (Container : Set; Position : Cursor) return Boolean is
+ begin
+ if Position.Node = 0 then
+ return False;
+ end if;
+
+ if not Container.Tree.Nodes (Position.Node).Has_Element then
+ return False;
+ end if;
+
+ if Container.K = Plain then
+ return True;
+ end if;
+
+ declare
+ Elt : constant Element_Type :=
+ Container.Tree.Nodes (Position.Node).Element;
+ begin
+
+ if Elt < Container.Tree.Nodes (Container.First).Element or
+ Container.Tree.Nodes (Container.Last).Element < Elt then
+ return False;
+ end if;
+
+ return True;
+ end;
+ end Has_Element;
+
+ -------------
+ -- Include --
+ -------------
+
+ procedure Include (Container : in out Set; New_Item : Element_Type) is
+ Position : Cursor;
+ Inserted : Boolean;
+
+ begin
+ Insert (Container, New_Item, Position, Inserted);
+
+ if not Inserted then
+ if Container.Tree.Lock > 0 then
+ raise Program_Error with
+ "attempt to tamper with cursors (set is locked)";
+ end if;
+
+ declare
+ N : Tree_Types.Nodes_Type renames Container.Tree.Nodes;
+ begin
+ N (Position.Node).Element := New_Item;
+ end;
+ end if;
+ end Include;
+
+ ------------
+ -- Insert --
+ ------------
+
+ procedure Insert
+ (Container : in out Set;
+ New_Item : Element_Type;
+ Position : out Cursor;
+ Inserted : out Boolean)
+ is
+ begin
+ if Container.K /= Plain then
+ raise Constraint_Error
+ with "Can't modify part of container";
+ end if;
+
+ Insert_Sans_Hint
+ (Container.Tree.all,
+ New_Item,
+ Position.Node,
+ Inserted);
+
+ end Insert;
+
+ procedure Insert
+ (Container : in out Set;
+ New_Item : Element_Type)
+ is
+ Position : Cursor;
+ Inserted : Boolean;
+
+ begin
+ Insert (Container, New_Item, Position, Inserted);
+
+ if not Inserted then
+ raise Constraint_Error with
+ "attempt to insert element already in set";
+ end if;
+ end Insert;
+
+ ----------------------
+ -- Insert_Sans_Hint --
+ ----------------------
+
+ procedure Insert_Sans_Hint
+ (Container : in out Tree_Types.Tree_Type;
+ New_Item : Element_Type;
+ Node : out Count_Type;
+ Inserted : out Boolean)
+ is
+
+ procedure Set_Element (Node : in out Node_Type);
+
+ function New_Node return Count_Type;
+ pragma Inline (New_Node);
+
+ procedure Insert_Post is
+ new Element_Keys.Generic_Insert_Post (New_Node);
+
+ procedure Conditional_Insert_Sans_Hint is
+ new Element_Keys.Generic_Conditional_Insert (Insert_Post);
+
+ procedure Allocate is
+ new Generic_Allocate (Set_Element);
+
+ --------------
+ -- New_Node --
+ --------------
+
+ function New_Node return Count_Type is
+ Result : Count_Type;
+
+ begin
+ Allocate (Container, Result);
+ return Result;
+ end New_Node;
+
+ -----------------
+ -- Set_Element --
+ -----------------
+
+ procedure Set_Element (Node : in out Node_Type) is
+ begin
+ Node.Element := New_Item;
+ end Set_Element;
+
+ -- Start of processing for Insert_Sans_Hint
+
+ begin
+ Conditional_Insert_Sans_Hint
+ (Container,
+ New_Item,
+ Node,
+ Inserted);
+ end Insert_Sans_Hint;
+
+ ----------------------
+ -- Insert_With_Hint --
+ ----------------------
+
+ procedure Insert_With_Hint
+ (Dst_Set : in out Tree_Types.Tree_Type;
+ Dst_Hint : Count_Type;
+ Src_Node : Node_Type;
+ Dst_Node : out Count_Type)
+ is
+ Success : Boolean;
+ pragma Unreferenced (Success);
+
+ procedure Set_Element (Node : in out Node_Type);
+
+ function New_Node return Count_Type;
+ pragma Inline (New_Node);
+
+ procedure Insert_Post is
+ new Element_Keys.Generic_Insert_Post (New_Node);
+
+ procedure Insert_Sans_Hint is
+ new Element_Keys.Generic_Conditional_Insert (Insert_Post);
+
+ procedure Local_Insert_With_Hint is
+ new Element_Keys.Generic_Conditional_Insert_With_Hint
+ (Insert_Post,
+ Insert_Sans_Hint);
+
+ procedure Allocate is
+ new Generic_Allocate (Set_Element);
+
+ --------------
+ -- New_Node --
+ --------------
+
+ function New_Node return Count_Type is
+ Result : Count_Type;
+
+ begin
+ Allocate (Dst_Set, Result);
+ return Result;
+ end New_Node;
+
+ -----------------
+ -- Set_Element --
+ -----------------
+
+ procedure Set_Element (Node : in out Node_Type) is
+ begin
