diff options
author | kenner <kenner@138bc75d-0d04-0410-961f-82ee72b054a4> | 2001-10-02 14:08:34 +0000 |
---|---|---|
committer | kenner <kenner@138bc75d-0d04-0410-961f-82ee72b054a4> | 2001-10-02 14:08:34 +0000 |
commit | ee6ba406bdc83a0b016ec0099d84035d7fd26fd7 (patch) | |
tree | 133a71d6793865f2028234c0125afcfa4c7afc76 /gcc/ada/eval_fat.adb | |
parent | 1fac938ee5fb71eb038b3b33e393a02d5ea33190 (diff) | |
download | gcc-ee6ba406bdc83a0b016ec0099d84035d7fd26fd7.tar.gz |
New Language: Ada
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@45954 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/ada/eval_fat.adb')
-rw-r--r-- | gcc/ada/eval_fat.adb | 935 |
1 files changed, 935 insertions, 0 deletions
diff --git a/gcc/ada/eval_fat.adb b/gcc/ada/eval_fat.adb new file mode 100644 index 00000000000..99f5a9f6a19 --- /dev/null +++ b/gcc/ada/eval_fat.adb @@ -0,0 +1,935 @@ +------------------------------------------------------------------------------ +-- -- +-- GNAT COMPILER COMPONENTS -- +-- -- +-- E V A L _ F A T -- +-- -- +-- B o d y -- +-- -- +-- $Revision: 1.33 $ +-- -- +-- Copyright (C) 1992-2001 Free Software Foundation, Inc. -- +-- -- +-- GNAT is free software; you can redistribute it and/or modify it under -- +-- terms of the GNU General Public License as published by the Free Soft- -- +-- ware Foundation; either version 2, or (at your option) any later ver- -- +-- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- +-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- +-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- +-- for more details. You should have received a copy of the GNU General -- +-- Public License distributed with GNAT; see file COPYING. If not, write -- +-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, -- +-- MA 02111-1307, USA. -- +-- -- +-- GNAT was originally developed by the GNAT team at New York University. -- +-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). -- +-- -- +------------------------------------------------------------------------------ + +with Einfo; use Einfo; +with Sem_Util; use Sem_Util; +with Ttypef; use Ttypef; +with Targparm; use Targparm; + +package body Eval_Fat is + + Radix : constant Int := 2; + -- This code is currently only correct for the radix 2 case. We use + -- the symbolic value Radix where possible to help in the unlikely + -- case of anyone ever having to adjust this code for another value, + -- and for documentation purposes. + + type Radix_Power_Table is array (Int range 1 .. 4) of Int; + + Radix_Powers : constant Radix_Power_Table + := (Radix**1, Radix**2, Radix**3, Radix**4); + + function Float_Radix return T renames Ureal_2; + -- Radix expressed in real form + + ----------------------- + -- Local Subprograms -- + ----------------------- + + procedure Decompose + (RT : R; + X : in T; + Fraction : out T; + Exponent : out UI; + Mode : Rounding_Mode := Round); + -- Decomposes a non-zero floating-point number into fraction and + -- exponent parts. The fraction is in the interval 1.0 / Radix .. + -- T'Pred (1.0) and uses Rbase = Radix. + -- The result is rounded to a nearest machine number. + + procedure Decompose_Int + (RT : R; + X : in T; + Fraction : out UI; + Exponent : out UI; + Mode : Rounding_Mode); + -- This is similar to Decompose, except that the Fraction value returned + -- is an integer representing the value Fraction * Scale, where Scale is + -- the value (Radix ** Machine_Mantissa (RT)). The value is obtained by + -- using biased rounding (halfway cases round away from zero), round to + -- even, a floor operation or a ceiling operation depending on the setting + -- of Mode (see corresponding descriptions in Urealp). + -- In case rounding was specified, Rounding_Was_Biased is set True + -- if the input was indeed halfway between