summaryrefslogtreecommitdiff
path: root/gcc/ada/a-ngrear.adb
diff options
context:
space:
mode:
authorcharlet <charlet@138bc75d-0d04-0410-961f-82ee72b054a4>2007-04-06 09:23:23 +0000
committercharlet <charlet@138bc75d-0d04-0410-961f-82ee72b054a4>2007-04-06 09:23:23 +0000
commit0d12640be4501b419982546d58feb5e48c65d56f (patch)
tree3dae18939bf7386b4ee86c6180790a3c352c21c5 /gcc/ada/a-ngrear.adb
parentb4fde0cf29d17f951cc51fe014d8fb877ab9f47f (diff)
downloadgcc-0d12640be4501b419982546d58feb5e48c65d56f.tar.gz
2007-04-06 Geert Bosch <bosch@adacore.com>
Robert Dewar <dewar@adacore.com> * i-fortra.ads: Add Double_Complex type. * impunit.adb: (Is_Known_Unit): New function Add Gnat.Byte_Swapping Add GNAT.SHA1 Add new Ada 2005 units Ada.Numerics.Generic_Complex_Arrays, Ada.Numerics.Generic_Real_Arrays, Ada.Numerics.Complex_Arrays, Ada.Numerics.Real_Arrays, Ada.Numerics.Long_Complex_Arrays, Ada.Numerics.Long_Long_Complex_Arrays, Ada.Numerics.Long_Long_Real_Arrays and Ada.Numerics.Long_Real_Arrays * impunit.ads (Is_Known_Unit): New function * a-ngcoar.adb, a-ngcoar.ads, a-ngrear.adb, a-ngrear.ads, a-nlcoar.ads, a-nllcar.ads, a-nllrar.ads, a-nlrear.ads, a-nucoar.ads, a-nurear.ads, g-bytswa.adb, g-bytswa-x86.adb, g-bytswa.ads, g-sha1.adb, g-sha1.ads, i-forbla.ads, i-forlap.ads, s-gearop.adb, s-gearop.ads, s-gecobl.adb, s-gecobl.ads, s-gecola.adb, s-gecola.ads, s-gerebl.adb, s-gerebl.ads, s-gerela.adb, s-gerela.ads: New files. * Makefile.rtl: Add g-bytswa, g-sha1, a-fzteio and a-izteio * a-fzteio.ads, a-izteio.ads: New Ada 2005 run-time units. git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@123579 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/ada/a-ngrear.adb')
-rw-r--r--gcc/ada/a-ngrear.adb779
1 files changed, 779 insertions, 0 deletions
diff --git a/gcc/ada/a-ngrear.adb b/gcc/ada/a-ngrear.adb
new file mode 100644
index 00000000000..2ff5d01c0aa
--- /dev/null
+++ b/gcc/ada/a-ngrear.adb
@@ -0,0 +1,779 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT RUN-TIME COMPONENTS --
+-- --
+-- ADA.NUMERICS.GENERIC_REAL_ARRAYS --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 2006, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 2, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING. If not, write --
+-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
+-- Boston, MA 02110-1301, USA. --
+-- --
+-- As a special exception, if other files instantiate generics from this --
+-- unit, or you link this unit with other files to produce an executable, --
+-- this unit does not by itself cause the resulting executable to be --
+-- covered by the GNU General Public License. This exception does not --
+-- however invalidate any other reasons why the executable file might be --
+-- covered by the GNU Public License. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+with System; use System;
+with System.Generic_Real_BLAS;
+with System.Generic_Real_LAPACK;
+with System.Generic_Array_Operations; use System.Generic_Array_Operations;
+
+package body Ada.Numerics.Generic_Real_Arrays is
+
+ -- Operations involving inner products use BLAS library implementations.
+ -- This allows larger matrices and vectors to be computed efficiently,
+ -- taking into account memory hierarchy issues and vector instructions
+ -- that vary widely between machines.
+
+ -- Operations that are defined in terms of operations on the type Real,
+ -- such as addition, subtraction and scaling, are computed in the canonical
+ -- way looping over all elements.
+
+ -- Operations for solving linear systems and computing determinant,
+ -- eigenvalues, eigensystem and inverse, are implemented using the
+ -- LAPACK library.