+ Node.Element := Src_Node.Element;
+ end Set_Element;
+
+ -- Start of processing for Insert_With_Hint
+
+ begin
+ Local_Insert_With_Hint
+ (Dst_Set,
+ Dst_Hint,
+ Src_Node.Element,
+ Dst_Node,
+ Success);
+ end Insert_With_Hint;
+
+ ------------------
+ -- Intersection --
+ ------------------
+
+ procedure Intersection (Target : in out Set; Source : Set) is
+ begin
+ if Target.K /= Plain then
+ raise Constraint_Error
+ with "Can't modify part of container";
+ end if;
+
+ if Source.K = Plain then
+ Set_Ops.Set_Intersection (Target.Tree.all, Source.Tree.all);
+ else
+ declare
+ Tgt : Count_Type := Target.First;
+ Src : Count_Type := Source.First;
+
+ S_Last : constant Count_Type :=
+ Next (Source.Tree.all, Source.Last);
+
+ begin
+ if Target'Address = Source'Address then
+ return;
+ end if;
+
+ if Target.Tree.Busy > 0 then
+ raise Program_Error with
+ "attempt to tamper with cursors (container is busy)";
+ end if;
+
+ if Source.Length = 0 then
+ Clear (Target);
+ return;
+ end if;
+
+ while Tgt /= 0
+ and then Src /= S_Last
+ loop
+ if Target.Tree.Nodes (Tgt).Element <
+ Source.Tree.Nodes (Src).Element then
+ declare
+ X : constant Count_Type := Tgt;
+ begin
+ Tgt := Next (Target.Tree.all, Tgt);
+ Delete_Node_Sans_Free (Target.Tree.all, X);
+ Formal_Ordered_Sets.Free (Target.Tree.all, X);
+ end;
+
+ elsif Source.Tree.Nodes (Src).Element <
+ Target.Tree.Nodes (Tgt).Element then
+ Src := Next (Source.Tree.all, Src);
+
+ else
+ Tgt := Next (Target.Tree.all, Tgt);
+ Src := Next (Source.Tree.all, Src);
+ end if;
+ end loop;
+
+ while Tgt /= 0 loop
+ declare
+ X : constant Count_Type := Tgt;
+ begin
+ Tgt := Next (Target.Tree.all, Tgt);
+ Delete_Node_Sans_Free (Target.Tree.all, X);
+ Formal_Ordered_Sets.Free (Target.Tree.all, X);
+ end;
+ end loop;
+ end;
+ end if;
+ end Intersection;
+
+ function Intersection (Left, Right : Set) return Set is
+ begin
+ if Left'Address = Right'Address then
+ return Left.Copy;
+ end if;
+
+ return S : Set (Count_Type'Min (Length (Left), Length (Right))) do
+ if Left.K = Plain and Right.K = Plain then
+ Assign (S.Tree.all, Set_Ops.Set_Intersection
+ (Left.Tree.all, Right.Tree.all));
+ return;
+ end if;
+
+ if Length (Left) = 0 or Length (Right) = 0 then
+ return;
+ end if;
+
+ declare
+
+ L_Node : Count_Type := First (Left).Node;
+ R_Node : Count_Type := First (Right).Node;
+
+ L_Last : constant Count_Type :=
+ Next (Left.Tree.all, Last (Left).Node);
+ R_Last : constant Count_Type :=
+ Next (Right.Tree.all, Last (Right).Node);
+
+ Dst_Node : Count_Type;
+
+ begin
+ loop
+
+ if L_Node = L_Last or R_Node = R_Last then
+ return;
+ end if;
+
+ if Left.Tree.Nodes (L_Node).Element <
+ Right.Tree.Nodes (R_Node).Element then
+ L_Node := Next (Left.Tree.all, L_Node);
+
+ elsif Right.Tree.Nodes (R_Node).Element <
+ Left.Tree.Nodes (L_Node).Element then
+ R_Node := Next (Right.Tree.all, R_Node);
+
+ else
+ Insert_With_Hint
+ (Dst_Set => S.Tree.all,
+ Dst_Hint => 0,
+ Src_Node => Left.Tree.Nodes (L_Node),
+ Dst_Node => Dst_Node);
+
+ L_Node := Next (Left.Tree.all, L_Node);
+ R_Node := Next (Right.Tree.all, R_Node);
+ end if;
+ end loop;
+ end;
+ end return;
+ end Intersection;
+
+ --------------
+ -- Is_Empty --
+ --------------
+
+ function Is_Empty (Container : Set) return Boolean is
+ begin
+ return Length (Container) = 0;
+ end Is_Empty;
+
+ -----------------------------
+ -- Is_Greater_Element_Node --
+ -----------------------------
+
+ function Is_Greater_Element_Node
+ (Left : Element_Type;
+ Right : Node_Type) return Boolean
+ is
+ begin
+ -- Compute e > node same as node < e
+
+ return Right.Element < Left;
+ end Is_Greater_Element_Node;
+
+ --------------------------
+ -- Is_Less_Element_Node --
+ --------------------------
+
+ function Is_Less_Element_Node
+ (Left : Element_Type;
+ Right : Node_Type) return Boolean
+ is
+ begin
+ return Left < Right.Element;
+ end Is_Less_Element_Node;
+
+ -----------------------
+ -- Is_Less_Node_Node --
+ -----------------------
+
+ function Is_Less_Node_Node (L, R : Node_Type) return Boolean is
+ begin
+ return L.Element < R.Element;
