diff options
author | charlet <charlet@138bc75d-0d04-0410-961f-82ee72b054a4> | 2010-10-25 15:26:02 +0000 |
---|---|---|
committer | charlet <charlet@138bc75d-0d04-0410-961f-82ee72b054a4> | 2010-10-25 15:26:02 +0000 |
commit | 7edd507100cac168bcb4900951e44a515fca9c91 (patch) | |
tree | dbc2802781e13245b9de316aac743d8ec5a7862b /gcc/ada/a-rbtgbk.adb | |
parent | d7c2851fa475530f0e445e154ccacb9e5413388a (diff) | |
download | gcc-7edd507100cac168bcb4900951e44a515fca9c91.tar.gz |
2010-10-25 Pascal Obry <obry@adacore.com>
* adaint.c (__gnat_file_time_name_attr): Use GetFileAttributesEx to get
the timestamp. A bit faster than opening/closing the file.
(__gnat_stat_to_attr): Remove kludge for Windows.
(__gnat_file_exists_attr): Likewise.
The timestamp is now retreived using GetFileAttributesEx as faster.
2010-10-25 Javier Miranda <miranda@adacore.com>
* sem_ch3.adb (Derive_Interface_Subprogram): New subprogram.
(Derive_Subprograms): For abstract private types transfer to the full
view entities of uncovered interface primitives. Required because if
the interface primitives are left in the private part of the package
they will be decorated as hidden when the analysis of the enclosing
package completes (and hence the interface primitive is not visible
for dispatching calls).
2010-10-25 Matthew Heaney <heaney@adacore.com>
* Makefile.rtl, impunit.adb: Added bounded set and bounded map
containers.
* a-crbltr.ads: Added declaration of generic package for bounded tree
types.
* a-rbtgbo.ads, a-rbtgbo.adb, a-rbtgbk.ads, a-rbtgbk.adb, a-btgbso.ads,
a-btgbso.adb, a-cborse.ads, a-cborse.adb, a-cborma.ads, a-cborma.adb:
New.
2010-10-25 Thomas Quinot <quinot@adacore.com>
* sem_util.adb: Minor reformatting.
* usage.adb: Fix usage line for -gnatwh.
2010-10-25 Thomas Quinot <quinot@adacore.com>
* sem_ch12.adb (Analyze_Package_Instantiation): For an
instantiation in an RCI spec, omit package body if instantiation comes
from source, even as a nested
package.
* exp_dist.adb (Add_Calling_Stubs_To_Declarations,
*_Support.Add_Receiving_Stubs_To_Declarations): Handle the case of
nested packages, package instantiations and subprogram instantiations.
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@165920 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/ada/a-rbtgbk.adb')
-rw-r--r-- | gcc/ada/a-rbtgbk.adb | 599 |
1 files changed, 599 insertions, 0 deletions
diff --git a/gcc/ada/a-rbtgbk.adb b/gcc/ada/a-rbtgbk.adb new file mode 100644 index 00000000000..b12ae841076 --- /dev/null +++ b/gcc/ada/a-rbtgbk.adb @@ -0,0 +1,599 @@ +------------------------------------------------------------------------------ +-- -- +-- GNAT LIBRARY COMPONENTS -- +-- -- +-- ADA.CONTAINERS.RED_BLACK_TREES.GENERIC_BOUNDED_KEYS -- +-- -- +-- B o d y -- +-- -- +-- Copyright (C) 2004-2010, Free Software Foundation, Inc. -- +-- -- +-- GNAT is free software; you can redistribute it and/or modify it under -- +-- terms of the GNU General Public License as published by the Free Soft- -- +-- ware Foundation; either version 3, or (at your option) any later ver- -- +-- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- +-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- +-- or FITNESS FOR A PARTICULAR PURPOSE. -- +-- -- +-- As a special exception under Section 7 of GPL version 3, you are granted -- +-- additional permissions described in the GCC Runtime Library Exception, -- +-- version 3.1, as published by the Free Software Foundation. -- +-- -- +-- You should have received a copy of the GNU General Public License and -- +-- a copy of the GCC Runtime Library Exception along with this