+
+ package BLAS is
+ new Generic_Real_BLAS (Real'Base, Real_Vector, Real_Matrix);
+
+ package LAPACK is
+ new Generic_Real_LAPACK (Real'Base, Real_Vector, Real_Matrix);
+
+ use BLAS, LAPACK;
+
+ -- Procedure versions of functions returning unconstrained values.
+ -- This allows for inlining the function wrapper.
+
+ procedure Eigenvalues (A : Real_Matrix; Values : out Real_Vector);
+ procedure Inverse (A : Real_Matrix; R : out Real_Matrix);
+ procedure Solve (A : Real_Matrix; X : Real_Vector; B : out Real_Vector);
+ procedure Solve (A : Real_Matrix; X : Real_Matrix; B : out Real_Matrix);
+
+ procedure Transpose is new
+ Generic_Array_Operations.Transpose
+ (Scalar => Real'Base,
+ Matrix => Real_Matrix);
+
+ -- Helper function that raises a Constraint_Error is the argument is
+ -- not a square matrix, and otherwise returns its length.
+
+ function Length is new Square_Matrix_Length (Real'Base, Real_Matrix);
+
+ -- Instantiating the following subprograms directly would lead to
+ -- name clashes, so use a local package.
+
+ package Instantiations is
+
+ function "+" is new
+ Vector_Elementwise_Operation
+ (X_Scalar => Real'Base,
+ Result_Scalar => Real'Base,
+ X_Vector => Real_Vector,
+ Result_Vector => Real_Vector,
+ Operation => "+");
+
+ function "+" is new
+ Matrix_Elementwise_Operation
+ (X_Scalar => Real'Base,
+ Result_Scalar => Real'Base,
+ X_Matrix => Real_Matrix,
+ Result_Matrix => Real_Matrix,
+ Operation => "+");
+
+ function "+" is new
+ Vector_Vector_Elementwise_Operation
+ (Left_Scalar => Real'Base,
+ Right_Scalar => Real'Base,
+ Result_Scalar => Real'Base,
+ Left_Vector => Real_Vector,
+ Right_Vector => Real_Vector,
+ Result_Vector => Real_Vector,
+ Operation => "+");
+
+ function "+" is new
+ Matrix_Matrix_Elementwise_Operation
+ (Left_Scalar => Real'Base,
+ Right_Scalar => Real'Base,
+ Result_Scalar => Real'Base,
+ Left_Matrix => Real_Matrix,
+ Right_Matrix => Real_Matrix,
+ Result_Matrix => Real_Matrix,
+ Operation => "+");
+
+ function "-" is new
+ Vector_Elementwise_Operation
+ (X_Scalar => Real'Base,
+ Result_Scalar => Real'Base,
+ X_Vector => Real_Vector,
+ Result_Vector => Real_Vector,
+ Operation => "-");
+
+ function "-" is new
+ Matrix_Elementwise_Operation
+ (X_Scalar => Real'Base,
+ Result_Scalar => Real'Base,
+ X_Matrix => Real_Matrix,
+ Result_Matrix => Real_Matrix,
+ Operation => "-");
+
+ function "-" is new
+ Vector_Vector_Elementwise_Operation
+ (Left_Scalar => Real'Base,
+ Right_Scalar => Real'Base,
+ Result_Scalar => Real'Base,
+ Left_Vector => Real_Vector,
+ Right_Vector => Real_Vector,
+ Result_Vector => Real_Vector,
+ Operation => "-");
+
+ function "-" is new
+ Matrix_Matrix_Elementwise_Operation
+ (Left_Scalar => Real'Base,
+ Right_Scalar => Real'Base,
+ Result_Scalar => Real'Base,
+ Left_Matrix => Real_Matrix,
+ Right_Matrix => Real_Matrix,
+ Result_Matrix => Real_Matrix,
+ Operation => "-");
+
+ function "*" is new
+ Scalar_Vector_Elementwise_Operation
+ (Left_Scalar => Real'Base,
+ Right_Scalar => Real'Base,
+ Result_Scalar => Real'Base,
+ Right_Vector => Real_Vector,
+ Result_Vector => Real_Vector,
+ Operation => "*");
+
+ function "*" is new
+ Scalar_Matrix_Elementwise_Operation
+ (Left_Scalar => Real'Base,
+ Right_Scalar => Real'Base,
+ Result_Scalar => Real'Base,
+ Right_Matrix => Real_Matrix,
+ Result_Matrix => Real_Matrix,
+ Operation => "*");
+
+ function "*" is new
+ Vector_Scalar_Elementwise_Operation