+ end Is_Less_Node_Node;
+
+ ---------------
+ -- Is_Subset --
+ ---------------
+
+ function Is_Subset (Subset : Set; Of_Set : Set) return Boolean is
+ begin
+ if Subset.K = Plain and Of_Set.K = Plain then
+ return Set_Ops.Set_Subset (Subset.Tree.all,
+ Of_Set => Of_Set.Tree.all);
+ end if;
+
+ if Subset'Address = Of_Set'Address then
+ return True;
+ end if;
+
+ if Length (Subset) > Length (Of_Set) then
+ return False;
+ end if;
+
+ declare
+ Subset_Node : Count_Type := First (Subset).Node;
+ Set_Node : Count_Type := First (Of_Set).Node;
+
+ Subset_Last : constant Count_Type :=
+ Next (Subset.Tree.all, Last (Subset).Node);
+ Set_Last : constant Count_Type :=
+ Next (Of_Set.Tree.all, Last (Of_Set).Node);
+
+ begin
+ loop
+ if Set_Node = Set_Last then
+ return Subset_Node = 0;
+ end if;
+
+ if Subset_Node = Subset_Last then
+ return True;
+ end if;
+
+ if Subset.Tree.Nodes (Subset_Node).Element <
+ Of_Set.Tree.Nodes (Set_Node).Element then
+ return False;
+ end if;
+
+ if Of_Set.Tree.Nodes (Set_Node).Element <
+ Subset.Tree.Nodes (Subset_Node).Element then
+ Set_Node := Next (Of_Set.Tree.all, Set_Node);
+ else
+ Set_Node := Next (Of_Set.Tree.all, Set_Node);
+ Subset_Node := Next (Subset.Tree.all, Subset_Node);
+ end if;
+ end loop;
+ end;
+ end Is_Subset;
+
+ -------------
+ -- Iterate --
+ -------------
+
+ procedure Iterate
+ (Container : Set;
+ Process :
+ not null access procedure (Container : Set; Position : Cursor))
+ is
+ procedure Process_Node (Node : Count_Type);
+ pragma Inline (Process_Node);
+
+ procedure Local_Iterate is
+ new Tree_Operations.Generic_Iteration (Process_Node);
+
+ procedure Local_Iterate_Between is
+ new Iterate_Between (Process_Node);
+
+ ------------------
+ -- Process_Node --
+ ------------------
+
+ procedure Process_Node (Node : Count_Type) is
+ begin
+ Process (Container, (Node => Node));
+ end Process_Node;
+
+ T : Tree_Types.Tree_Type renames Container.Tree.all;
+ B : Natural renames T.Busy;
+
+ -- Start of prccessing for Iterate
+
+ begin
+ B := B + 1;
+
+ begin
+ if Container.K = Plain then
+ Local_Iterate (T);
+ return;
+ end if;
+
+ if Container.Length = 0 then
+ return;
+ end if;
+
+ Local_Iterate_Between (T, Container.First, Container.Last);
+
+ exception
+ when others =>
+ B := B - 1;
+ raise;
+ end;
+
+ B := B - 1;
+ end Iterate;
+
+ ---------------------
+ -- Iterate_Between --
+ ---------------------
+
+ procedure Iterate_Between (Tree : Tree_Types.Tree_Type;
+ From : Count_Type;
+ To : Count_Type) is
+
+ FElt : constant Element_Type := Tree.Nodes (From).Element;
+ TElt : constant Element_Type := Tree.Nodes (To).Element;
+ procedure Iterate (P : Count_Type);
+
+ -------------
+ -- Iterate --
+ -------------
+
+ procedure Iterate (P : Count_Type) is
+ X : Count_Type := P;
+ begin
+ while X /= 0 loop
+ if Tree.Nodes (X).Element < FElt then
+ X := Tree.Nodes (X).Right;
+ elsif TElt < Tree.Nodes (X).Element then
+ X := Tree.Nodes (X).Left;
+ else
+ Iterate (Tree.Nodes (X).Left);
+ Process (X);
+ X := Tree.Nodes (X).Right;
+ end if;
+ end loop;
+ end Iterate;
+
+ begin
+ Iterate (Tree.Root);
+ end Iterate_Between;
+
+ ----------
+ -- Last --
+ ----------
+
+ function Last (Container : Set) return Cursor is
+ begin
+ if Length (Container) = 0 then
+ return No_Element;
+ end if;
+
+ if Container.K = Plain then
+ return (Node => Container.Tree.Last);
+ end if;
+
+ return (Node => Container.Last);
+ end Last;
+
+ ------------------
+ -- Last_Element --
+ ------------------
+
+ function Last_Element (Container : Set) return Element_Type is
+ begin
+ if Last (Container).Node = 0 then
+ raise Constraint_Error with "set is empty";
+ end if;
+
+ declare
+ N : Tree_Types.Nodes_Type renames Container.Tree.Nodes;
+ begin
+ return N (Last (Container).Node).Element;
+ end;
+ end Last_Element;
+
+ ----------
+ -- Left --
+ ----------
+
+ function Left (Container : Set; Position : Cursor) return Set is
+ Lst : Count_Type;
+ Fst : constant Count_Type := First (Container).Node;
+ L : Count_Type := 0;
+ C : Count_Type := Fst;
+ begin