to machine numbers and + -- got rounded away from zero to an odd number. + + function Eps_Model (RT : R) return T; + -- Return the smallest model number of R. + + function Eps_Denorm (RT : R) return T; + -- Return the smallest denormal of type R. + + function Machine_Mantissa (RT : R) return Nat; + -- Get value of machine mantissa + + -------------- + -- Adjacent -- + -------------- + + function Adjacent (RT : R; X, Towards : T) return T is + begin + if Towards = X then + return X; + + elsif Towards > X then + return Succ (RT, X); + + else + return Pred (RT, X); + end if; + end Adjacent; + + ------------- + -- Ceiling -- + ------------- + + function Ceiling (RT : R; X : T) return T is + XT : constant T := Truncation (RT, X); + + begin + if UR_Is_Negative (X) then + return XT; + + elsif X = XT then + return X; + + else + return XT + Ureal_1; + end if; + end Ceiling; + + ------------- + -- Compose -- + ------------- + + function Compose (RT : R; Fraction : T; Exponent : UI) return T is + Arg_Frac : T; + Arg_Exp : UI; + + begin + if UR_Is_Zero (Fraction) then + return Fraction; + else + Decompose (RT, Fraction, Arg_Frac, Arg_Exp); + return Scaling (RT, Arg_Frac, Exponent); + end if; + end Compose; + + --------------- + -- Copy_Sign -- + --------------- + + function Copy_Sign (RT : R; Value, Sign : T) return T is + Result : T; + + begin + Result := abs Value; + + if UR_Is_Negative (Sign) then + return -Result; + else + return Result; + end if; + end Copy_Sign; + + --------------- + -- Decompose -- + --------------- + + procedure Decompose + (RT : R; + X : in T; + Fraction : out T; + Exponent : out UI; + Mode : Rounding_Mode := Round) + is + Int_F : UI; + + begin + Decompose_Int (RT, abs X, Int_F, Exponent, Mode); + + Fraction := UR_From_Components + (Num => Int_F, + Den => UI_From_Int (Machine_Mantissa (RT)), + Rbase => Radix, + Negative => False); + + if UR_Is_Negative (X) then + Fraction := -Fraction; + end if; + + return; + end Decompose; + + ------------------- + -- Decompose_Int -- + ------------------- + + -- This procedure should be modified with care, as there + -- are many non-obvious details that may cause problems + -- that are hard to detect. The cases of positive and + -- negative zeroes are also special and should be + -- verified separately. + + procedure Decompose_Int + (RT : R; + X : in T; + Fraction : out UI; + Exponent : out UI; + Mode : Rounding_Mode) + is + Base : Int := Rbase (X); + N : UI := abs Numerator (X); + D : UI := Denominator (X); + + N_Times_Radix : UI; + + Even : Boolean; + -- True iff Fraction is even + + Most_Significant_Digit : constant UI := + Radix ** (Machine_Mantissa (RT) - 1); + + Uintp_Mark : Uintp.Save_Mark; + -- The code is divided into blocks that systematically release + -- intermediate values (this routine generates lots of junk!) + + begin + Calculate_D_And_Exponent_1 : begin + Uintp_Mark := Mark; + Exponent := Uint_0; + + -- In cases where Base > 1, the actual denominator is + -- Base**D. For cases where Base is a power of Radix, use + -- the value 1 for the Denominator and adjust the exponent. + + -- Note: Exponent has different sign from D, because D is a divisor + + for Power in 1 .. Radix_Powers'Last loop + if Base = Radix_Powers (Power) then + Exponent := -D * Power; + Base := 0; + D := Uint_1; + exit; + end if; + end loop; + + Release_And_Save (Uintp_Mark, D, Exponent); + end Calculate_D_And_Exponent_1; + + if Base > 0 then + Calculate_Exponent : begin + Uintp_Mark := Mark; + + -- For bases that are a multiple of the Radix, divide + -- the base by Radix and adjust the Exponent. This will + -- help because D will be much smaller and faster to process. + + -- This occurs for decimal bases on a machine with binary + -- floating-point for example. When calculating 1E40, + -- with