diff options
author | charlet <charlet@138bc75d-0d04-0410-961f-82ee72b054a4> | 2011-08-02 09:17:46 +0000 |
---|---|---|
committer | charlet <charlet@138bc75d-0d04-0410-961f-82ee72b054a4> | 2011-08-02 09:17:46 +0000 |
commit | 992ec8bcb63d0bc997d1d012339cf871c346078f (patch) | |
tree | e10f4754a39287ad20096cfb93f40edf8cf10f77 /gcc/ada/a-cforse.adb | |
parent | 7ef6449a8e66fff3c9c967bbbe121db720e46458 (diff) | |
download | gcc-992ec8bcb63d0bc997d1d012339cf871c346078f.tar.gz |
2011-08-02 Yannick Moy <moy@adacore.com>
* errout.adb, errout.ads (Check_Formal_Restriction): move procedure
from here...
* restrict.adb, restrict.ads (Check_Formal_Restriction): ...to here
* sem_aggr.adb, sem_ch5.adb, sem_util.adb:
Add with/use clauses to make Check_Formal_Restriction visible
2011-08-02 Ed Schonberg <schonberg@adacore.com>
* sem_ch12.adb (Check_Generic_Actuals): handle properly actual
in-parameters when type of the generic formal is private in the generic
spec and non-private in the body.
2011-08-02 Claire Dross <dross@adacore.com>
* a-cfdlli.adb, a-cfdlli.ads, a-cfhase.adb, a-cfhase.ads, a-cfhama.adb,
a-cfhama.ads, a-cforse.adb, a-cforse.ads, a-cforma.adb, a-cforma.ads,
a-cofove.adb, a-cofove.ads: New files implementing formal containers.
* impunit.adb, Makefile.rtl: Take new files into account.
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@177102 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/ada/a-cforse.adb')
-rw-r--r-- | gcc/ada/a-cforse.adb | 2924 |
1 files changed, 2924 insertions, 0 deletions
diff --git a/gcc/ada/a-cforse.adb b/gcc/ada/a-cforse.adb new file mode 100644 index 00000000000..30a0f97a31d --- /dev/null +++ b/gcc/ada/a-cforse.adb @@ -0,0 +1,2924 @@ +------------------------------------------------------------------------------ +-- -- +-- GNAT LIBRARY COMPONENTS -- +-- -- +-- A D A . C O N T A I N E R S . F O R M A L _ O R D E R E D _ S E T S -- +-- -- +-- B o d y -- +-- -- +-- Copyright (C) 2010, Free Software Foundation, Inc. -- +-- -- +-- GNAT is free software; you can redistribute it and/or modify it under -- +-- terms of the GNU General Public License as published by the Free Soft- -- +-- ware Foundation; either version 3, or (at your option) any later ver- -- +-- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- +-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- +-- or FITNESS FOR A PARTICULAR PURPOSE. -- +-- -- +-- As a special exception under Section 7 of GPL version 3, you are granted -- +-- additional permissions described in the GCC Runtime Library Exception, -- +-- version 3.1, as published by the Free Software Foundation. -- +-- -- +-- You should have received a copy of the GNU General Public License and -- +-- a copy of the GCC Runtime Library Exception along with this program; -- +-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- +-- <http://www.gnu.org/licenses/>. -- +------------------------------------------------------------------------------ + +with Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations; +pragma Elaborate_All + (Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations); + +with Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys; +pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys); + +with Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations; +pragma Elaborate_All + (Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations); + +with System; use type System.Address; + +package body Ada.Containers.Formal_Ordered_Sets is + + ------------------------------ + -- Access to Fields of Node -- + ------------------------------ + + -- These subprograms provide functional notation for access to fields + -- of a node, and procedural notation for modifiying these fields. + + function Color (Node : Node_Type) return Red_Black_Trees.Color_Type; + pragma Inline (Color); + + function Left_Son (Node : Node_Type) return Count_Type; + pragma Inline (Left); + + function Parent (Node : Node_Type) return Count_Type; + pragma Inline (Parent); + + function Right_Son (Node : Node_Type) return Count_Type; + pragma Inline (Right); + + procedure Set_Color + (Node : in out Node_Type; + Color : Red_Black_Trees.Color_Type); + pragma Inline (Set_Color); + + procedure Set_Left (Node : in out Node_Type; Left : Count_Type); + pragma Inline (Set_Left); + + procedure Set_Right (Node : in out Node_Type; Right : Count_Type); + pragma Inline (Set_Right); + + procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type); + pragma Inline (Set_Parent); + + ----------------------- + -- Local Subprograms -- + ----------------------- + + generic + with procedure Set_Element (Node : in out Node_Type); + procedure Generic_Allocate + (Tree : in out Tree_Types.Tree_Type'Class; + Node : out Count_Type); + + procedure Assign (Target : in out Tree_Types.Tree_Type; + Source : Tree_Types.Tree_Type); + + procedure Clear (Container : in out Tree_Types.Tree_Type); + + procedure Free (Tree : in out Tree_Types.Tree_Type; X : Count_Type); + + procedure Insert_Sans_Hint + (Container : in out Tree_Types.Tree_Type; + New_Item : Element_Type; + Node : out Count_Type; + Inserted : out Boolean); + + procedure Insert_With_Hint + (Dst_Set : in out Tree_Types.Tree_Type; + Dst_Hint : Count_Type; + Src_Node : Node_Type; + Dst_Node : out Count_Type); + + function Is_Greater_Element_Node + (Left : Element_Type; + Right : Node_Type) return Boolean; + pragma Inline (Is_Greater_Element_Node); + + function Is_Less_Element_Node + (Left : Element_Type; + Right : Node_Type) return Boolean; + pragma Inline (Is_Less_Element_Node); + + function Is_Less_Node_Node (L, R : Node_Type) return Boolean; + pragma Inline (Is_Less_Node_Node); + + generic + with procedure Process (Node : Count_Type) is <>; + procedure Iterate_Between (Tree : Tree_Types.Tree_Type; + From : Count_Type; + To : Count_Type); + + function Next_Unchecked + (Container : Set; + Position : Count_Type) return Count_Type; + + procedure Replace_Element + (Tree : in out Tree_Types.Tree_Type; + Node : Count_Type; + Item : Element_Type); + + -------------------------- + -- Local Instantiations -- + -------------------------- + + package Tree_Operations is + new Red_Black_Trees.Generic_Bounded_Operations + (Tree_Types, + Left => Left_Son, + Right => Right_Son); + + use Tree_Operations; + + package Element_Keys is + new Red_Black_Trees.Generic_Bounded_Keys + (Tree_Operations => Tree_Operations, + Key_Type => Element_Type, + Is_Less_Key_Node => Is_Less_Element_Node, + Is_Greater_Key_Node => Is_Greater_Element_Node); + + package Set_Ops is + new Red_Black_Trees.Generic_Bounded_Set_Operations + (Tree_Operations => Tree_Operations, + Set_Type => Tree_Types.Tree_Type, + Assign => Assign, + Insert_With_Hint => Insert_With_Hint, + Is_Less => Is_Less_Node_Node); + + --------- + -- "=" -- + --------- + + function "=" (Left, Right : Set) return Boolean is + Lst : Count_Type; + Node : Count_Type := First (Left).Node; + ENode : Count_Type; + begin + + if Length (Left) /= Length (Right) then + return False; + end if; + + if Is_Empty (Left) then + return True; + end if; + + Lst := Next (Left.Tree.all, Last (Left).Node); + while Node /= Lst loop + ENode := Find (Right, Left.Tree.Nodes (Node).Element).Node; + if ENode = 0 or else + Left.Tree.Nodes (Node).Element /= Right.Tree.Nodes (ENode).Element + then + return False; + end if; + Node := Next (Left.Tree.all, Node); + end loop; + + return True; + + end "="; + + ------------ + -- Assign -- + ------------ + + procedure Assign (Target : in out Tree_Types.Tree_Type; + Source : Tree_Types.Tree_Type) is + procedure Append_Element (Source_Node : Count_Type); + + procedure Append_Elements is + new Tree_Operations.Generic_Iteration (Append_Element); + + -------------------- + -- Append_Element -- + -------------------- + + procedure Append_Element (Source_Node : Count_Type) is + SN : Node_Type renames Source.Nodes (Source_Node); + + procedure Set_Element (Node : in out Node_Type); + pragma Inline (Set_Element); + + function New_Node return Count_Type; + pragma Inline (New_Node); + + procedure Insert_Post is + new Element_Keys.Generic_Insert_Post (New_Node); + + procedure