+ while C /= Position.Node loop
+ if C = Last (Container).Node or C = 0 then
+ raise Constraint_Error with
+ "Position cursor has no element";
+ end if;
+ Lst := C;
+ C := Next (Container.Tree.all, C);
+ L := L + 1;
+ end loop;
+ if L = 0 then
+ return (Capacity => Container.Capacity,
+ K => Part,
+ Tree => Container.Tree,
+ Length => 0,
+ First => 0,
+ Last => 0);
+ else
+ return (Capacity => Container.Capacity,
+ K => Part,
+ Tree => Container.Tree,
+ Length => L,
+ First => Fst,
+ Last => Lst);
+ end if;
+ end Left;
+
+ --------------
+ -- Left_Son --
+ --------------
+
+ function Left_Son (Node : Node_Type) return Count_Type is
+ begin
+ return Node.Left;
+ end Left_Son;
+
+ ------------
+ -- Length --
+ ------------
+
+ function Length (Container : Set) return Count_Type is
+ begin
+ if Container.K = Plain then
+ return Container.Tree.Length;
+ else
+ return Container.Length;
+ end if;
+ end Length;
+
+ ----------
+ -- Move --
+ ----------
+
+ procedure Move (Target : in out Set; Source : in out Set) is
+ S : Tree_Types.Tree_Type renames Source.Tree.all;
+ N : Tree_Types.Nodes_Type renames S.Nodes;
+ X : Count_Type;
+
+ begin
+ if Target.K /= Plain or Source.K /= Plain then
+ raise Constraint_Error
+ with "Can't modify part of container";
+ end if;
+
+ if Target'Address = Source'Address then
+ return;
+ end if;
+
+ if Target.Capacity < Length (Source) then
+ raise Constraint_Error with -- ???
+ "Source length exceeds Target capacity";
+ end if;
+
+ if S.Busy > 0 then
+ raise Program_Error with
+ "attempt to tamper with cursors of Source (list is busy)";
+ end if;
+
+ Clear (Target);
+
+ loop
+ X := S.First;
+ exit when X = 0;
+
+ Insert (Target, N (X).Element); -- optimize???
+
+ Tree_Operations.Delete_Node_Sans_Free (S, X);
+ Formal_Ordered_Sets.Free (S, X);
+ end loop;
+ end Move;
+
+ ----------
+ -- Next --
+ ----------
+
+ function Next_Unchecked
+ (Container : Set;
+ Position : Count_Type) return Count_Type is
+ begin
+
+ if Container.K = Part and then
+ (Container.Length = 0 or Position = Container.Last) then
+ return 0;
+ end if;
+
+ return Tree_Operations.Next (Container.Tree.all, Position);
+ end Next_Unchecked;
+
+ function Next (Container : Set; Position : Cursor) return Cursor is
+ begin
+ if Position = No_Element then
+ return No_Element;
+ end if;
+
+ if not Has_Element (Container, Position) then
+ raise Constraint_Error;
+ end if;
+
+ pragma Assert (Vet (Container.Tree.all, Position.Node),
+ "bad cursor in Next");
+ return (Node => Next_Unchecked (Container, Position.Node));
+ end Next;
+
+ procedure Next (Container : Set; Position : in out Cursor) is
+ begin
+ Position := Next (Container, Position);
+ end Next;
+
+ -------------
+ -- Overlap --
+ -------------
+
+ function Overlap (Left, Right : Set) return Boolean is
+ begin
+ if Left.K = Plain and Right.K = Plain then
+ return Set_Ops.Set_Overlap (Left.Tree.all, Right.Tree.all);
+ end if;
+
+ if Length (Left) = 0 or Length (Right) = 0 then
+ return False;
+ end if;
+
+ declare
+
+ L_Node : Count_Type := First (Left).Node;
+ R_Node : Count_Type := First (Right).Node;
+
+ L_Last : constant Count_Type :=
+ Next (Left.Tree.all, Last (Left).Node);
+ R_Last : constant Count_Type :=
+ Next (Right.Tree.all, Last (Right).Node);
+
+ begin
+ if Left'Address = Right'Address then
+ return True;
+ end if;
+
+ loop
+ if L_Node = L_Last
+ or else R_Node = R_Last
+ then
+ return False;
+ end if;
+
+ if Left.Tree.Nodes (L_Node).Element <
+ Right.Tree.Nodes (R_Node).Element then
+ L_Node := Next (Left.Tree.all, L_Node);
+
+ elsif Right.Tree.Nodes (R_Node).Element <
+ Left.Tree.Nodes (L_Node).Element then
+ R_Node := Next (Right.Tree.all, R_Node);
+
+ else
+ return True;
+ end if;
+ end loop;
+ end;
+ end Overlap;
+
+ ------------
+ -- Parent --
+ ------------
+
+ function Parent (Node : Node_Type) return Count_Type is
+ begin
+ return Node.Parent;
+ end Parent;
+
+ --------------
+ -- Previous --
+ --------------
+
+ function Previous (Container : Set; Position : Cursor) return Cursor is
+ begin
+ if Position = No_Element then