program; -- +-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- +-- <http://www.gnu.org/licenses/>. -- +-- -- +-- This unit was originally developed by Matthew J Heaney. -- +------------------------------------------------------------------------------ + +package body Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys is + + package Ops renames Tree_Operations; + + ------------- + -- Ceiling -- + ------------- + + -- AKA Lower_Bound + + function Ceiling + (Tree : Tree_Type'Class; + Key : Key_Type) return Count_Type + is + Y : Count_Type; + X : Count_Type; + N : Nodes_Type renames Tree.Nodes; + + begin + Y := 0; + + X := Tree.Root; + while X /= 0 loop + if Is_Greater_Key_Node (Key, N (X)) then + X := Ops.Right (N (X)); + else + Y := X; + X := Ops.Left (N (X)); + end if; + end loop; + + return Y; + end Ceiling; + + ---------- + -- Find -- + ---------- + + function Find + (Tree : Tree_Type'Class; + Key : Key_Type) return Count_Type + is + Y : Count_Type; + X : Count_Type; + N : Nodes_Type renames Tree.Nodes; + + begin + Y := 0; + + X := Tree.Root; + while X /= 0 loop + if Is_Greater_Key_Node (Key, N (X)) then + X := Ops.Right (N (X)); + else + Y := X; + X := Ops.Left (N (X)); + end if; + end loop; + + if Y = 0 then + return 0; + end if; + + if Is_Less_Key_Node (Key, N (Y)) then + return 0; + end if; + + return Y; + end Find; + + ----------- + -- Floor -- + ----------- + + function Floor + (Tree : Tree_Type'Class; + Key : Key_Type) return Count_Type + is + Y : Count_Type; + X : Count_Type; + N : Nodes_Type renames Tree.Nodes; + + begin + Y := 0; + + X := Tree.Root; + while X /= 0 loop + if Is_Less_Key_Node (Key, N (X)) then + X := Ops.Left (N (X)); + else + Y := X; + X := Ops.Right (N (X)); + end if; + end loop; + + return Y; + end Floor; + + -------------------------------- + -- Generic_Conditional_Insert -- + -------------------------------- + + procedure Generic_Conditional_Insert + (Tree : in out Tree_Type'Class; + Key : Key_Type; + Node : out Count_Type; + Inserted : out Boolean) + is + Y : Count_Type; + X : Count_Type; + N : Nodes_Type renames Tree.Nodes; + + begin + Y := 0; + + X := Tree.Root; + Inserted := True; + while X /= 0 loop + Y := X; + Inserted := Is_Less_Key_Node (Key, N (X)); + X := (if Inserted then Ops.Left (N (X)) else Ops.Right (N (X))); + end loop; + + -- If Inserted is True, then this means either that Tree is + -- empty, or there was a least one node (strictly) greater than + -- Key. Otherwise, it means that Key is equal to or greater than + -- every node. + + if Inserted then + if Y = Tree.First then + Insert_Post (Tree, Y, True, Node); + return; + end if; + + Node := Ops.Previous (Tree, Y); + + else + Node := Y; + end if; + + -- Here Node has a value that is less than or equal to Key. We + -- now have to resolve whether Key is equal to or greater than + -- Node, which determines whether the insertion succeeds. + + if Is_Greater_Key_Node (Key, N (Node)) then + Insert_Post (Tree, Y, Inserted, Node); + Inserted := True; + return; + end if; + + Inserted := False; + end Generic_Conditional_Insert; + + ------------------------------------------ + -- Generic_Conditional_Insert_With_Hint -- + ------------------------------------------ + + procedure Generic_Conditional_Insert_With_Hint + (Tree : in out Tree_Type'Class; + Position : Count_Type; + Key : Key_Type; + Node : out Count_Type; + Inserted : out Boolean) + is + N : Nodes_Type renames Tree.Nodes; + + begin + -- The purpose of a hint is to avoid a search from the root of + -- tree. If we have it hint it means we only need to traverse the + -- subtree rooted at the hint to