Unconditional_Insert_Sans_Hint is + new Element_Keys.Generic_Unconditional_Insert (Insert_Post); + + procedure Unconditional_Insert_Avec_Hint is + new Element_Keys.Generic_Unconditional_Insert_With_Hint + (Insert_Post, + Unconditional_Insert_Sans_Hint); + + procedure Allocate is + new Generic_Allocate (Set_Element); + + -------------- + -- New_Node -- + -------------- + + function New_Node return Count_Type is + Result : Count_Type; + + begin + Allocate (Target, Result); + return Result; + end New_Node; + + ----------------- + -- Set_Element -- + ----------------- + + procedure Set_Element (Node : in out Node_Type) is + begin + Node.Element := SN.Element; + end Set_Element; + + Target_Node : Count_Type; + + -- Start of processing for Append_Element + + begin + Unconditional_Insert_Avec_Hint + (Tree => Target, + Hint => 0, + Key => SN.Element, + Node => Target_Node); + end Append_Element; + + -- Start of processing for Assign + + begin + if Target'Address = Source'Address then + return; + end if; + + if Target.Capacity < Source.Length then + raise Constraint_Error + with "Target capacity is less than Source length"; + end if; + + Tree_Operations.Clear_Tree (Target); + Append_Elements (Source); + end Assign; + + procedure Assign (Target : in out Set; Source : Set) is + X : Count_Type; + begin + if Target.K /= Plain then + raise Constraint_Error + with "Can't modify part of container"; + end if; + + if Target'Address = Source'Address then + return; + end if; + + if Target.Capacity < Length (Source) then + raise Storage_Error with "not enough capacity"; -- SE or CE? ??? + end if; + + if Source.K = Plain then + Assign (Target => Target.Tree.all, Source => Source.Tree.all); + else + declare + procedure Append_Element (Source_Node : Count_Type); + + procedure Append_Element (Source_Node : Count_Type) is + SN : Node_Type renames Source.Tree.Nodes (Source_Node); + + procedure Set_Element (Node : in out Node_Type); + pragma Inline (Set_Element); + + function New_Node return Count_Type; + pragma Inline (New_Node); + + procedure Insert_Post is + new Element_Keys.Generic_Insert_Post (New_Node); + + procedure Unconditional_Insert_Sans_Hint is + new Element_Keys.Generic_Unconditional_Insert (Insert_Post); + + procedure Unconditional_Insert_Avec_Hint is + new Element_Keys.Generic_Unconditional_Insert_With_Hint + (Insert_Post, + Unconditional_Insert_Sans_Hint); + + procedure Allocate is + new Generic_Allocate (Set_Element); + + -------------- + -- New_Node -- + -------------- + + function New_Node return Count_Type is + Result : Count_Type; + + begin + Allocate (Target.Tree.all, Result); + return Result; + end New_Node; + + ----------------- + -- Set_Element -- + ----------------- + + procedure Set_Element (Node : in out Node_Type) is + begin + Node.Element := SN.Element; + end Set_Element; + + Target_Node : Count_Type; + + -- Start of processing for Append_Element + + begin + Unconditional_Insert_Avec_Hint + (Tree => Target.Tree.all, + Hint => 0, + Key => SN.Element, + Node => Target_Node); + end Append_Element; + begin + Tree_Operations.Clear_Tree (Target.Tree.all); + X := Source.First; + while X /= Next (Source.Tree.all, Source.Last) loop + Append_Element (X); + X := Next (Source.Tree.all, X); + end loop; + end; + end if; + end Assign; + + ------------- + -- Ceiling -- + ------------- + + function Ceiling (Container : Set; Item : Element_Type) return Cursor is + begin + + if Container.K = Part then + if Container.Length = 0 then + return No_Element; + end if; + + if Item < Container.Tree.Nodes (Container.First).Element then + return (Node => Container.First); + end if; + + if Container.Tree.Nodes (Container.Last).Element < Item then + return No_Element; + end if; + end if; + + declare + Node : constant Count_Type := + Element_Keys.Ceiling (Container.Tree.all, Item); + + begin + if Node = 0 then + return No_Element; + end if; + + return (Node => Node); + end; + end Ceiling; + + ----------- + -- Clear -- + ----------- + + procedure Clear (Container : in out Tree_Types.Tree_Type) is + begin + Tree_Operations.Clear_Tree (Container); + end Clear; + + procedure Clear (Container : in out Set) is + begin + if Container.K /= Plain then + raise Constraint_Error + with "Can't modify part of container"; + end if; + + Clear (Container.Tree.all); + end Clear; + + ----------- + -- Color -- + ----------- + + function Color (Node : Node_Type) return Red_Black_Trees.Color_Type is + begin + return Node.Color; + end Color; + + -------------- + -- Contains -- + -------------- + + function Contains + (Container : Set; + Item : Element_Type) return Boolean + is + begin + return Find (Container, Item) /= No_Element; + end Contains; + + ---------- + -- Copy -- + ---------- + + function Copy (Source : Set; Capacity : Count_Type := 0) return Set is + Node : Count_Type := 1; + N : Count_Type; + Cu : Cursor; + Target : Set (Count_Type'Max (Source.Capacity, Capacity)); + begin + if Length (Source) > 0 then + Target.Tree.Length := Source.Tree.Length; + Target.Tree.Root := Source.Tree.Root; + Target.Tree.First := Source.Tree.First; + Target.Tree.Last := Source.Tree.Last; + Target.Tree.Free := Source.Tree.Free; + + while Node <= Source.Capacity loop + Target.Tree.Nodes (Node).Element := + Source.Tree.Nodes (Node).Element; + Target.Tree.Nodes (Node).Parent := + Source.Tree.Nodes (Node).Parent; + Target.Tree.Nodes (Node).Left := + Source.Tree.Nodes (Node).Left; + Target.Tree.Nodes (Node).Right := + Source.Tree.Nodes (Node).Right; + Target.Tree.Nodes (Node).Color := + Source.Tree.Nodes (Node).Color; + Target.Tree.Nodes (Node).Has_Element := + Source.Tree.Nodes (Node).Has_Element; + Node := Node + 1; + end loop; + + while Node <= Target.Capacity loop + N := Node; + Formal_Ordered_Sets.Free (Tree => Target.Tree.all, X => N); + Node := Node + 1; + end loop; + + if Source.K = Part then + Node := Target.Tree.First; + while Node /= Source.First loop + Cu := (Node => Node); + Node := Next (Target.Tree.all, Node); + Delete (Target, Cu); + end loop; + + Node := Next (Target.Tree.all, Source.Last); + + while Node /= 0 loop + Cu := (Node => Node); + Node := Next (Target.Tree.all, Node); + Delete (Target, Cu); + end loop; + end if; + Node := 1; + + end if; + return Target; + end Copy; + + ------------ + -- Delete -- + ------------ + + procedure Delete (Container : in out Set; Position : in out Cursor) is + begin + if Container.K /= Plain then + raise Constraint_Error + with "Can't modify part of container"; + end if; + + if not Has_Element (Container, Position) then + raise Constraint_Error with "Position cursor has no element"; + end if; + + pragma Assert (Vet (Container.Tree.all, Position.Node), + "bad cursor in Delete"); + + Tree_Operations.Delete_Node_Sans_Free (Container.Tree.all, + Position.Node); + Formal_Ordered_Sets.Free (Container.Tree.all, Position.Node); + Position := No_Element; + end Delete; + + procedure Delete (Container : in out Set; Item : Element_Type) is + X : constant Count_Type := Element_Keys.Find (Container.Tree.all, Item); + + begin + if Container.K /= Plain then + raise Constraint_Error + with "Can't modify part of container"; + end if; + + if X = 0 then + raise Constraint_Error with "attempt to delete element not in set"; + end if; + + Tree_Operations.Delete_Node_Sans_Free (Container.Tree.all, X); + Formal_Ordered_Sets.Free (Container.Tree.all, X); + end Delete; + + ------------------ + -- Delete_First -- + ------------------ + + procedure Delete_First (Container : in out Set) is + Tree : Tree_Types.Tree_Type renames Container.Tree.all; + X : constant Count_Type := Tree.First; + + begin + if Container.K /= Plain then + raise Constraint_Error + with "Can't modify part of container"; + end if; + + if X /= 0 then + Tree_Operations.Delete_Node_Sans_Free (Tree, X); + Formal_Ordered_Sets.Free (Tree, X); + end if; + end Delete_First; + + ----------------- + -- Delete_Last -- + ----------------- + + procedure Delete_Last (Container : in out Set) is + Tree : Tree_Types.Tree_Type renames Container.Tree.all; + X : constant Count_Type := Tree.Last; + + begin + if Container.K /= Plain then + raise Constraint_Error + with "Can't modify