+ return No_Element;
+ end if;
+
+ if not Has_Element (Container, Position) then
+ raise Constraint_Error;
+ end if;
+
+ pragma Assert (Vet (Container.Tree.all, Position.Node),
+ "bad cursor in Previous");
+
+ if Container.K = Part and then
+ (Container.Length = 0 or Position.Node = Container.First) then
+ return No_Element;
+ end if;
+
+ declare
+ Tree : Tree_Types.Tree_Type renames Container.Tree.all;
+ Node : constant Count_Type :=
+ Tree_Operations.Previous (Tree, Position.Node);
+
+ begin
+ if Node = 0 then
+ return No_Element;
+ end if;
+
+ return (Node => Node);
+ end;
+ end Previous;
+
+ procedure Previous (Container : Set; Position : in out Cursor) is
+ begin
+ Position := Previous (Container, Position);
+ end Previous;
+
+ -------------------
+ -- Query_Element --
+ -------------------
+
+ procedure Query_Element
+ (Container : in out Set;
+ Position : Cursor;
+ Process : not null access procedure (Element : Element_Type))
+ is
+ begin
+ if Container.K /= Plain then
+ raise Constraint_Error
+ with "Can't modify part of container";
+ end if;
+
+ if not Has_Element (Container, Position) then
+ raise Constraint_Error with "Position cursor has no element";
+ end if;
+
+ pragma Assert (Vet (Container.Tree.all, Position.Node),
+ "bad cursor in Query_Element");
+
+ declare
+ T : Tree_Types.Tree_Type renames Container.Tree.all;
+
+ B : Natural renames T.Busy;
+ L : Natural renames T.Lock;
+
+ begin
+ B := B + 1;
+ L := L + 1;
+
+ begin
+ Process (T.Nodes (Position.Node).Element);
+ exception
+ when others =>
+ L := L - 1;
+ B := B - 1;
+ raise;
+ end;
+
+ L := L - 1;
+ B := B - 1;
+ end;
+ end Query_Element;
+
+ ----------
+ -- Read --
+ ----------
+
+ procedure Read
+ (Stream : not null access Root_Stream_Type'Class;
+ Container : out Set)
+ is
+ procedure Read_Element (Node : in out Node_Type);
+ pragma Inline (Read_Element);
+
+ procedure Allocate is
+ new Generic_Allocate (Read_Element);
+
+ procedure Read_Elements is
+ new Tree_Operations.Generic_Read (Allocate);
+
+ ------------------
+ -- Read_Element --
+ ------------------
+
+ procedure Read_Element (Node : in out Node_Type) is
+ begin
+ Element_Type'Read (Stream, Node.Element);
+ end Read_Element;
+
+ -- Start of processing for Read
+ Result : Tree_Type_Access;
+ begin
+ if Container.K /= Plain then
+ raise Constraint_Error;
+ end if;
+
+ if Container.Tree = null then
+ Result := new Tree_Types.Tree_Type (Container.Capacity);
+ else
+ Result := Container.Tree;
+ end if;
+
+ Read_Elements (Stream, Result.all);
+ Container.Tree := Result;
+ end Read;
+
+ procedure Read
+ (Stream : not null access Root_Stream_Type'Class;
+ Item : out Cursor)
+ is
+ begin
+ raise Program_Error with "attempt to stream set cursor";
+ end Read;
+
+ -------------
+ -- Replace --
+ -------------
+
+ procedure Replace (Container : in out Set; New_Item : Element_Type) is
+ begin
+ if Container.K /= Plain then
+ raise Constraint_Error
+ with "Can't modify part of container";
+ end if;
+
+ declare
+ Node : constant Count_Type :=
+ Element_Keys.Find (Container.Tree.all, New_Item);
+
+ begin
+ if Node = 0 then
+ raise Constraint_Error with
+ "attempt to replace element not in set";
+ end if;
+
+ if Container.Tree.Lock > 0 then
+ raise Program_Error with
+ "attempt to tamper with cursors (set is locked)";
+ end if;
+
+ Container.Tree.Nodes (Node).Element := New_Item;
+ end;
+ end Replace;
+
+ ---------------------
+ -- Replace_Element --
+ ---------------------
+
+ procedure Replace_Element
+ (Tree : in out Tree_Types.Tree_Type;
+ Node : Count_Type;
+ Item : Element_Type)
+ is
+ pragma Assert (Node /= 0);
+
+ function New_Node return Count_Type;
+ pragma Inline (New_Node);
+
+ procedure Local_Insert_Post is
+ new Element_Keys.Generic_Insert_Post (New_Node);
+
+ procedure Local_Insert_Sans_Hint is
+ new Element_Keys.Generic_Conditional_Insert (Local_Insert_Post);
+
+ procedure Local_Insert_With_Hint is
+ new Element_Keys.Generic_Conditional_Insert_With_Hint
+ (Local_Insert_Post,
+ Local_Insert_Sans_Hint);
+