find the nearest neighbor. Note + -- that finding the neighbor means merely walking the tree; this + -- is not a search and the only comparisons that occur are with + -- the hint and its neighbor. + + -- If Position is 0, this is interpreted to mean that Key is + -- large relative to the nodes in the tree. If the tree is empty, + -- or Key is greater than the last node in the tree, then we're + -- done; otherwise the hint was "wrong" and we must search. + + if Position = 0 then -- largest + if Tree.Last = 0 + or else Is_Greater_Key_Node (Key, N (Tree.Last)) + then + Insert_Post (Tree, Tree.Last, False, Node); + Inserted := True; + else + Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted); + end if; + + return; + end if; + + pragma Assert (Tree.Length > 0); + + -- A hint can either name the node that immediately follows Key, + -- or immediately precedes Key. We first test whether Key is + -- less than the hint, and if so we compare Key to the node that + -- precedes the hint. If Key is both less than the hint and + -- greater than the hint's preceding neighbor, then we're done; + -- otherwise we must search. + + -- Note also that a hint can either be an anterior node or a leaf + -- node. A new node is always inserted at the bottom of the tree + -- (at least prior to rebalancing), becoming the new left or + -- right child of leaf node (which prior to the insertion must + -- necessarily be null, since this is a leaf). If the hint names + -- an anterior node then its neighbor must be a leaf, and so + -- (here) we insert after the neighbor. If the hint names a leaf + -- then its neighbor must be anterior and so we insert before the + -- hint. + + if Is_Less_Key_Node (Key, N (Position)) then + declare + Before : constant Count_Type := Ops.Previous (Tree, Position); + + begin + if Before = 0 then + Insert_Post (Tree, Tree.First, True, Node); + Inserted := True; + + elsif Is_Greater_Key_Node (Key, N (Before)) then + if Ops.Right (N (Before)) = 0 then + Insert_Post (Tree, Before, False, Node); + else + Insert_Post (Tree, Position, True, Node); + end if; + + Inserted := True; + + else + Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted); + end if; + end; + + return; + end if; + + -- We know that Key isn't less than the hint so we try again, + -- this time to see if it's greater than the hint. If so we + -- compare Key to the node that follows the hint. If Key is both + -- greater than the hint and less than the hint's next neighbor, + -- then we're done; otherwise we must search. + + if Is_Greater_Key_Node (Key, N (Position)) then + declare + After : constant Count_Type := Ops.Next (Tree, Position); + + begin + if After = 0 then + Insert_Post (Tree, Tree.Last, False, Node); + Inserted := True; + + elsif Is_Less_Key_Node (Key, N (After)) then + if Ops.Right (N (Position)) = 0 then + Insert_Post (Tree, Position, False, Node); + else + Insert_Post (Tree, After, True, Node); + end if; + + Inserted := True; + + else + Conditional_Insert_Sans_Hint (Tree, Key, Node, Inserted); + end if; + end; + + return; + end if; + + -- We know that Key is neither less than the hint nor greater + -- than the hint, and that's the definition of equivalence. + -- There's nothing else we need to do, since a search would just + -- reach the same conclusion. + + Node := Position; + Inserted := False; + end Generic_Conditional_Insert_With_Hint; + + ------------------------- + -- Generic_Insert_Post -- + ------------------------- + + procedure Generic_Insert_Post + (Tree : in out Tree_Type'Class; + Y : Count_Type; + Before : Boolean; + Z : out Count_Type) + is + N : Nodes_Type renames Tree.Nodes; + + begin + if Tree.Length >= Tree.Capacity then + raise Capacity_Error with "not enough capacity to insert new item"; + end if; + + if Tree.Busy > 0 then + raise Program_Error with + "attempt to tamper with cursors (container is busy)"; + end if; + + Z := New_Node; + pragma Assert (Z /= 0); + + if Y = 0 then + pragma Assert (Tree.Length = 0); + pragma Assert (Tree.Root = 0); + pragma Assert (Tree.First = 0); + pragma Assert (Tree.Last = 0); + + Tree.Root := Z; + Tree.First := Z; + Tree.Last := Z; + + elsif Before then + pragma Assert (Ops.Left (N (Y)) = 0); + + Ops.Set_Left (N (Y), Z); + + if Y = Tree.First then + Tree.First := Z; + end if; + + else + pragma Assert (Ops.Right (N (Y)) = 0); + + Ops.Set_Right (N (Y), Z); + + if Y = Tree.Last then + Tree.Last := Z; + end if; + end if; + + Ops.Set_Color (N (Z), Red); + Ops.Set_Parent (N (Z), Y); + Ops.Rebalance_For_Insert (Tree, Z); + Tree.Length := Tree.Length + 1; + end Generic_Insert_Post; + + ----------------------- + -- Generic_Iteration -- + ----------------------- + + procedure Generic_Iteration + (Tree : Tree_Type'Class; + Key : Key_Type) + is + procedure Iterate (Index : Count_Type); + + ------------- + -- Iterate -- + ------------- + + procedure Iterate (Index : Count_Type) is + J : Count_Type; + N : Nodes_Type renames Tree.Nodes; + + begin + J := Index; + while J /= 0 loop + if Is_Less_Key_Node (Key, N (J)) then + J := Ops.Left (N (J)); + elsif Is_Greater_Key_Node (Key, N (J)) then + J := Ops.Right (N (J)); + else + Iterate (Ops.Left (N (J))); + Process (J); + J := Ops.Right (N (J)); + end if; + end loop; + end Iterate; + + -- Start of processing for Generic_Iteration + + begin + Iterate (Tree.Root); + end Generic_Iteration; + + ------------------------------- + -- Generic_Reverse_Iteration -- + ------------------------------- + + procedure Generic_Reverse_Iteration + (Tree : Tree_Type'Class; + Key : Key_Type) + is + procedure Iterate (Index : Count_Type); + + ------------- + -- Iterate -- + ------------- + + procedure Iterate (Index : Count_Type) is + J : Count_Type; + N : Nodes_Type renames Tree.Nodes; + + begin + J := Index; + while J /= 0 loop + if Is_Less_Key_Node (Key, N (J)) then + J := Ops.Left (N (J)); + elsif Is_Greater_Key_Node (Key, N (J)) then + J := Ops.Right (N (J)); + else + Iterate (Ops.Right (N (J))); + Process (J); + J := Ops.Left (N (J)); + end if; + end loop; + end Iterate; + + -- Start of processing for Generic_Reverse_Iteration + + begin + Iterate (Tree.Root); + end Generic_Reverse_Iteration; + + ---------------------------------- + -- Generic_Unconditional_Insert -- + ---------------------------------- + + procedure Generic_Unconditional_Insert + (Tree : in out Tree_Type'Class; + Key : Key_Type; + Node : out Count_Type) + is + Y : Count_Type; + X : Count_Type; + N : Nodes_Type renames Tree.Nodes; + + Before : Boolean; + + begin + Y := 0; + Before := False; + + X := Tree.Root; + while X /= 0 loop + Y := X; + Before := Is_Less_Key_Node (Key, N (X)); + X := (if Before then Ops.Left (N (X)) else Ops.Right (N (X))); + end loop; + + Insert_Post (Tree, Y, Before, Node); + end Generic_Unconditional_Insert; + + -------------------------------------------- + -- Generic_Unconditional_Insert_With_Hint -- + -------------------------------------------- + + procedure Generic_Unconditional_Insert_With_Hint + (Tree : in out Tree_Type'Class; + Hint : Count_Type; + Key : Key_Type; + Node : out Count_Type) + is + N : Nodes_Type renames Tree.Nodes; + + begin + -- There are fewer constraints for an unconditional insertion + -- than for a conditional