part of container"; + end if; + + if X /= 0 then + Tree_Operations.Delete_Node_Sans_Free (Tree, X); + Formal_Ordered_Sets.Free (Tree, X); + end if; + end Delete_Last; + + ---------------- + -- Difference -- + ---------------- + + procedure Difference (Target : in out Set; Source : Set) is + begin + if Target.K /= Plain then + raise Constraint_Error + with "Can't modify part of container"; + end if; + + if Source.K = Plain then + Set_Ops.Set_Difference (Target.Tree.all, Source.Tree.all); + else + declare + Tgt : Count_Type := Target.Tree.First; + Src : Count_Type := Source.First; + begin + if Target'Address = Source'Address then + if Target.Tree.Busy > 0 then + raise Program_Error with + "attempt to tamper with cursors (container is busy)"; + end if; + + Clear (Target.Tree.all); + return; + end if; + + if Source.Length = 0 then + return; + end if; + + if Target.Tree.Busy > 0 then + raise Program_Error with + "attempt to tamper with cursors (container is busy)"; + end if; + + loop + if Tgt = 0 then + return; + end if; + + if Src = Next (Source.Tree.all, Source.Last) then + return; + end if; + + if Target.Tree.Nodes (Tgt).Element < + Source.Tree.Nodes (Src).Element then + Tgt := Next (Target.Tree.all, Tgt); + + elsif Source.Tree.Nodes (Src).Element < + Target.Tree.Nodes (Tgt).Element then + Src := Next (Source.Tree.all, Src); + + else + declare + X : constant Count_Type := Tgt; + begin + Tgt := Next (Target.Tree.all, Tgt); + Delete_Node_Sans_Free (Target.Tree.all, X); + Formal_Ordered_Sets.Free (Target.Tree.all, X); + end; + + Src := Next (Source.Tree.all, Src); + end if; + end loop; + end; + end if; + end Difference; + + function Difference (Left, Right : Set) return Set is + begin + if Left'Address = Right'Address then + return Empty_Set; + end if; + + if Length (Left) = 0 then + return Empty_Set; + end if; + + if Length (Right) = 0 then + return Left.Copy; + end if; + + return S : Set (Length (Left)) do + if Left.K = Plain and Right.K = Plain then + Assign (S.Tree.all, + Set_Ops.Set_Difference (Left.Tree.all, Right.Tree.all)); + else + declare + Tree : Tree_Types.Tree_Type renames S.Tree.all; + + L_Node : Count_Type := First (Left).Node; + R_Node : Count_Type := First (Right).Node; + + L_Last : constant Count_Type := Next (Left.Tree.all, + Last (Left).Node); + R_Last : constant Count_Type := Next (Right.Tree.all, + Last (Right).Node); + + Dst_Node : Count_Type; + + begin + loop + if L_Node = L_Last then + return; + end if; + + if R_Node = R_Last then + while L_Node /= L_Last loop + Insert_With_Hint + (Dst_Set => Tree, + Dst_Hint => 0, + Src_Node => Left.Tree.Nodes (L_Node), + Dst_Node => Dst_Node); + + L_Node := Next (Left.Tree.all, L_Node); + + end loop; + + return; + end if; + + if Left.Tree.Nodes (L_Node).Element < + Right.Tree.Nodes (R_Node).Element then + Insert_With_Hint + (Dst_Set => Tree, + Dst_Hint => 0, + Src_Node => Left.Tree.Nodes (L_Node), + Dst_Node => Dst_Node); + + L_Node := Next (Left.Tree.all, L_Node); + + elsif Right.Tree.Nodes (R_Node).Element < + Left.Tree.Nodes (L_Node).Element then + R_Node := Next (Right.Tree.all, R_Node); + + else + L_Node := Next (Left.Tree.all, L_Node); + R_Node := Next (Right.Tree.all, R_Node); + end if; + end loop; + end; + end if; + end return; + end Difference; + + ------------- + -- Element -- + ------------- + + function Element (Container : Set; Position : Cursor) return Element_Type is + begin + if not Has_Element (Container, Position) then + raise Constraint_Error with "Position cursor has no element"; + end if; + + pragma Assert (Vet (Container.Tree.all, Position.Node), + "bad cursor in Element"); + + declare + N : Tree_Types.Nodes_Type renames Container.Tree.Nodes; + begin + return N (Position.Node).Element; + end; + end Element; + + ------------------------- + -- Equivalent_Elements -- + ------------------------- + + function Equivalent_Elements (Left, Right : Element_Type) return Boolean is + begin + if Left < Right + or else Right < Left + then + return False; + else + return True; + end if; + end Equivalent_Elements; + + --------------------- + -- Equivalent_Sets -- + --------------------- + + function Equivalent_Sets (Left, Right : Set) return Boolean is + function Is_Equivalent_Node_Node + (L, R : Node_Type) return Boolean; + pragma Inline (Is_Equivalent_Node_Node); + + function Is_Equivalent is + new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node); + + ----------------------------- + -- Is_Equivalent_Node_Node -- + ----------------------------- + + function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean is + begin + if L.Element < R.Element then + return False; + elsif R.Element < L.Element then + return False; + else + return True; + end if; + end Is_Equivalent_Node_Node; + + -- Start of processing for Equivalent_Sets + + begin + if Left.K = Plain and Right.K = Plain then + return Is_Equivalent (Left.Tree.all, Right.Tree.all); + end if; + + if Left'Address = Right'Address then + return True; + end if; + + if Length (Left) /= Length (Right) then + return False; + end if; + + if Length (Left) = 0 then + return True; + end if; + + declare + L_Node : Count_Type; + R_Node : Count_Type; + + L_Last : constant Count_Type := Next (Left.Tree.all, + Last (Left).Node); + begin + + L_Node := First (Left).Node; + R_Node := First (Right).Node; + while L_Node /= L_Last loop + if not Is_Equivalent_Node_Node (Left.Tree.Nodes (L_Node), + Right.Tree.Nodes (R_Node)) then + return False; + end if; + + L_Node := Next (Left.Tree.all, L_Node); + R_Node := Next (Right.Tree.all, R_Node); + end loop; + + return True; + end; + end Equivalent_Sets; + + ------------- + -- Exclude -- + ------------- + + procedure Exclude (Container : in out Set; Item : Element_Type) is + X : constant Count_Type := Element_Keys.Find (Container.Tree.all, Item); + + begin + if Container.K /= Plain then + raise Constraint_Error + with "Can't modify part of container"; + end if; + + if X /= 0 then + Tree_Operations.Delete_Node_Sans_Free (Container.Tree.all, X); + Formal_Ordered_Sets.Free (Container.Tree.all, X); + end if; + end Exclude; + + ---------- + -- Find -- + ---------- + + function Find (Container : Set; Item : Element_Type) return Cursor is + begin + + if Container.K = Part then + if Container.Length = 0 then + return No_Element; + end if; + + if Item < Container.Tree.Nodes (Container.First).Element or + Container.Tree.Nodes (Container.Last).Element < Item then + return No_Element; + end if; + end if; + + declare + Node : constant Count_Type := + Element_Keys.Find (Container.Tree.all, Item); + + begin + if Node = 0 then + return No_Element; + end if; + + return (Node => Node); + end; + end Find; + + ----------- + -- First -- + ----------- + + function First (Container : Set) return Cursor is + begin + if Length (Container) = 0 then + return No_Element; + end if; + + if Container.K = Plain then + return (Node => Container.Tree.First); + else + return (Node => Container.First); + end if; + + end First; + + ------------------- + -- First_Element -- + ------------------- + + function First_Element (Container : Set) return Element_Type is + Fst : constant Count_Type := First (Container).Node; + begin + if Fst = 0 then + raise Constraint_Error with "set is empty"; + end if; + + declare + N : Tree_Types.Nodes_Type renames Container.Tree.Nodes; + begin + return N (Fst).Element; + end; + end First_Element; + + ----------- + -- Floor -- + ----------- + + function Floor (Container : Set; Item : Element_Type) return Cursor is + begin + + if Container.K = Part then + if Container.Length = 0 then + return No_Element; + end if; + + if Item < Container.Tree.Nodes (Container.First).Element then + return No_Element; + end if; + + if Container.Tree.Nodes (Container.Last).Element < Item then + return (Node => Container.Last); + end if; + end if; + + declare + Node : constant Count_Type := + Element_Keys.Floor (Container.Tree.all, Item); + + begin + if Node = 0 then + return No_Element; + end if; + + return (Node => Node); + end; + end Floor; + + ---------- + -- Free -- + ---------- + + procedure Free + (Tree : in out Tree_Types.Tree_Type; + X : Count_Type) + is + begin + Tree.Nodes (X).Has_Element := False; + Tree_Operations.Free (Tree, X); + end Free; + + ---------------------- + -- Generic_Allocate -- + ---------------------- + + procedure Generic_Allocate + (Tree : in out Tree_Types.Tree_Type'Class; + Node : out Count_Type) + is + + procedure Allocate is + new Tree_Operations.Generic_Allocate (Set_Element); + + begin + Allocate (Tree, Node); + Tree.Nodes (Node).Has_Element := True; + end Generic_Allocate; + + ------------------ + -- Generic_Keys -- + ------------------ + + package body Generic_Keys is + + ----------------------- + -- Local Subprograms -- + ----------------------- + + function Is_Greater_Key_Node + (Left : Key_Type; + Right : Node_Type) return Boolean; + pragma Inline (Is_Greater_Key_Node); + + function Is_Less_Key_Node + (Left : Key_Type; + Right : Node_Type) return Boolean; + pragma Inline (Is_Less_Key_Node); + + -------------------------- + -- Local Instantiations -- + -------------------------- + + package Key_Keys is + new Red_Black_Trees.Generic_Bounded_Keys + (Tree_Operations => Tree_Operations, + Key_Type => Key_Type, + Is_Less_Key_Node => Is_Less_Key_Node, + Is_Greater_Key_Node => Is_Greater_Key_Node); + + ------------- + -- Ceiling -- + ------------- + + function Ceiling (Container : Set; Key : Key_Type) return Cursor is + begin + + if Container.K = Part then + if Container.Length = 0 then + return No_Element; + end if; + + if Key < Generic_Keys.Key + (Container.Tree.Nodes (Container.First).Element) then + return (Node => Container.First); + end if; + + if Generic_Keys.Key + (Container.Tree.Nodes (Container.Last).Element) < Key then + return No_Element; + end if; + end if; + + declare + Node : constant Count_Type := + Key_Keys.Ceiling (Container.Tree.all, Key); + + begin + if Node = 0 then + return No_Element; + end if; + + return (Node => Node); + end; + end Ceiling; + + -------------- + -- Contains -- + -------------- + + function Contains (Container : Set; Key : Key_Type) return Boolean is + begin + return Find (Container, Key) /= No_Element; + end Contains; + + ------------ + -- Delete -- + ------------ + + procedure Delete (Container : in out Set; Key : Key_Type) is + begin + if Container.K /= Plain then + raise Constraint_Error + with "Can't modify part of container"; + end if; + + declare + X : constant Count_Type := Key_Keys.Find (Container.Tree.all, Key); + + begin + if X = 0 then + raise Constraint_Error with "attempt to delete key not in set"; + end if; + + Delete_Node_Sans_Free (Container.Tree.all, X); + Formal_Ordered_Sets.Free (Container.Tree.all, X); + end; + end Delete; + + ------------- + -- Element -- + ------------- + + function Element (Container : Set; Key : Key_Type) return Element_Type is + begin + + if Container.K = Part then + if Container.Length = 0 or else + (Key < Generic_Keys.Key + (Container.Tree.Nodes (Container.First).Element) or + Generic_Keys.Key + (Container.Tree.Nodes (Container.Last).Element) < Key) then + raise Constraint_Error with "key not in set"; + end if; + end if; + + declare + Node : constant Count_Type := + Key_Keys.Find (Container.Tree.all, Key); + + begin + if Node = 0 then + raise Constraint_Error with "key not in set"; + end if; + + declare + N : Tree_Types.Nodes_Type renames Container.Tree.Nodes; + begin + return N (Node).Element; + end; + end; + end Element; + + --------------------- + -- Equivalent_Keys -- + --------------------- + + function Equivalent_Keys (Left, Right : Key_Type) return Boolean is + begin + if Left < Right + or else Right < Left + then + return False; + else + return True; + end if; + end Equivalent_Keys; + + ------------- + -- Exclude -- + ------------- + + procedure Exclude (Container : in out Set; Key : Key_Type) is + begin + if Container.K /= Plain then + raise Constraint_Error + with "Can't modify part of container"; + end if; + + declare + + X : constant Count_Type := Key_Keys.Find (Container.Tree.all, Key); + + begin + if X /= 0 then + Delete_Node_Sans_Free (Container.Tree.all, X); + Formal_Ordered_Sets.Free (Container.Tree.all, X); + end if; + end; + end Exclude; + + ---------- + -- Find -- + ---------- + + function Find (Container : Set; Key : Key_Type) return Cursor is + begin + + if Container.K = Part then + if Container.Length = 0 or else + (Key < Generic_Keys.Key + (Container.Tree.Nodes (Container.First).Element) or + Generic_Keys.Key + (Container.Tree.Nodes (Container.Last).Element) < Key) then + return No_Element; + end if; + end if; + + declare + + Node : constant Count_Type := Key_Keys.Find (Container.Tree.all, + Key); + + begin + if Node = 0 then + return No_Element; + end if; + + return (Node => Node); + end; + end Find; + + ----------- + -- Floor -- + ----------- + + function Floor (Container : Set; Key : Key_Type) return Cursor is + begin + if Container.K = Part then + if Container.Length = 0 or else + Key < Generic_Keys.Key + (Container.Tree.Nodes (Container.First).Element) then + return No_Element; + end if; + + if Generic_Keys.Key + (Container.Tree.Nodes (Container.Last).Element) < Key then + return (Node => Container.Last); + end if; + end if; + + declare + Node : constant Count_Type := + Key_Keys.Floor (Container.Tree.all, Key); + + begin + if Node = 0 then + return No_Element; + end if; + + return (Node => Node); + end; + end Floor; + + ------------------------- + -- Is_Greater_Key_Node -- + ------------------------- + + function Is_Greater_Key_Node + (Left : Key_Type; + Right : Node_Type) return Boolean + is + begin + return Key (Right.Element) < Left; + end Is_Greater_Key_Node; + + ---------------------- + -- Is_Less_Key_Node -- + ---------------------- + + function Is_Less_Key_Node + (Left : Key_Type; + Right : Node_Type) return Boolean + is + begin + return Left < Key (Right.Element); + end Is_Less_Key_Node; + + --------- + -- Key -- + --------- + + function Key (Container : Set; Position : Cursor) return Key_Type is + begin + if not Has_Element (Container, Position) then + raise Constraint_Error with + "Position cursor has no element"; + end if; + + pragma Assert (Vet (Container.Tree.all, Position.Node), + "bad cursor in Key"); + + declare + N : Tree_Types.Nodes_Type renames Container.Tree.Nodes; + begin + return Key (N (Position.Node).Element); + end; + end Key; + + ------------- + -- Replace -- + ------------- + + procedure Replace + (Container : in out Set; + Key : Key_Type; + New_Item : Element_Type) + is + Node : constant Count_Type := Key_Keys.Find (Container.Tree.all, Key); + + begin + if Container.K /= Plain then + raise Constraint_Error + with "Can't modify part of container"; + end if; + + if not Has_Element (Container, (Node => Node)) then + raise Constraint_Error with + "attempt to replace key not in set"; + end if; + + Replace_Element (Container.Tree.all, Node, New_Item); + end Replace; + + ----------------------------------- + -- Update_Element_Preserving_Key -- + ----------------------------------- + + procedure Update_Element_Preserving_Key + (Container : in out Set; + Position : Cursor; + Process : not null access procedure (Element : in out Element_Type)) + is + Tree : Tree_Types.Tree_Type renames Container.Tree.all; + + begin + if Container.K /= Plain then + raise Constraint_Error + with "Can't modify part of container"; + end if; + + if not Has_Element (Container, Position) then + raise Constraint_Error with + "Position cursor has no element"; + end if; + + pragma Assert (Vet (Container.Tree.all, Position.Node), + "bad cursor in Update_Element_Preserving_Key"); + + declare + N : Tree_Types.Nodes_Type renames Container.Tree.Nodes; + + E : Element_Type renames N (Position.Node).Element; + K : constant Key_Type := Key (E); + + B : Natural renames Tree.Busy; + L : Natural renames Tree.Lock; + + begin + B := B + 1; + L := L + 1; + + begin + Process (E); + exception + when others => + L := L - 1; + B := B - 1; + raise; + end; + + L := L - 1; + B := B - 1; + + if Equivalent_Keys (K, Key (E)) then + return; + end if; + end; + + declare + X : constant Count_Type := Position.Node; + begin + Tree_Operations.Delete_Node_Sans_Free (Tree, X); + Formal_Ordered_Sets.Free (Tree, X); + end; + + raise