+ NN : Tree_Types.Nodes_Type renames Tree.Nodes;
+
+ --------------
+ -- New_Node --
+ --------------
+
+ function New_Node return Count_Type is
+ N : Node_Type renames NN (Node);
+
+ begin
+ N.Element := Item;
+ N.Color := Red;
+ N.Parent := 0;
+ N.Right := 0;
+ N.Left := 0;
+
+ return Node;
+ end New_Node;
+
+ Hint : Count_Type;
+ Result : Count_Type;
+ Inserted : Boolean;
+
+ -- Start of processing for Insert
+
+ begin
+ if Item < NN (Node).Element
+ or else NN (Node).Element < Item
+ then
+ null;
+
+ else
+ if Tree.Lock > 0 then
+ raise Program_Error with
+ "attempt to tamper with cursors (set is locked)";
+ end if;
+
+ NN (Node).Element := Item;
+ return;
+ end if;
+
+ Hint := Element_Keys.Ceiling (Tree, Item);
+
+ if Hint = 0 then
+ null;
+
+ elsif Item < NN (Hint).Element then
+ if Hint = Node then
+ if Tree.Lock > 0 then
+ raise Program_Error with
+ "attempt to tamper with cursors (set is locked)";
+ end if;
+
+ NN (Node).Element := Item;
+ return;
+ end if;
+
+ else
+ pragma Assert (not (NN (Hint).Element < Item));
+ raise Program_Error with "attempt to replace existing element";
+ end if;
+
+ Tree_Operations.Delete_Node_Sans_Free (Tree, Node); -- Checks busy-bit
+
+ Local_Insert_With_Hint
+ (Tree => Tree,
+ Position => Hint,
+ Key => Item,
+ Node => Result,
+ Inserted => Inserted);
+
+ pragma Assert (Inserted);
+ pragma Assert (Result = Node);
+ end Replace_Element;
+
+ procedure Replace_Element
+ (Container : in out Set;
+ Position : Cursor;
+ New_Item : Element_Type)
+ is
+ begin
+ if Container.K /= Plain then
+ raise Constraint_Error
+ with "Can't modify part of container";
+ end if;
+
+ if not Has_Element (Container, Position) then
+ raise Constraint_Error with
+ "Position cursor has no element";
+ end if;
+
+ pragma Assert (Vet (Container.Tree.all, Position.Node),
+ "bad cursor in Replace_Element");
+
+ Replace_Element (Container.Tree.all, Position.Node, New_Item);
+ end Replace_Element;
+
+ ---------------------
+ -- Reverse_Iterate --
+ ---------------------
+
+ procedure Reverse_Iterate
+ (Container : Set;
+ Process :
+ not null access procedure (Container : Set; Position : Cursor))
+ is
+ procedure Process_Node (Node : Count_Type);
+ pragma Inline (Process_Node);
+
+ procedure Local_Reverse_Iterate is
+ new Tree_Operations.Generic_Reverse_Iteration (Process_Node);
+
+ ------------------
+ -- Process_Node --
+ ------------------
+
+ procedure Process_Node (Node : Count_Type) is
+ begin
+ Process (Container, (Node => Node));
+ end Process_Node;
+
+ T : Tree_Types.Tree_Type renames Container.Tree.all;
+ B : Natural renames T.Busy;
+
+ -- Start of processing for Reverse_Iterate
+
+ begin
+ B := B + 1;
+
+ begin
+ if Container.K = Plain then
+ Local_Reverse_Iterate (T);
+ return;
+ end if;
+
+ if Container.Length = 0 then
+ return;
+ end if;
+
+ declare
+ Node : Count_Type := Container.Last;
+ First : constant Count_Type :=
+ Previous (Container.Tree.all, Container.First);
+
+ begin
+
+ while Node /= First loop
+ Process_Node (Node);
+ Node := Previous (Container.Tree.all, Node);
+ end loop;
+
+ end;
+
+ exception
+ when others =>
+ B := B - 1;
+ raise;
+ end;
+
+ B := B - 1;
+ end Reverse_Iterate;
+
+ -----------
+ -- Right --
+ -----------
+
+ function Right (Container : Set; Position : Cursor) return Set is
+ Lst : Count_Type;
+ L : Count_Type := 0;
+ C : Count_Type := Position.Node;
+ begin
+
+ if C = 0 then
+ return (Capacity => Container.Capacity,
+ K => Part,
+ Tree => Container.Tree,
+ Length => 0,
+ First => 0,
+ Last => 0);
+ end if;
+
+ if Container.K = Plain then
+ Lst := 0;
+ else
+ Lst := Next (Container.Tree.all, Container.Last);
+ end if;
+
+ if C = Lst then
+ raise Constraint_Error with
+ "Position cursor has no element";
+ end if;
+
+ while C /= Lst loop
+ if C = 0 then
+ raise Constraint_Error with
+ "Position cursor has no element";
+ end if;
+ C := Next (Container.Tree.all, C);
+ L := L + 1;
+ end loop;
+
+ return (Capacity => Container.Capacity,
+ K => Part,
+ Tree => Container.Tree,
+ Length => L,
+ First => Position.Node,
+ Last => Last (Container).Node);