Radix = 2, N will be 93 bits instead of 133. + + -- N E + -- ------ * Radix + -- D + -- Base + + -- N E + -- = -------------------------- * Radix + -- D D + -- (Base/Radix) * Radix + + -- N E-D + -- = --------------- * Radix + -- D + -- (Base/Radix) + + -- This code is commented out, because it causes numerous + -- failures in the regression suite. To be studied ??? + + while False and then Base > 0 and then Base mod Radix = 0 loop + Base := Base / Radix; + Exponent := Exponent + D; + end loop; + + Release_And_Save (Uintp_Mark, Exponent); + end Calculate_Exponent; + + -- For remaining bases we must actually compute + -- the exponentiation. + + -- Because the exponentiation can be negative, and D must + -- be integer, the numerator is corrected instead. + + Calculate_N_And_D : begin + Uintp_Mark := Mark; + + if D < 0 then + N := N * Base ** (-D); + D := Uint_1; + else + D := Base ** D; + end if; + + Release_And_Save (Uintp_Mark, N, D); + end Calculate_N_And_D; + + Base := 0; + end if; + + -- Now scale N and D so that N / D is a value in the + -- interval [1.0 / Radix, 1.0) and adjust Exponent accordingly, + -- so the value N / D * Radix ** Exponent remains unchanged. + + -- Step 1 - Adjust N so N / D >= 1 / Radix, or N = 0 + + -- N and D are positive, so N / D >= 1 / Radix implies N * Radix >= D. + -- This scaling is not possible for N is Uint_0 as there + -- is no way to scale Uint_0 so the first digit is non-zero. + + Calculate_N_And_Exponent : begin + Uintp_Mark := Mark; + + N_Times_Radix := N * Radix; + + if N /= Uint_0 then + while not (N_Times_Radix >= D) loop + N := N_Times_Radix; + Exponent := Exponent - 1; + + N_Times_Radix := N * Radix; + end loop; + end if; + + Release_And_Save (Uintp_Mark, N, Exponent); + end Calculate_N_And_Exponent; + + -- Step 2 - Adjust D so N / D < 1 + + -- Scale up D so N / D < 1, so N < D + + Calculate_D_And_Exponent_2 : begin + Uintp_Mark := Mark; + + while not (N < D) loop + + -- As N / D >= 1, N / (D * Radix) will be at least 1 / Radix, + -- so the result of Step 1 stays valid + + D := D * Radix; + Exponent := Exponent + 1; + end loop; + + Release_And_Save (Uintp_Mark, D, Exponent); + end Calculate_D_And_Exponent_2; + + -- Here the value N / D is in the range [1.0 / Radix .. 1.0) + + -- Now find the fraction by doing a very simple-minded + -- division until enough digits have been computed. + + -- This division works for all radices, but is only efficient for + -- a binary radix. It is just like a manual division algorithm, + -- but instead of moving the denominator one digit right, we move + -- the numerator one digit left so the numerator and denominator + -- remain integral. + + Fraction := Uint_0; + Even := True; + + Calculate_Fraction_And_N : begin + Uintp_Mark := Mark; + + loop + while N >= D loop + N := N - D; + Fraction := Fraction + 1; + Even := not Even; + end loop; + + -- Stop when the result is in [1.0 / Radix, 1.0) + + exit when Fraction >= Most_Significant_Digit; + + N := N * Radix; + Fraction := Fraction * Radix; + Even := True; + end loop; + + Release_And_Save (Uintp_Mark, Fraction, N); + end Calculate_Fraction_And_N; + + Calculate_Fraction_And_Exponent : begin + Uintp_Mark := Mark; + + -- Put back sign before applying the rounding. + + if UR_Is_Negative (X) then + Fraction := -Fraction; + end if; + + -- Determine correct rounding based on the remainder + -- which is in N and the divisor D. + + Rounding_Was_Biased := False; -- Until proven otherwise + + case Mode is + when Round_Even => + + -- This rounding mode should not be used for static + -- expressions, but only for compile-time evaluation + -- of non-static expressions. + + if (Even and then N * 2 > D) + or else + (not Even and then N * 2 >= D) + then + Fraction := Fraction + 1; + end if; + + when Round => + + -- Do