Program_Error with "key was modified"; + end Update_Element_Preserving_Key; + + end Generic_Keys; + + ----------------- + -- Has_Element -- + ----------------- + + function Has_Element (Container : Set; Position : Cursor) return Boolean is + begin + if Position.Node = 0 then + return False; + end if; + + if not Container.Tree.Nodes (Position.Node).Has_Element then + return False; + end if; + + if Container.K = Plain then + return True; + end if; + + declare + Elt : constant Element_Type := + Container.Tree.Nodes (Position.Node).Element; + begin + + if Elt < Container.Tree.Nodes (Container.First).Element or + Container.Tree.Nodes (Container.Last).Element < Elt then + return False; + end if; + + return True; + end; + end Has_Element; + + ------------- + -- Include -- + ------------- + + procedure Include (Container : in out Set; New_Item : Element_Type) is + Position : Cursor; + Inserted : Boolean; + + begin + Insert (Container, New_Item, Position, Inserted); + + if not Inserted then + if Container.Tree.Lock > 0 then + raise Program_Error with + "attempt to tamper with cursors (set is locked)"; + end if; + + declare + N : Tree_Types.Nodes_Type renames Container.Tree.Nodes; + begin + N (Position.Node).Element := New_Item; + end; + end if; + end Include; + + ------------ + -- Insert -- + ------------ + + procedure Insert + (Container : in out Set; + New_Item : Element_Type; + Position : out Cursor; + Inserted : out Boolean) + is + begin + if Container.K /= Plain then + raise Constraint_Error + with "Can't modify part of container"; + end if; + + Insert_Sans_Hint + (Container.Tree.all, + New_Item, + Position.Node, + Inserted); + + end Insert; + + procedure Insert + (Container : in out Set; + New_Item : Element_Type) + is + Position : Cursor; + Inserted : Boolean; + + begin + Insert (Container, New_Item, Position, Inserted); + + if not Inserted then + raise Constraint_Error with + "attempt to insert element already in set"; + end if; + end Insert; + + ---------------------- + -- Insert_Sans_Hint -- + ---------------------- + + procedure Insert_Sans_Hint + (Container : in out Tree_Types.Tree_Type; + New_Item : Element_Type; + Node : out Count_Type; + Inserted : out Boolean) + is + + procedure Set_Element (Node : in out Node_Type); + + function New_Node return Count_Type; + pragma Inline (New_Node); + + procedure Insert_Post is + new Element_Keys.Generic_Insert_Post (New_Node); + + procedure Conditional_Insert_Sans_Hint is + new Element_Keys.Generic_Conditional_Insert (Insert_Post); + + procedure Allocate is + new Generic_Allocate (Set_Element); + + -------------- + -- New_Node -- + -------------- + + function New_Node return Count_Type is + Result : Count_Type; + + begin + Allocate (Container, Result); + return Result; + end New_Node; + + ----------------- + -- Set_Element -- + ----------------- + + procedure Set_Element (Node : in out Node_Type) is + begin + Node.Element := New_Item; + end Set_Element; + + -- Start of processing for Insert_Sans_Hint + + begin + Conditional_Insert_Sans_Hint + (Container, + New_Item, + Node, + Inserted); + end Insert_Sans_Hint; + + ---------------------- + -- Insert_With_Hint -- + ---------------------- + + procedure Insert_With_Hint + (Dst_Set : in out Tree_Types.Tree_Type; + Dst_Hint : Count_Type; + Src_Node : Node_Type; + Dst_Node : out Count_Type) + is + Success : Boolean; + pragma Unreferenced (Success); + + procedure Set_Element (Node : in out Node_Type); + + function New_Node return Count_Type; + pragma Inline (New_Node); + + procedure Insert_Post is + new Element_Keys.Generic_Insert_Post (New_Node); + + procedure Insert_Sans_Hint is + new Element_Keys.Generic_Conditional_Insert (Insert_Post); + + procedure Local_Insert_With_Hint is + new Element_Keys.Generic_Conditional_Insert_With_Hint + (Insert_Post, + Insert_Sans_Hint); + + procedure Allocate is + new Generic_Allocate (Set_Element); + + -------------- + -- New_Node -- + -------------- + + function New_Node return Count_Type is + Result : Count_Type; + + begin + Allocate (Dst_Set, Result); + return Result; + end New_Node; + + ----------------- + -- Set_Element -- + ----------------- + + procedure Set_Element (Node : in out Node_Type) is + begin + Node.Element := Src_Node.Element; + end Set_Element; + + -- Start of processing for Insert_With_Hint + + begin + Local_Insert_With_Hint + (Dst_Set, + Dst_Hint, + Src_Node.Element, + Dst_Node, + Success); + end Insert_With_Hint; + + ------------------ + -- Intersection -- + ------------------ + + procedure Intersection (Target : in out Set; Source : Set) is + begin + if Target.K /= Plain then + raise Constraint_Error + with "Can't modify part of container"; + end if; + + if Source.K = Plain then + Set_Ops.Set_Intersection (Target.Tree.all, Source.Tree.all); + else + declare + Tgt : Count_Type := Target.First; + Src : Count_Type := Source.First; + + S_Last : constant Count_Type := + Next (Source.Tree.all, Source.Last); + + begin + if Target'Address = Source'Address then + return; + end if; + + if Target.Tree.Busy > 0 then + raise Program_Error with + "attempt to tamper with cursors (container is busy)"; + end if; + + if Source.Length = 0 then + Clear (Target); + return; + end if; + + while Tgt /= 0 + and then Src /= S_Last + loop + if Target.Tree.Nodes (Tgt).Element < + Source.Tree.Nodes (Src).Element then + declare + X : constant Count_Type := Tgt; + begin + Tgt := Next (Target.Tree.all, Tgt); + Delete_Node_Sans_Free (Target.Tree.all, X); + Formal_Ordered_Sets.Free (Target.Tree.all, X); + end; + + elsif Source.Tree.Nodes (Src).Element < + Target.Tree.Nodes (Tgt).Element then + Src := Next (Source.Tree.all, Src); + + else + Tgt := Next (Target.Tree.all, Tgt); + Src := Next (Source.Tree.all, Src); + end if; + end loop; + + while Tgt /= 0 loop + declare + X : constant Count_Type := Tgt; + begin + Tgt := Next (Target.Tree.all, Tgt); + Delete_Node_Sans_Free (Target.Tree.all, X); + Formal_Ordered_Sets.Free (Target.Tree.all, X); + end; + end loop; + end; + end if; + end Intersection; + + function Intersection (Left, Right : Set) return Set is + begin + if Left'Address = Right'Address then + return Left.Copy; + end if; + + return S : Set (Count_Type'Min (Length (Left), Length (Right))) do + if Left.K = Plain and Right.K = Plain then + Assign (S.Tree.all, Set_Ops.Set_Intersection + (Left.Tree.all, Right.Tree.all)); + return; + end if; + + if Length (Left) = 0 or Length (Right) = 0 then + return; + end if; + + declare + + L_Node : Count_Type := First (Left).Node; + R_Node : Count_Type := First (Right).Node; + + L_Last : constant Count_Type := + Next (Left.Tree.all, Last (Left).Node); + R_Last : constant Count_Type := + Next (Right.Tree.all, Last (Right).Node); + + Dst_Node : Count_Type; + + begin + loop + + if L_Node = L_Last or R_Node = R_Last then + return; + end if; + + if Left.Tree.Nodes (L_Node).Element < + Right.Tree.Nodes (R_Node).Element then + L_Node := Next (Left.Tree.all, L_Node); + + elsif Right.Tree.Nodes (R_Node).Element < + Left.Tree.Nodes (L_Node).Element then + R_Node := Next (Right.Tree.all, R_Node); + + else + Insert_With_Hint + (Dst_Set => S.Tree.all, + Dst_Hint => 0, + Src_Node => Left.Tree.Nodes (L_Node), + Dst_Node => Dst_Node); + + L_Node := Next (Left.Tree.all, L_Node); + R_Node := Next (Right.Tree.all, R_Node); + end if; + end loop; + end; + end return; + end Intersection; + + -------------- + -- Is_Empty -- + -------------- + + function Is_Empty (Container : Set) return Boolean is + begin + return Length (Container) = 0; + end Is_Empty; + + ----------------------------- + -- Is_Greater_Element_Node -- + ----------------------------- + + function Is_Greater_Element_Node + (Left : Element_Type; + Right : Node_Type) return Boolean + is + begin + -- Compute e > node same as node < e + + return Right.Element < Left; + end Is_Greater_Element_Node; + + -------------------------- + -- Is_Less_Element_Node -- + -------------------------- + + function Is_Less_Element_Node + (Left : Element_Type; + Right : Node_Type) return Boolean + is + begin + return Left < Right.Element; + end Is_Less_Element_Node; + + ----------------------- + -- Is_Less_Node_Node -- + ----------------------- + + function Is_Less_Node_Node (L, R : Node_Type) return Boolean is + begin + return L.Element < R.Element; + end Is_Less_Node_Node; + + --------------- + -- Is_Subset -- + --------------- + + function Is_Subset (Subset : Set; Of_Set : Set) return Boolean is + begin + if Subset.K = Plain and Of_Set.K = Plain then + return Set_Ops.Set_Subset (Subset.Tree.all, + Of_Set => Of_Set.Tree.all); + end if; + + if Subset'Address = Of_Set'Address then + return True; + end if; + + if Length (Subset) > Length (Of_Set) then + return False; + end if; + + declare + Subset_Node : Count_Type := First (Subset).Node; + Set_Node : Count_Type := First (Of_Set).Node; + + Subset_Last : constant Count_Type := + Next (Subset.Tree.all, Last (Subset).Node); + Set_Last : constant Count_Type := + Next (Of_Set.Tree.all, Last (Of_Set).Node); + + begin + loop + if Set_Node = Set_Last then + return Subset_Node = 0; + end if; + + if Subset_Node = Subset_Last then + return True; + end if; + + if Subset.Tree.Nodes (Subset_Node).Element < + Of_Set.Tree.Nodes (Set_Node).Element then + return False; + end if; + + if Of_Set.Tree.Nodes (Set_Node).Element < + Subset.Tree.Nodes (Subset_Node).Element then + Set_Node := Next (Of_Set.Tree.all, Set_Node); + else + Set_Node := Next (Of_Set.Tree.all, Set_Node); + Subset_Node := Next (Subset.Tree.all, Subset_Node); + end if; + end loop; + end; + end Is_Subset; + + ------------- + -- Iterate -- + ------------- + + procedure Iterate + (Container : Set; + Process : + not null access procedure (Container : Set; Position : Cursor)) + is + procedure Process_Node (Node : Count_Type); + pragma Inline (Process_Node); + + procedure Local_Iterate is + new Tree_Operations.Generic_Iteration (Process_Node); + + procedure Local_Iterate_Between is + new Iterate_Between (Process_Node); + + ------------------ + -- Process_Node -- + ------------------ + + procedure Process_Node (Node : Count_Type) is + begin + Process (Container, (Node => Node)); + end Process_Node; + + T : Tree_Types.Tree_Type renames Container.Tree.all; + B : Natural renames T.Busy; + + -- Start of prccessing for Iterate + + begin + B := B + 1; + + begin + if Container.K = Plain then + Local_Iterate (T); + return; + end if; + + if Container.Length = 0 then + return; + end if; + + Local_Iterate_Between (T, Container.First, Container.Last); + + exception + when others => + B := B - 1; + raise; + end; + + B := B - 1; + end Iterate; + + --------------------- + -- Iterate_Between -- + --------------------- + + procedure Iterate_Between (Tree : Tree_Types.Tree_Type; + From : Count_Type; + To : Count_Type) is + + FElt : constant Element_Type := Tree.Nodes (From).Element; + TElt : constant Element_Type := Tree.Nodes (To).Element; + procedure Iterate (P : Count_Type); + + ------------- + -- Iterate -- + ------------- + + procedure Iterate (P : Count_Type) is + X : Count_Type := P; + begin + while X /= 0 loop + if Tree.Nodes (X).Element < FElt then + X := Tree.Nodes (X).Right; + elsif TElt < Tree.Nodes (X).Element then + X := Tree.Nodes (X).Left; + else + Iterate (Tree.Nodes (X).Left); + Process (X); + X := Tree.Nodes (X).Right; + end if; + end loop; + end Iterate; + + begin + Iterate (Tree.Root); + end Iterate_Between; + + ---------- + -- Last -- + ---------- + + function Last (Container : Set) return Cursor is + begin + if Length (Container) = 0 then + return No_Element; + end if; + + if Container.K = Plain then + return (Node => Container.Tree.Last); + end if; + + return (Node => Container.Last); + end Last; + + ------------------ + -- Last_Element -- + ------------------ + + function Last_Element (Container : Set) return Element_Type is + begin + if Last (Container).Node = 0 then + raise Constraint_Error with "set is empty"; + end if; + + declare + N : Tree_Types.Nodes_Type renames Container.Tree.Nodes; + begin + return N (Last (Container).Node).Element; + end; + end Last_Element; + + ---------- + -- Left -- + ---------- + + function Left (Container : Set; Position : Cursor) return Set is + Lst : Count_Type; + Fst : constant Count_Type := First (Container).Node; + L : Count_Type := 0; + C : Count_Type := Fst; + begin + while C /= Position.Node loop + if C = Last (Container).Node or C = 0 then + raise Constraint_Error with + "Position cursor has no element"; + end if; + Lst := C; + C := Next (Container.Tree.all, C); + L := L + 1; + end loop; + if L = 0 then + return (Capacity => Container.Capacity, + K => Part, + Tree => Container.Tree, + Length => 0, + First => 0, + Last => 0); + else + return (Capacity => Container.Capacity, + K => Part, + Tree => Container.Tree, + Length => L, + First => Fst, + Last => Lst); + end if; + end Left; + + -------------- + -- Left_Son -- + -------------- + + function Left_Son (Node : Node_Type) return Count_Type is + begin + return Node.Left; + end Left_Son; + + ------------ + -- Length -- + ------------ + + function Length (Container : Set) return Count_Type is + begin + if Container.K = Plain then + return Container.Tree.Length; + else + return Container.Length; + end if; + end Length; + + ---------- + -- Move -- + ---------- + + procedure Move (Target : in out Set; Source : in out Set) is + S : Tree_Types.Tree_Type renames Source.Tree.all; + N : Tree_Types.Nodes_Type renames S.Nodes; + X : Count_Type; + + begin + if Target.K /= Plain or Source.K /= Plain then + raise Constraint_Error + with "Can't modify part of container"; + end if; + + if Target'Address = Source'Address then + return; + end if; + + if Target.Capacity < Length (Source) then + raise Constraint_Error with -- ??? + "Source length exceeds Target capacity"; + end if; + + if S.Busy > 0 then + raise Program_Error with + "attempt to tamper with cursors of Source (list is busy)"; + end if; + + Clear (Target); + + loop + X := S.First; + exit when X = 0; + + Insert (Target, N (X).Element); -- optimize??? + + Tree_Operations.Delete_Node_Sans_Free (S, X); + Formal_Ordered_Sets.Free (S, X); + end loop; + end Move; + + ---------- + -- Next -- + ---------- + + function Next_Unchecked + (Container : Set; + Position : Count_Type) return Count_Type is + begin + + if Container.K = Part and then + (Container.Length = 0 or Position = Container.Last) then + return 0; + end if; + + return Tree_Operations.Next (Container.Tree.all, Position); + end Next_Unchecked; + + function Next (Container : Set; Position : Cursor) return Cursor is + begin + if Position = No_Element then + return No_Element; + end if; + + if not Has_Element (Container, Position) then + raise Constraint_Error; + end if; + + pragma Assert (Vet (Container.Tree.all, Position.Node), + "bad cursor in Next"); + return (Node => Next_Unchecked (Container, Position.Node)); + end Next; + + procedure Next (Container : Set; Position : in out Cursor) is + begin + Position := Next (Container, Position); + end Next; + + ------------- + -- Overlap -- + ------------- + + function Overlap (Left, Right : Set) return Boolean is + begin + if Left.K = Plain and Right.K = Plain then + return Set_Ops.Set_Overlap (Left.Tree.all, Right.Tree.all); + end if; + + if Length (Left) = 0 or Length (Right) = 0 then + return False; + end if; + + declare + + L_Node : Count_Type := First (Left).Node; + R_Node : Count_Type := First (Right).Node; + + L_Last : constant Count_Type := + Next (Left.Tree.all, Last (Left).Node); + R_Last : constant Count_Type := + Next (Right.Tree.all, Last (Right).Node); + + begin + if Left'Address = Right'Address then + return True; + end if; + + loop + if L_Node = L_Last + or else R_Node = R_Last + then + return False; + end if; + + if Left.Tree.Nodes (L_Node).Element < + Right.Tree.Nodes (R_Node).Element then + L_Node := Next (Left.Tree.all, L_Node); + + elsif Right.Tree.Nodes (R_Node).Element < + Left.Tree.Nodes (L_Node).Element then + R_Node := Next (Right.Tree.all, R_Node); + + else + return True; + end if; + end loop; + end; + end Overlap; + + ------------ + -- Parent -- + ------------ + + function Parent (Node : Node_Type) return Count_Type is + begin + return Node.Parent; + end Parent; + + -------------- + -- Previous -- + -------------- + + function