+ (Left_Scalar => Real'Base,
+ Right_Scalar => Real'Base,
+ Result_Scalar => Real'Base,
+ Left_Vector => Real_Vector,
+ Result_Vector => Real_Vector,
+ Operation => "*");
+
+ function "*" is new
+ Matrix_Scalar_Elementwise_Operation
+ (Left_Scalar => Real'Base,
+ Right_Scalar => Real'Base,
+ Result_Scalar => Real'Base,
+ Left_Matrix => Real_Matrix,
+ Result_Matrix => Real_Matrix,
+ Operation => "*");
+
+ function "*" is new
+ Outer_Product
+ (Left_Scalar => Real'Base,
+ Right_Scalar => Real'Base,
+ Result_Scalar => Real'Base,
+ Left_Vector => Real_Vector,
+ Right_Vector => Real_Vector,
+ Matrix => Real_Matrix);
+
+ function "/" is new
+ Vector_Scalar_Elementwise_Operation
+ (Left_Scalar => Real'Base,
+ Right_Scalar => Real'Base,
+ Result_Scalar => Real'Base,
+ Left_Vector => Real_Vector,
+ Result_Vector => Real_Vector,
+ Operation => "/");
+
+ function "/" is new
+ Matrix_Scalar_Elementwise_Operation
+ (Left_Scalar => Real'Base,
+ Right_Scalar => Real'Base,
+ Result_Scalar => Real'Base,
+ Left_Matrix => Real_Matrix,
+ Result_Matrix => Real_Matrix,
+ Operation => "/");
+
+ function "abs" is new
+ Vector_Elementwise_Operation
+ (X_Scalar => Real'Base,
+ Result_Scalar => Real'Base,
+ X_Vector => Real_Vector,
+ Result_Vector => Real_Vector,
+ Operation => "abs");
+
+ function "abs" is new
+ Matrix_Elementwise_Operation
+ (X_Scalar => Real'Base,
+ Result_Scalar => Real'Base,
+ X_Matrix => Real_Matrix,
+ Result_Matrix => Real_Matrix,
+ Operation => "abs");
+
+ function Unit_Matrix is new
+ Generic_Array_Operations.Unit_Matrix
+ (Scalar => Real'Base,
+ Matrix => Real_Matrix,
+ Zero => 0.0,
+ One => 1.0);
+
+ function Unit_Vector is new
+ Generic_Array_Operations.Unit_Vector
+ (Scalar => Real'Base,
+ Vector => Real_Vector,
+ Zero => 0.0,
+ One => 1.0);
+
+ end Instantiations;
+
+ ---------
+ -- "+" --
+ ---------
+
+ function "+" (Right : Real_Vector) return Real_Vector
+ renames Instantiations."+";
+
+ function "+" (Right : Real_Matrix) return Real_Matrix
+ renames Instantiations."+";
+
+ function "+" (Left, Right : Real_Vector) return Real_Vector
+ renames Instantiations."+";
+
+ function "+" (Left, Right : Real_Matrix) return Real_Matrix
+ renames Instantiations."+";
+
+ ---------
+ -- "-" --
+ ---------
+
+ function "-" (Right : Real_Vector) return Real_Vector
+ renames Instantiations."-";
+
+ function "-" (Right : Real_Matrix) return Real_Matrix
+ renames Instantiations."-";
+
+ function "-" (Left, Right : Real_Vector) return Real_Vector
+ renames Instantiations."-";
+
+ function "-" (Left, Right : Real_Matrix) return Real_Matrix
+ renames Instantiations."-";
+
+ ---------
+ -- "*" --
+ ---------
+
+ -- Scalar multiplication
+
+ function "*" (Left : Real'Base; Right : Real_Vector) return Real_Vector
+ renames Instantiations."*";
+
+ function "*" (Left : Real_Vector; Right : Real'Base) return Real_Vector
+ renames Instantiations."*";
+
+ function "*" (Left : Real'Base; Right : Real_Matrix) return Real_Matrix
+ renames Instantiations."*";
+
+ function "*" (Left : Real_Matrix; Right : Real'Base) return Real_Matrix
+ renames Instantiations."*";
+
+ -- Vector multiplication
+
+ function "*" (Left, Right : Real_Vector) return Real'Base is
+ begin
+ if Left'Length /= Right'Length then
+ raise Constraint_Error with
+ "vectors are of different length in inner product";
+ end if;
+
+ return dot (Left'Length, X => Left, Y => Right);