+ end Right;
+
+ ---------------
+ -- Right_Son --
+ ---------------
+
+ function Right_Son (Node : Node_Type) return Count_Type is
+ begin
+ return Node.Right;
+ end Right_Son;
+
+ ---------------
+ -- Set_Color --
+ ---------------
+
+ procedure Set_Color
+ (Node : in out Node_Type;
+ Color : Red_Black_Trees.Color_Type)
+ is
+ begin
+ Node.Color := Color;
+ end Set_Color;
+
+ --------------
+ -- Set_Left --
+ --------------
+
+ procedure Set_Left (Node : in out Node_Type; Left : Count_Type) is
+ begin
+ Node.Left := Left;
+ end Set_Left;
+
+ ----------------
+ -- Set_Parent --
+ ----------------
+
+ procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type) is
+ begin
+ Node.Parent := Parent;
+ end Set_Parent;
+
+ ---------------
+ -- Set_Right --
+ ---------------
+
+ procedure Set_Right (Node : in out Node_Type; Right : Count_Type) is
+ begin
+ Node.Right := Right;
+ end Set_Right;
+
+ ------------------
+ -- Strict_Equal --
+ ------------------
+
+ function Strict_Equal (Left, Right : Set) return Boolean is
+ LNode : Count_Type := First (Left).Node;
+ RNode : Count_Type := First (Right).Node;
+ begin
+ if Length (Left) /= Length (Right) then
+ return False;
+ end if;
+
+ while LNode = RNode loop
+ if LNode = 0 then
+ return True;
+ end if;
+
+ if Left.Tree.Nodes (LNode).Element /=
+ Right.Tree.Nodes (RNode).Element then
+ exit;
+ end if;
+
+ LNode := Next_Unchecked (Left, LNode);
+ RNode := Next_Unchecked (Right, RNode);
+ end loop;
+ return False;
+
+ end Strict_Equal;
+
+ --------------------------
+ -- Symmetric_Difference --
+ --------------------------
+
+ procedure Symmetric_Difference (Target : in out Set; Source : Set) is
+ begin
+ if Target.K /= Plain then
+ raise Constraint_Error
+ with "Can't modify part of container";
+ end if;
+
+ if Source.K = Plain then
+ Set_Ops.Set_Symmetric_Difference (Target.Tree.all, Source.Tree.all);
+ return;
+ end if;
+
+ if Source.Length = 0 then
+ return;
+ end if;
+
+ declare
+
+ Tgt : Count_Type := Target.First;
+ Src : Count_Type := Source.First;
+
+ SLast : constant Count_Type := Next (Source.Tree.all, Source.Last);
+
+ New_Tgt_Node : Count_Type;
+
+ begin
+ if Target.Tree.Busy > 0 then
+ raise Program_Error with
+ "attempt to tamper with cursors (container is busy)";
+ end if;
+
+ if Target'Address = Source'Address then
+ Clear (Target);
+ return;
+ end if;
+
+ loop
+ if Tgt = 0 then
+ while Src /= SLast loop
+ Insert_With_Hint
+ (Dst_Set => Target.Tree.all,
+ Dst_Hint => 0,
+ Src_Node => Source.Tree.Nodes (Src),
+ Dst_Node => New_Tgt_Node);
+
+ Src := Next (Source.Tree.all, Src);
+ end loop;
+
+ return;
+ end if;
+
+ if Src = SLast then
+ return;
+ end if;
+
+ if Target.Tree.Nodes (Tgt).Element <
+ Source.Tree.Nodes (Src).Element then
+ Tgt := Next (Target.Tree.all, Tgt);
+
+ elsif Source.Tree.Nodes (Src).Element <
+ Target.Tree.Nodes (Tgt).Element then
+ Insert_With_Hint
+ (Dst_Set => Target.Tree.all,
+ Dst_Hint => Tgt,
+ Src_Node => Source.Tree.Nodes (Src),
+ Dst_Node => New_Tgt_Node);
+
+ Src := Next (Source.Tree.all, Src);
+
+ else
+ declare
+ X : constant Count_Type := Tgt;
+ begin
+ Tgt := Next (Target.Tree.all, Tgt);
+ Delete_Node_Sans_Free (Target.Tree.all, X);
+ Formal_Ordered_Sets.Free (Target.Tree.all, X);
+ end;
+
+ Src := Next (Source.Tree.all, Src);
+ end if;
+ end loop;
+ end;
+ end Symmetric_Difference;
+
+ function Symmetric_Difference (Left, Right : Set) return Set is
+ begin
+ if Left'Address = Right'Address then
+ return Empty_Set;
+ end if;
+
+ if Length (Right) = 0 then
+ return Left.Copy;
+ end if;
+
+ if Length (Left) = 0 then
+ return Right.Copy;
+ end if;
+
+ return S : Set (Length (Left) + Length (Right)) do
+ if Left.K = Plain and Right.K = Plain then
+ Assign (S.Tree.all,
+ Set_Ops.Set_Symmetric_Difference (Left.Tree.all,
+ Right.Tree.all));
+ return;
+ end if;
+
+ declare
+
+ Tree : Tree_Types.Tree_Type renames S.Tree.all;
+
+ L_Node : Count_Type := First (Left).Node;
+ R_Node : Count_Type := First (Right).Node;
+
+ L_Last : constant Count_Type :=
+ Next (Left.Tree.all, Last (Left).Node);