Previous (Container : Set; Position : Cursor) return Cursor is + begin + if Position = No_Element then + return No_Element; + end if; + + if not Has_Element (Container, Position) then + raise Constraint_Error; + end if; + + pragma Assert (Vet (Container.Tree.all, Position.Node), + "bad cursor in Previous"); + + if Container.K = Part and then + (Container.Length = 0 or Position.Node = Container.First) then + return No_Element; + end if; + + declare + Tree : Tree_Types.Tree_Type renames Container.Tree.all; + Node : constant Count_Type := + Tree_Operations.Previous (Tree, Position.Node); + + begin + if Node = 0 then + return No_Element; + end if; + + return (Node => Node); + end; + end Previous; + + procedure Previous (Container : Set; Position : in out Cursor) is + begin + Position := Previous (Container, Position); + end Previous; + + ------------------- + -- Query_Element -- + ------------------- + + procedure Query_Element + (Container : in out Set; + Position : Cursor; + Process : not null access procedure (Element : Element_Type)) + is + begin + if Container.K /= Plain then + raise Constraint_Error + with "Can't modify part of container"; + end if; + + if not Has_Element (Container, Position) then + raise Constraint_Error with "Position cursor has no element"; + end if; + + pragma Assert (Vet (Container.Tree.all, Position.Node), + "bad cursor in Query_Element"); + + declare + T : Tree_Types.Tree_Type renames Container.Tree.all; + + B : Natural renames T.Busy; + L : Natural renames T.Lock; + + begin + B := B + 1; + L := L + 1; + + begin + Process (T.Nodes (Position.Node).Element); + exception + when others => + L := L - 1; + B := B - 1; + raise; + end; + + L := L - 1; + B := B - 1; + end; + end Query_Element; + + ---------- + -- Read -- + ---------- + + procedure Read + (Stream : not null access Root_Stream_Type'Class; + Container : out Set) + is + procedure Read_Element (Node : in out Node_Type); + pragma Inline (Read_Element); + + procedure Allocate is + new Generic_Allocate (Read_Element); + + procedure Read_Elements is + new Tree_Operations.Generic_Read (Allocate); + + ------------------ + -- Read_Element -- + ------------------ + + procedure Read_Element (Node : in out Node_Type) is + begin + Element_Type'Read (Stream, Node.Element); + end Read_Element; + + -- Start of processing for Read + Result : Tree_Type_Access; + begin + if Container.K /= Plain then + raise Constraint_Error; + end if; + + if Container.Tree = null then + Result := new Tree_Types.Tree_Type (Container.Capacity); + else + Result := Container.Tree; + end if; + + Read_Elements (Stream, Result.all); + Container.Tree := Result; + end Read; + + procedure Read + (Stream : not null access Root_Stream_Type'Class; + Item : out Cursor) + is + begin + raise Program_Error with "attempt to stream set cursor"; + end Read; + + ------------- + -- Replace -- + ------------- + + procedure Replace (Container : in out Set; New_Item : Element_Type) is + begin + if Container.K /= Plain then + raise Constraint_Error + with "Can't modify part of container"; + end if; + + declare + Node : constant Count_Type := + Element_Keys.Find (Container.Tree.all, New_Item); + + begin + if Node = 0 then + raise Constraint_Error with + "attempt to replace element not in set"; + end if; + + if Container.Tree.Lock > 0 then + raise Program_Error with + "attempt to tamper with cursors (set is locked)"; + end if; + + Container.Tree.Nodes (Node).Element := New_Item; + end; + end Replace; + + --------------------- + -- Replace_Element -- + --------------------- + + procedure Replace_Element + (Tree : in out Tree_Types.Tree_Type; + Node : Count_Type; + Item : Element_Type) + is + pragma Assert (Node /= 0); + + function New_Node return Count_Type; + pragma Inline (New_Node); + + procedure Local_Insert_Post is + new Element_Keys.Generic_Insert_Post (New_Node); + + procedure Local_Insert_Sans_Hint is + new Element_Keys.Generic_Conditional_Insert (Local_Insert_Post); + + procedure Local_Insert_With_Hint is + new Element_Keys.Generic_Conditional_Insert_With_Hint + (Local_Insert_Post, + Local_Insert_Sans_Hint); + + NN : Tree_Types.Nodes_Type renames Tree.Nodes; + + -------------- + -- New_Node -- + -------------- + + function New_Node return Count_Type is + N : Node_Type renames NN (Node); + + begin + N.Element := Item; + N.Color := Red; + N.Parent := 0; + N.Right := 0; + N.Left := 0; + + return Node; + end New_Node; + + Hint : Count_Type; + Result : Count_Type; + Inserted : Boolean; + + -- Start of processing for Insert + + begin + if Item < NN (Node).Element + or else NN (Node).Element < Item + then + null; + + else + if Tree.Lock > 0 then + raise Program_Error with + "attempt to tamper with cursors (set is locked)"; + end if; + + NN (Node).Element := Item; + return; + end if; + + Hint := Element_Keys.Ceiling (Tree, Item); + + if Hint = 0 then + null; + + elsif Item < NN (Hint).Element then + if Hint = Node then + if Tree.Lock > 0 then + raise Program_Error with + "attempt to tamper with cursors (set is locked)"; + end if; + + NN (Node).Element := Item; + return; + end if; + + else + pragma Assert (not (NN (Hint).Element < Item)); + raise Program_Error with "attempt to replace existing element"; + end if; + + Tree_Operations.Delete_Node_Sans_Free (Tree, Node); -- Checks busy-bit + + Local_Insert_With_Hint + (Tree => Tree, + Position => Hint, + Key => Item, + Node => Result, + Inserted => Inserted); + + pragma Assert (Inserted); + pragma Assert (Result = Node); + end Replace_Element; + + procedure Replace_Element + (Container : in out Set; + Position : Cursor; + New_Item : Element_Type) + is + begin + if Container.K /= Plain then + raise Constraint_Error + with "Can't modify part of container"; + end if; + + if not Has_Element (Container, Position) then + raise Constraint_Error with + "Position cursor has no element"; + end if; + + pragma Assert (Vet (Container.Tree.all, Position.Node), + "bad cursor in Replace_Element"); + + Replace_Element (Container.Tree.all, Position.Node, New_Item); + end Replace_Element; + + --------------------- + -- Reverse_Iterate -- + --------------------- + + procedure Reverse_Iterate + (Container : Set; + Process : + not null access procedure (Container : Set; Position : Cursor)) + is + procedure Process_Node (Node : Count_Type); + pragma Inline (Process_Node); + + procedure Local_Reverse_Iterate is + new Tree_Operations.Generic_Reverse_Iteration (Process_Node); + + ------------------ + -- Process_Node -- + ------------------ + + procedure Process_Node (Node : Count_Type) is + begin + Process (Container, (Node => Node)); + end Process_Node; + + T : Tree_Types.Tree_Type renames Container.Tree.all; + B : Natural renames T.Busy; + + -- Start of processing for Reverse_Iterate + + begin + B := B + 1; + + begin + if Container.K = Plain then + Local_Reverse_Iterate (T); + return; + end if; + + if Container.Length = 0 then + return; + end if; + + declare + Node : Count_Type := Container.Last; + First : constant Count_Type := + Previous (Container.Tree.all, Container.First); + + begin + + while Node /= First loop + Process_Node (Node); + Node := Previous (Container.Tree.all, Node); + end loop; + + end; + + exception + when others => + B := B - 1; + raise; + end; + + B := B - 1; + end Reverse_Iterate; + + ----------- + -- Right -- + ----------- + + function Right (Container : Set; Position : Cursor) return Set is + Lst : Count_Type; + L : Count_Type := 0; + C : Count_Type := Position.Node; + begin + + if C = 0 then + return (Capacity => Container.Capacity, + K => Part, + Tree => Container.Tree, + Length => 0, + First => 0, + Last => 0); + end if; + + if Container.K = Plain then + Lst := 0; + else + Lst := Next (Container.Tree.all, Container.Last); + end if; + + if C = Lst then + raise Constraint_Error with + "Position cursor has no element"; + end if; + + while C /= Lst loop + if C = 0 then + raise Constraint_Error with + "Position cursor has no element"; + end if; + C := Next (Container.Tree.all, C); + L := L + 1; + end loop; + + return (Capacity => Container.Capacity, + K => Part, + Tree => Container.Tree, + Length => L, + First => Position.Node, + Last => Last (Container).Node); + end Right; + + --------------- + -- Right_Son -- + --------------- + + function Right_Son (Node : Node_Type) return Count_Type is + begin + return Node.Right; + end Right_Son; + + --------------- + -- Set_Color -- + --------------- + + procedure Set_Color + (Node : in out Node_Type; + Color : Red_Black_Trees.Color_Type) + is + begin + Node.Color := Color; + end Set_Color; + + -------------- + -- Set_Left -- + -------------- + + procedure Set_Left (Node : in out Node_Type; Left : Count_Type) is + begin + Node.Left := Left; + end Set_Left; + + ---------------- + -- Set_Parent -- + ---------------- + + procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type) is + begin + Node.Parent := Parent; + end Set_Parent; + + --------------- + -- Set_Right -- + --------------- + + procedure Set_Right (Node : in out Node_Type; Right : Count_Type) is + begin + Node.Right := Right; + end Set_Right; + + ------------------ + -- Strict_Equal -- + ------------------ + + function Strict_Equal (Left, Right : Set) return Boolean is + LNode : Count_Type := First (Left).Node; + RNode : Count_Type := First (Right).Node; + begin + if Length (Left) /= Length (Right) then + return False; + end if; + + while LNode = RNode loop + if LNode = 0 then + return True; + end if; + + if Left.Tree.Nodes (LNode).Element /= + Right.Tree.Nodes (RNode).Element then + exit; + end if; + + LNode := Next_Unchecked (Left, LNode); + RNode := Next_Unchecked (Right, RNode); + end loop; + return False; + + end Strict_Equal; + + -------------------------- + -- Symmetric_Difference -- + -------------------------- + + procedure Symmetric_Difference (Target : in out Set; Source : Set) is + begin + if Target.K /= Plain then + raise Constraint_Error + with "Can't modify part of container"; + end if; + + if Source.K = Plain then + Set_Ops.Set_Symmetric_Difference (Target.Tree.all, Source.Tree.all); + return; + end if; + + if Source.Length = 0 then + return; + end if; + + declare + + Tgt : Count_Type := Target.First; + Src : Count_Type := Source.First; + + SLast : constant Count_Type := Next (Source.Tree.all, Source.Last); + + New_Tgt_Node : Count_Type; + + begin + if Target.Tree.Busy > 0 then + raise Program_Error with + "attempt to tamper with cursors (container is busy)"; + end if; + + if Target'Address = Source'Address then + Clear (Target); + return; + end if; + + loop + if Tgt = 0 then + while Src /= SLast loop + Insert_With_Hint + (Dst_Set => Target.Tree.all, + Dst_Hint => 0, + Src_Node => Source.Tree.Nodes (Src), + Dst_Node => New_Tgt_Node); + + Src := Next (Source.Tree.all, Src); + end loop; + + return; + end if; + + if Src = SLast then + return; + end if; + + if Target.Tree.Nodes (Tgt).Element < + Source.Tree.Nodes (Src).Element then + Tgt := Next (Target.Tree.all, Tgt); + + elsif Source.Tree.Nodes (Src).Element < + Target.Tree.Nodes (Tgt).Element then + Insert_With_Hint + (Dst_Set => Target.Tree.all, + Dst_Hint => Tgt, + Src_Node => Source.Tree.Nodes (Src), + Dst_Node => New_Tgt_Node); + + Src := Next (Source.Tree.all, Src); + + else + declare + X : constant Count_Type := Tgt; + begin + Tgt := Next (Target.Tree.all, Tgt); + Delete_Node_Sans_Free (Target.Tree.all, X); + Formal_Ordered_Sets.Free (Target.Tree.all, X); + end; + + Src := Next (Source.Tree.all, Src); + end if; + end loop; + end; + end Symmetric_Difference; + + function Symmetric_Difference (Left, Right : Set) return Set is + begin + if Left'Address = Right'Address then + return Empty_Set; + end if; + + if Length (Right) = 0 then + return Left.Copy; + end if; + + if Length (Left) = 0 then + return Right.Copy; + end if; + + return S : Set (Length (Left) + Length (Right)) do + if Left.K = Plain and Right.K = Plain then + Assign (S.Tree.all, + Set_Ops.Set_Symmetric_Difference (Left.Tree.all, + Right.Tree.all)); + return; + end if; + + declare + + Tree : Tree_Types.Tree_Type renames S.Tree.all; + + L_Node : Count_Type := First (Left).Node; + R_Node : Count_Type := First (Right).Node; + + L_Last : constant Count_Type := + Next (Left.Tree.all, Last (Left).Node); + R_Last : constant Count_Type := + Next (Right.Tree.all, Last (Right).Node); + + Dst_Node : Count_Type; + + begin + loop + if L_Node = L_Last then + while R_Node /= R_Last loop + Insert_With_Hint + (Dst_Set => Tree, + Dst_Hint => 0, + Src_Node => Right.Tree.Nodes (R_Node), + Dst_Node => Dst_Node); + + R_Node := Next (Right.Tree.all, R_Node); + end loop; + + return; + end if; + + if R_Node = R_Last then + while L_Node /= L_Last loop + Insert_With_Hint + (Dst_Set => Tree, + Dst_Hint => 0, + Src_Node => Left.Tree.Nodes (L_Node), + Dst_Node => Dst_Node); + + L_Node := Next (Left.Tree.all, L_Node); + end loop; + + return; + end if; + + if Left.Tree.Nodes (L_Node).Element < + Right.Tree.Nodes (R_Node).Element then + Insert_With_Hint + (Dst_Set => Tree, + Dst_Hint => 0, + Src_Node => Left.Tree.Nodes (L_Node), + Dst_Node => Dst_Node); + + L_Node := Next (Left.Tree.all, L_Node); + + elsif Right.Tree.Nodes (R_Node).Element < + Left.Tree.Nodes (L_Node).Element then + Insert_With_Hint + (Dst_Set => Tree, + Dst_Hint => 0, + Src_Node => Right.Tree.Nodes (R_Node), + Dst_Node => Dst_Node); + + R_Node := Next (Right.Tree.all, R_Node); + + else + L_Node := Next (Left.Tree.all, L_Node); + R_Node := Next (Right.Tree.all, R_Node); + end if; + end loop; + end; + + end return; + end Symmetric_Difference; + + ------------ + -- To_Set -- + ------------ + + function To_Set (New_Item : Element_Type) return Set is + Node : Count_Type; + Inserted : Boolean; + + begin + return S : Set (Capacity => 1) do + Insert_Sans_Hint (S.Tree.all, New_Item, Node, Inserted); + pragma Assert (Inserted); + end return; + end To_Set; + + ----------- + -- Union -- + ----------- + + procedure Union (Target : in out Set; Source : Set) is + begin + if Target.K /= Plain then + raise Constraint_Error + with "Can't modify part of container"; + end if; + + if Source.K = Plain then + Set_Ops.Set_Union (Target.Tree.all, Source.Tree.all); + return; + end if; + + if Source.Length = 0 then + return; + end if; + + declare + Hint : Count_Type := 0; + + procedure Process (Node : Count_Type); + pragma Inline (Process); + + procedure Iterate is new Iterate_Between (Process); + + ------------- + -- Process -- + ------------- + + procedure Process (Node : Count_Type) is + begin + Insert_With_Hint + (Dst_Set => Target.Tree.all, + Dst_Hint => Hint, + Src_Node => Source.Tree.Nodes (Node), + Dst_Node => Hint); + end Process; + + -- Start of processing for Union + + begin + if Target'Address = Source'Address then + return; + end if; + + if Target.Tree.Busy > 0 then + raise Program_Error with + "attempt to tamper with cursors (container is busy)"; + end if; + + Iterate (Source.Tree.all, Source.First, Source.Last); + end; + end Union; + + function Union (Left, Right : Set) return Set is + begin + if Left'Address = Right'Address then + return Left.Copy; + end if; + + if Length (Left) = 0 then + return Right.Copy; + end if; + + if Length (Right) = 0 then + return Left.Copy; + end if; + + return S : Set (Length (Left) + Length (Right)) do + S.Assign (Source => Left); + S.Union (Right); + end return; + end Union; + + ----------- + -- Write -- + ----------- + + procedure Write + (Stream : not null access Root_Stream_Type'Class; + Container : Set) + is + procedure Write_Element + (Stream : not null access Root_Stream_Type'Class; + Node : Node_Type); + pragma Inline (Write_Element); + + procedure Write_Elements is + new Tree_Operations.Generic_Write (Write_Element); + + ------------------- + -- Write_Element -- + ------------------- + + procedure Write_Element + (Stream : not null access Root_Stream_Type'Class; + Node : Node_Type) + is + begin + Element_Type'Write (Stream, Node.Element); + end Write_Element; + + -- Start of processing for Write + + begin + Write_Elements (Stream, Container.Tree.all); + end Write; + + procedure Write + (Stream : not null access Root_Stream_Type'Class; + Item : Cursor) + is + begin + raise Program_Error with "attempt to stream set cursor"; + end Write; + +end Ada.Containers.Formal_Ordered_Sets; |