+ end "*";
+
+ function "*" (Left, Right : Real_Vector) return Real_Matrix
+ renames Instantiations."*";
+
+ function "*"
+ (Left : Real_Vector;
+ Right : Real_Matrix) return Real_Vector
+ is
+ R : Real_Vector (Right'Range (2));
+
+ begin
+ if Left'Length /= Right'Length (1) then
+ raise Constraint_Error with
+ "incompatible dimensions in vector-matrix multiplication";
+ end if;
+
+ gemv (Trans => No_Trans'Access,
+ M => Right'Length (2),
+ N => Right'Length (1),
+ A => Right,
+ Ld_A => Right'Length (2),
+ X => Left,
+ Y => R);
+
+ return R;
+ end "*";
+
+ function "*"
+ (Left : Real_Matrix;
+ Right : Real_Vector) return Real_Vector
+ is
+ R : Real_Vector (Left'Range (1));
+
+ begin
+ if Left'Length (2) /= Right'Length then
+ raise Constraint_Error with
+ "incompatible dimensions in matrix-vector multiplication";
+ end if;
+
+ gemv (Trans => Trans'Access,
+ M => Left'Length (2),
+ N => Left'Length (1),
+ A => Left,
+ Ld_A => Left'Length (2),
+ X => Right,
+ Y => R);
+
+ return R;
+ end "*";
+
+ -- Matrix Multiplication
+
+ function "*" (Left, Right : Real_Matrix) return Real_Matrix is
+ R : Real_Matrix (Left'Range (1), Right'Range (2));
+
+ begin
+ if Left'Length (2) /= Right'Length (1) then
+ raise Constraint_Error with
+ "incompatible dimensions in matrix-matrix multipication";
+ end if;
+
+ gemm (Trans_A => No_Trans'Access,
+ Trans_B => No_Trans'Access,
+ M => Right'Length (2),
+ N => Left'Length (1),
+ K => Right'Length (1),
+ A => Right,
+ Ld_A => Right'Length (2),
+ B => Left,
+ Ld_B => Left'Length (2),
+ C => R,
+ Ld_C => R'Length (2));
+
+ return R;
+ end "*";
+
+ ---------
+ -- "/" --
+ ---------
+
+ function "/" (Left : Real_Vector; Right : Real'Base) return Real_Vector
+ renames Instantiations."/";
+
+ function "/" (Left : Real_Matrix; Right : Real'Base) return Real_Matrix
+ renames Instantiations."/";
+
+ -----------
+ -- "abs" --
+ -----------
+
+ function "abs" (Right : Real_Vector) return Real'Base is
+ begin
+ return nrm2 (Right'Length, Right);
+ end "abs";
+
+ function "abs" (Right : Real_Vector) return Real_Vector
+ renames Instantiations."abs";
+
+ function "abs" (Right : Real_Matrix) return Real_Matrix
+ renames Instantiations."abs";
+
+ -----------------
+ -- Determinant --
+ -----------------
+
+ function Determinant (A : Real_Matrix) return Real'Base is
+ N : constant Integer := Length (A);
+ LU : Real_Matrix (1 .. N, 1 .. N) := A;
+ Piv : Integer_Vector (1 .. N);
+ Info : aliased Integer := -1;
+ Det : Real := 1.0;
+
+ begin
+ getrf (M => N,
+ N => N,
+ A => LU,
+ Ld_A => N,
+ I_Piv => Piv,
+ Info => Info'Access);
+
+ if Info /= 0 then
+ raise Constraint_Error with "ill-conditioned matrix";
+ end if;
+
+ for J in 1 .. N loop
+ if Piv (J) /= J then
+ Det := -Det * LU (J, J);
+ else
+ Det := Det * LU (J, J);
+ end if;
+ end loop;
+
+ return Det;
+ end Determinant;
+
+ -----------------
+ -- Eigensystem --
+ -----------------
+
+ procedure Eigensystem
+ (A : Real_Matrix;
+ Values : out Real_Vector;
+ Vectors : out Real_Matrix)
+ is
+ N : constant Natural := Length (A);
+ E : Real_Vector (1 .. N);
+ Tau : Real_Vector (1 .. N);
+ L_Work : Real_Vector (1 .. 1);
+ Info : aliased Integer;
+
+ begin
+ if Values'Length /= N then
+ raise Constraint_Error with "wrong length for output vector";
+ end if;
+
+ if N = 0 then
+ return;
+ end if;
+
+ -- Initialize working matrix and check for symmetric input matrix
+