+ R_Last : constant Count_Type :=
+ Next (Right.Tree.all, Last (Right).Node);
+
+ Dst_Node : Count_Type;
+
+ begin
+ loop
+ if L_Node = L_Last then
+ while R_Node /= R_Last loop
+ Insert_With_Hint
+ (Dst_Set => Tree,
+ Dst_Hint => 0,
+ Src_Node => Right.Tree.Nodes (R_Node),
+ Dst_Node => Dst_Node);
+
+ R_Node := Next (Right.Tree.all, R_Node);
+ end loop;
+
+ return;
+ end if;
+
+ if R_Node = R_Last then
+ while L_Node /= L_Last loop
+ Insert_With_Hint
+ (Dst_Set => Tree,
+ Dst_Hint => 0,
+ Src_Node => Left.Tree.Nodes (L_Node),
+ Dst_Node => Dst_Node);
+
+ L_Node := Next (Left.Tree.all, L_Node);
+ end loop;
+
+ return;
+ end if;
+
+ if Left.Tree.Nodes (L_Node).Element <
+ Right.Tree.Nodes (R_Node).Element then
+ Insert_With_Hint
+ (Dst_Set => Tree,
+ Dst_Hint => 0,
+ Src_Node => Left.Tree.Nodes (L_Node),
+ Dst_Node => Dst_Node);
+
+ L_Node := Next (Left.Tree.all, L_Node);
+
+ elsif Right.Tree.Nodes (R_Node).Element <
+ Left.Tree.Nodes (L_Node).Element then
+ Insert_With_Hint
+ (Dst_Set => Tree,
+ Dst_Hint => 0,
+ Src_Node => Right.Tree.Nodes (R_Node),
+ Dst_Node => Dst_Node);
+
+ R_Node := Next (Right.Tree.all, R_Node);
+
+ else
+ L_Node := Next (Left.Tree.all, L_Node);
+ R_Node := Next (Right.Tree.all, R_Node);
+ end if;
+ end loop;
+ end;
+
+ end return;
+ end Symmetric_Difference;
+
+ ------------
+ -- To_Set --
+ ------------
+
+ function To_Set (New_Item : Element_Type) return Set is
+ Node : Count_Type;
+ Inserted : Boolean;
+
+ begin
+ return S : Set (Capacity => 1) do
+ Insert_Sans_Hint (S.Tree.all, New_Item, Node, Inserted);
+ pragma Assert (Inserted);
+ end return;
+ end To_Set;
+
+ -----------
+ -- Union --
+ -----------
+
+ procedure Union (Target : in out Set; Source : Set) is
+ begin
+ if Target.K /= Plain then
+ raise Constraint_Error
+ with "Can't modify part of container";
+ end if;
+
+ if Source.K = Plain then
+ Set_Ops.Set_Union (Target.Tree.all, Source.Tree.all);
+ return;
+ end if;
+
+ if Source.Length = 0 then
+ return;
+ end if;
+
+ declare
+ Hint : Count_Type := 0;
+
+ procedure Process (Node : Count_Type);
+ pragma Inline (Process);
+
+ procedure Iterate is new Iterate_Between (Process);
+
+ -------------
+ -- Process --
+ -------------
+
+ procedure Process (Node : Count_Type) is
+ begin
+ Insert_With_Hint
+ (Dst_Set => Target.Tree.all,
+ Dst_Hint => Hint,
+ Src_Node => Source.Tree.Nodes (Node),
+ Dst_Node => Hint);
+ end Process;
+
+ -- Start of processing for Union
+
+ begin
+ if Target'Address = Source'Address then
+ return;
+ end if;
+
+ if Target.Tree.Busy > 0 then
+ raise Program_Error with
+ "attempt to tamper with cursors (container is busy)";
+ end if;
+
+ Iterate (Source.Tree.all, Source.First, Source.Last);
+ end;
+ end Union;
+
+ function Union (Left, Right : Set) return Set is
+ begin
+ if Left'Address = Right'Address then
+ return Left.Copy;
+ end if;
+
+ if Length (Left) = 0 then
+ return Right.Copy;
+ end if;
+
+ if Length (Right) = 0 then
+ return Left.Copy;
+ end if;
+
+ return S : Set (Length (Left) + Length (Right)) do
+ S.Assign (Source => Left);
+ S.Union (Right);
+ end return;
+ end Union;
+
+ -----------
+ -- Write --
+ -----------
+
+ procedure Write
+ (Stream : not null access Root_Stream_Type'Class;
+ Container : Set)
+ is
+ procedure Write_Element
+ (Stream : not null access Root_Stream_Type'Class;
+ Node : Node_Type);
+ pragma Inline (Write_Element);
+
+ procedure Write_Elements is
+ new Tree_Operations.Generic_Write (Write_Element);
+
+ -------------------
+ -- Write_Element --
+ -------------------
+
+ procedure Write_Element
+ (Stream : not null access Root_Stream_Type'Class;
+ Node : Node_Type)
+ is
+ begin
+ Element_Type'Write (Stream, Node.Element);
+ end Write_Element;
+
+ -- Start of processing for Write
+
+ begin
+ Write_Elements (Stream, Container.Tree.all);
+ end Write;
+
+ procedure Write
+ (Stream : not null access Root_Stream_Type'Class;
+ Item : Cursor)
+ is
+ begin
+ raise Program_Error with "attempt to stream set cursor";
+ end Write;
+
+end Ada.Containers.Formal_Ordered_Sets;