insertion, since we allow duplicate + -- keys. So instead of having to check (say) whether Key is + -- (strictly) greater than the hint's previous neighbor, here we + -- allow Key to be equal to or greater than the previous node. + + -- There is the issue of what to do if Key is equivalent to the + -- hint. Does the new node get inserted before or after the hint? + -- We decide that it gets inserted after the hint, reasoning that + -- this is consistent with behavior for non-hint insertion, which + -- inserts a new node after existing nodes with equivalent keys. + + -- First we check whether the hint is null, which is interpreted + -- to mean that Key is large relative to existing nodes. + -- Following our rule above, if Key is equal to or greater than + -- the last node, then we insert the new node immediately after + -- last. (We don't have an operation for testing whether a key is + -- "equal to or greater than" a node, so we must say instead "not + -- less than", which is equivalent.) + + if Hint = 0 then -- largest + if Tree.Last = 0 then + Insert_Post (Tree, 0, False, Node); + elsif Is_Less_Key_Node (Key, N (Tree.Last)) then + Unconditional_Insert_Sans_Hint (Tree, Key, Node); + else + Insert_Post (Tree, Tree.Last, False, Node); + end if; + + return; + end if; + + pragma Assert (Tree.Length > 0); + + -- We decide here whether to insert the new node prior to the + -- hint. Key could be equivalent to the hint, so in theory we + -- could write the following test as "not greater than" (same as + -- "less than or equal to"). If Key were equivalent to the hint, + -- that would mean that the new node gets inserted before an + -- equivalent node. That wouldn't break any container invariants, + -- but our rule above says that new nodes always get inserted + -- after equivalent nodes. So here we test whether Key is both + -- less than the hint and equal to or greater than the hint's + -- previous neighbor, and if so insert it before the hint. + + if Is_Less_Key_Node (Key, N (Hint)) then + declare + Before : constant Count_Type := Ops.Previous (Tree, Hint); + begin + if Before = 0 then + Insert_Post (Tree, Hint, True, Node); + elsif Is_Less_Key_Node (Key, N (Before)) then + Unconditional_Insert_Sans_Hint (Tree, Key, Node); + elsif Ops.Right (N (Before)) = 0 then + Insert_Post (Tree, Before, False, Node); + else + Insert_Post (Tree, Hint, True, Node); + end if; + end; + + return; + end if; + + -- We know that Key isn't less than the hint, so it must be equal + -- or greater. So we just test whether Key is less than or equal + -- to (same as "not greater than") the hint's next neighbor, and + -- if so insert it after the hint. + + declare + After : constant Count_Type := Ops.Next (Tree, Hint); + begin + if After = 0 then + Insert_Post (Tree, Hint, False, Node); + elsif Is_Greater_Key_Node (Key, N (After)) then + Unconditional_Insert_Sans_Hint (Tree, Key, Node); + elsif Ops.Right (N (Hint)) = 0 then + Insert_Post (Tree, Hint, False, Node); + else + Insert_Post (Tree, After, True, Node); + end if; + end; + end Generic_Unconditional_Insert_With_Hint; + + ----------------- + -- Upper_Bound -- + ----------------- + + function Upper_Bound + (Tree : Tree_Type'Class; + Key : Key_Type) return Count_Type + is + Y : Count_Type; + X : Count_Type; + N : Nodes_Type renames Tree.Nodes; + + begin + Y := 0; + + X := Tree.Root; + while X /= 0 loop + if Is_Less_Key_Node (Key, N (X)) then + Y := X; + X := Ops.Left (N (X)); + else + X := Ops.Right (N (X)); + end if; + end loop; + + return Y; + end Upper_Bound; + +end Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys; |