+ Transpose (A, Vectors);
+
+ if A /= Vectors then
+ raise Argument_Error with "matrix not symmetric";
+ end if;
+
+ -- Compute size of additional working space
+
+ sytrd (Uplo => Lower'Access,
+ N => N,
+ A => Vectors,
+ Ld_A => N,
+ D => Values,
+ E => E,
+ Tau => Tau,
+ Work => L_Work,
+ L_Work => -1,
+ Info => Info'Access);
+
+ declare
+ Work : Real_Vector (1 .. Integer'Max (Integer (L_Work (1)), 2 * N));
+ Comp_Z : aliased constant Character := 'V';
+
+ begin
+ -- Reduce matrix to tridiagonal form
+
+ sytrd (Uplo => Lower'Access,
+ N => N,
+ A => Vectors,
+ Ld_A => A'Length (1),
+ D => Values,
+ E => E,
+ Tau => Tau,
+ Work => Work,
+ L_Work => Work'Length,
+ Info => Info'Access);
+
+ if Info /= 0 then
+ raise Program_Error;
+ end if;
+
+ -- Generate the real orthogonal matrix determined by sytrd
+
+ orgtr (Uplo => Lower'Access,
+ N => N,
+ A => Vectors,
+ Ld_A => N,
+ Tau => Tau,
+ Work => Work,
+ L_Work => Work'Length,
+ Info => Info'Access);
+
+ if Info /= 0 then
+ raise Program_Error;
+ end if;
+
+ -- Compute all eigenvalues and eigenvectors using QR algorithm
+
+ steqr (Comp_Z => Comp_Z'Access,
+ N => N,
+ D => Values,
+ E => E,
+ Z => Vectors,
+ Ld_Z => N,
+ Work => Work,
+ Info => Info'Access);
+
+ if Info /= 0 then
+ raise Constraint_Error with
+ "eigensystem computation failed to converge";
+ end if;
+ end;
+ end Eigensystem;
+
+ -----------------
+ -- Eigenvalues --
+ -----------------
+
+ procedure Eigenvalues
+ (A : Real_Matrix;
+ Values : out Real_Vector)
+ is
+ N : constant Natural := Length (A);
+ B : Real_Matrix (1 .. N, 1 .. N);
+ E : Real_Vector (1 .. N);
+ Tau : Real_Vector (1 .. N);
+ L_Work : Real_Vector (1 .. 1);
+ Info : aliased Integer;
+
+ begin
+ if Values'Length /= N then
+ raise Constraint_Error with "wrong length for output vector";
+ end if;
+
+ if N = 0 then
+ return;
+ end if;
+
+ -- Initialize working matrix and check for symmetric input matrix
+
+ Transpose (A, B);
+
+ if A /= B then
+ raise Argument_Error with "matrix not symmetric";
+ end if;
+
+ -- Find size of work area
+
+ sytrd (Uplo => Lower'Access,
+ N => N,
+ A => B,
+ Ld_A => N,
+ D => Values,
+ E => E,
+ Tau => Tau,
+ Work => L_Work,
+ L_Work => -1,
+ Info => Info'Access);
+
+ declare
+ Work : Real_Vector (1 .. Integer'Min (Integer (L_Work (1)), 4 * N));
+
+ begin
+ -- Reduce matrix to tridiagonal form
+
+ sytrd (Uplo => Lower'Access,
+ N => N,
+ A => B,
+ Ld_A => A'Length (1),
+ D => Values,
+ E => E,
+ Tau => Tau,
+ Work => Work,
+ L_Work => Work'Length,
+ Info => Info'Access);
+
+ if Info /= 0 then
+ raise Constraint_Error;
+ end if;
+
+ -- Compute all eigenvalues using QR algorithm
+
+ sterf (N => N,
+ D => Values,
+ E => E,
+ Info => Info'Access);
+
+ if Info /= 0 then
+ raise Constraint_Error with
+ "eigenvalues computation failed to converge";
+ end if;
+ end;
+ end Eigenvalues;
+
+ function Eigenvalues (A : Real_Matrix) return Real_Vector is
+ R : Real_Vector (A'Range (1));
+ begin
+ Eigenvalues (A, R);
+ return R;
+ end Eigenvalues;
+
+ -------------
+ -- Inverse --
+ -------------
+
+ procedure Inverse (A : Real_Matrix; R : out Real_Matrix) is
+ N : constant Integer := Length (A);
+ Piv : Integer_Vector (1 .. N);
+ L_Work : Real_Vector (1 .. 1);
+ Info : aliased Integer := -1;
+
+ begin
+ -- All computations are done using column-major order, but this works
+ -- out fine, because Transpose (Inverse (Transpose (A))) = Inverse (A).
+
+ R := A;
+
+ -- Compute LU decomposition
+
+ getrf (M => N,
+ N => N,
+ A => R,
+ Ld_A => N,
+ I_Piv => Piv,
+ Info => Info'Access);
+
+ if Info /= 0 then
+ raise Constraint_Error with "inverting singular matrix";
+ end if;
+
+ -- Determine size of work area
+
+ getri (N => N,
+ A => R,
+ Ld_A => N,
+ I_Piv => Piv,
+ Work => L_Work,
+ L_Work => -1,
+ Info => Info'Access);
+
+ if Info /= 0 then
+ raise Constraint_Error;
+ end if;
+
+ declare
+ Work : Real_Vector (1 .. Integer (L_Work (1)));
+ begin
+ -- Compute inverse from LU decomposition
+
+ getri (N => N,
+ A => R,
+ Ld_A => N,
+ I_Piv => Piv,
+ Work => Work,
+ L_Work => Work'Length,
+ Info => Info'Access);
+
+ if Info /= 0 then
+ raise Constraint_Error with "inverting singular matrix";
+ end if;
+
+ -- ??? Should iterate with gerfs, based on implementation advice
+ end;
+ end Inverse;
+
+ function Inverse (A : Real_Matrix) return Real_Matrix is
+ R : Real_Matrix (A'Range (2), A'Range (1));
+ begin
+ Inverse (A, R);
+ return R;
+ end Inverse;
+
+ -----------
+ -- Solve --
+ -----------
+
+ procedure Solve (A : Real_Matrix; X : Real_Vector; B : out Real_Vector) is
+ begin
+ if Length (A) /= X'Length then
+ raise Constraint_Error with
+ "incompatible matrix and vector dimensions";
+ end if;
+
+ -- ??? Should solve directly, is faster and more accurate
+
+ B := Inverse (A) * X;
+ end Solve;
+
+ procedure Solve (A : Real_Matrix; X : Real_Matrix; B : out Real_Matrix) is
+ begin
+ if Length (A) /= X'Length (1) then
+ raise Constraint_Error with "incompatible matrix dimensions";
+ end if;
+
+ -- ??? Should solve directly, is faster and more accurate
+
+ B := Inverse (A) * X;
+ end Solve;
+
+ function Solve (A : Real_Matrix; X : Real_Vector) return Real_Vector is
+ B : Real_Vector (A'Range (2));
+ begin
+ Solve (A, X, B);
+ return B;
+ end Solve;
+
+ function Solve (A, X : Real_Matrix) return Real_Matrix is
+ B : Real_Matrix (A'Range (2), X'Range (2));
+ begin
+ Solve (A, X, B);
+ return B;
+ end Solve;
+
+ ---------------
+ -- Transpose --
+ ---------------
+
+ function Transpose (X : Real_Matrix) return Real_Matrix is
+ R : Real_Matrix (X'Range (2), X'Range (1));
+ begin
+ Transpose (X, R);
+
+ return R;
+ end Transpose;
+
+ -----------------
+ -- Unit_Matrix --
+ -----------------
+
+ function Unit_Matrix
+ (Order : Positive;
+ First_1 : Integer := 1;
+ First_2 : Integer := 1) return Real_Matrix
+ renames Instantiations.Unit_Matrix;
+
+ -----------------
+ -- Unit_Vector --
+ -----------------
+
+ function Unit_Vector
+ (Index : Integer;
+ Order : Positive;
+ First : Integer := 1) return Real_Vector
+ renames Instantiations.Unit_Vector;
+
+end Ada.Numerics.Generic_Real_Arrays;