not round to even as is done with IEEE arithmetic, + -- but instead round away from zero when the result is + -- exactly between two machine numbers. See RM 4.9(38). + + if N * 2 >= D then + Fraction := Fraction + 1; + + Rounding_Was_Biased := Even and then N * 2 = D; + -- Check for the case where the result is actually + -- different from Round_Even. + end if; + + when Ceiling => + if N > Uint_0 then + Fraction := Fraction + 1; + end if; + + when Floor => null; + end case; + + -- The result must be normalized to [1.0/Radix, 1.0), + -- so adjust if the result is 1.0 because of rounding. + + if Fraction = Most_Significant_Digit * Radix then + Fraction := Most_Significant_Digit; + Exponent := Exponent + 1; + end if; + + Release_And_Save (Uintp_Mark, Fraction, Exponent); + end Calculate_Fraction_And_Exponent; + + end Decompose_Int; + + ---------------- + -- Eps_Denorm -- + ---------------- + + function Eps_Denorm (RT : R) return T is + Digs : constant UI := Digits_Value (RT); + Emin : Int; + Mant : Int; + + begin + if Vax_Float (RT) then + if Digs = VAXFF_Digits then + Emin := VAXFF_Machine_Emin; + Mant := VAXFF_Machine_Mantissa; + + elsif Digs = VAXDF_Digits then + Emin := VAXDF_Machine_Emin; + Mant := VAXDF_Machine_Mantissa; + + else + pragma Assert (Digs = VAXGF_Digits); + Emin := VAXGF_Machine_Emin; + Mant := VAXGF_Machine_Mantissa; + end if; + + elsif Is_AAMP_Float (RT) then + if Digs = AAMPS_Digits then + Emin := AAMPS_Machine_Emin; + Mant := AAMPS_Machine_Mantissa; + + else + pragma Assert (Digs = AAMPL_Digits); + Emin := AAMPL_Machine_Emin; + Mant := AAMPL_Machine_Mantissa; + end if; + + else + if Digs = IEEES_Digits then + Emin := IEEES_Machine_Emin; + Mant := IEEES_Machine_Mantissa; + + elsif Digs = IEEEL_Digits then + Emin := IEEEL_Machine_Emin; + Mant := IEEEL_Machine_Mantissa; + + else + pragma Assert (Digs = IEEEX_Digits); + Emin := IEEEX_Machine_Emin; + Mant := IEEEX_Machine_Mantissa; + end if; + end if; + + return Float_Radix ** UI_From_Int (Emin - Mant); + end Eps_Denorm; + + --------------- + -- Eps_Model -- + --------------- + + function Eps_Model (RT : R) return T is + Digs : constant UI := Digits_Value (RT); + Emin : Int; + + begin + if Vax_Float (RT) then + if Digs = VAXFF_Digits then + Emin := VAXFF_Machine_Emin; + + elsif Digs = VAXDF_Digits then + Emin := VAXDF_Machine_Emin; + + else + pragma Assert (Digs = VAXGF_Digits); + Emin := VAXGF_Machine_Emin; + end if; + + elsif Is_AAMP_Float (RT) then + if Digs = AAMPS_Digits then + Emin := AAMPS_Machine_Emin; + + else + pragma Assert (Digs = AAMPL_Digits); + Emin := AAMPL_Machine_Emin; + end if; + + else + if Digs = IEEES_Digits then + Emin := IEEES_Machine_Emin; + + elsif Digs = IEEEL_Digits then + Emin := IEEEL_Machine_Emin; + + else + pragma Assert (Digs = IEEEX_Digits); + Emin := IEEEX_Machine_Emin; + end if; + end if; + + return Float_Radix ** UI_From_Int (Emin); + end Eps_Model; + + -------------- + -- Exponent -- + -------------- + + function Exponent (RT : R; X : T) return UI is + X_Frac : UI; + X_Exp : UI; + + begin + if UR_Is_Zero (X) then + return Uint_0; + else + Decompose_Int (RT, X, X_Frac, X_Exp, Round_Even); + return X_Exp; + end if; + end Exponent; + + ----------- + -- Floor -- + ----------- + + function Floor (RT : R; X : T) return T is + XT : constant T := Truncation (RT, X); + + begin + if UR_Is_Positive (X) then + return XT; + + elsif XT = X then + return X; + + else + return XT - Ureal_1; + end if; + end Floor; + + -------------- + -- Fraction -- + -------------- + + function Fraction (RT : R; X : T) return T is + X_Frac : T; + X_Exp : UI; + + begin + if UR_Is_Zero (X) then + return X; + else + Decompose (RT, X, X_Frac, X_Exp); + return X_Frac; + end if; + end Fraction; + + ------------------ + -- Leading_Part -- + ------------------ + + function Leading_Part (RT : R; X : T; Radix_Digits : UI) return T is + L : UI; + Y, Z : T; + + begin + if Radix_Digits >= Machine_Mantissa (RT) then + return X; + + else + L := Exponent (RT, X) - Radix_Digits; + Y := Truncation (RT, Scaling (RT, X, -L)); + Z := Scaling (RT, Y, L); + return Z; + end if; + + end Leading_Part; + + ------------- + -- Machine -- + ------------- + + function Machine (RT : R; X : T; Mode : Rounding_Mode) return T is + X_Frac : T; + X_Exp : UI; + + begin + if UR_Is_Zero (X) then + return X; + else + Decompose (RT, X, X_Frac, X_Exp, Mode); + return Scaling (RT, X_Frac, X_Exp); + end if; + end Machine; + + ---------------------- + -- Machine_Mantissa -- + ---------------------- + + function Machine_Mantissa (RT : R) return Nat is + Digs : constant UI := Digits_Value (RT); + Mant : Nat; + + begin + if Vax_Float (RT) then + if Digs = VAXFF_Digits then + Mant := VAXFF_Machine_Mantissa; + + elsif Digs = VAXDF_Digits then + Mant := VAXDF_Machine_Mantissa; + + else + pragma Assert (Digs = VAXGF_Digits); + Mant := VAXGF_Machine_Mantissa; + end if; + + elsif Is_AAMP_Float (RT) then + if Digs = AAMPS_Digits then + Mant := AAMPS_Machine_Mantissa; + + else + pragma Assert (Digs = AAMPL_Digits); + Mant := AAMPL_Machine_Mantissa; + end if; + + else + if Digs = IEEES_Digits then + Mant := IEEES_Machine_Mantissa; + + elsif Digs = IEEEL_Digits then + Mant := IEEEL_Machine_Mantissa; + + else + pragma Assert (Digs = IEEEX_Digits); + Mant := IEEEX_Machine_Mantissa; + end if; + end if; + + return Mant; + end Machine_Mantissa; + + ----------- + -- Model -- + ----------- + + function Model (RT : R; X : T) return T is + X_Frac : T; + X_Exp : UI; + + begin + Decompose (RT, X, X_Frac, X_Exp); + return Compose (RT, X_Frac, X_Exp); + end Model; + + ---------- + -- Pred -- + ---------- + + function Pred (RT : R; X : T) return T is + Result_F : UI; + Result_X : UI; + + begin + if abs X < Eps_Model (RT) then + if Denorm_On_Target then + return X - Eps_Denorm (RT); + + elsif X > Ureal_0 then + -- Target does not support denorms, so predecessor is 0.0 + return Ureal_0; + + else + -- Target does not support denorms, and X is 0.0 + -- or at least bigger than -Eps_Model (RT) + + return -Eps_Model (RT); + end if; + + else + Decompose_Int (RT, X, Result_F, Result_X, Ceiling); + return UR_From_Components + (Num => Result_F - 1, + Den => Machine_Mantissa (RT) - Result_X, + Rbase => Radix, + Negative => False); + -- Result_F may be false, but this is OK as UR_From_Components + -- handles that situation. + end if; + end Pred; + + --------------- + -- Remainder -- + --------------- + + function Remainder (RT : R; X, Y : T) return T is + A : T; + B : T; + Arg : T; + P : T; + Arg_Frac : T; + P_Frac : T; + Sign_X : T; + IEEE_Rem : T; + Arg_Exp : UI; + P_Exp : UI; + K : UI; + P_Even : Boolean; + + begin + if UR_Is_Positive (X) then + Sign_X := Ureal_1; + else + Sign_X := -Ureal_1; + end if; + + Arg := abs X; + P := abs Y; + + if Arg < P then + P_Even := True; + IEEE_Rem := Arg; + P_Exp := Exponent (RT, P); + + else + -- ??? what about zero cases? + Decompose (RT, Arg, Arg_Frac, Arg_Exp); + Decompose (RT, P, P_Frac, P_Exp); + + P := Compose (RT, P_Frac, Arg_Exp); + K := Arg_Exp - P_Exp; + P_Even := True; + IEEE_Rem := Arg; + + for Cnt in reverse 0 .. UI_To_Int (K) loop + if IEEE_Rem >= P then + P_Even := False; + IEEE_Rem := IEEE_Rem - P; + else + P_Even := True; + end if; + + P := P * Ureal_Half; + end loop; + end if; + + -- That completes the calculation of modulus remainder. The final step + -- is get the IEEE remainder. Here we compare Rem with (abs Y) / 2. + + if P_Exp >= 0 then + A := IEEE_Rem; + B := abs Y * Ureal_Half; + + else + A := IEEE_Rem * Ureal_2; + B := abs Y; + end if; + + if A > B or else (A = B and then not P_Even) then + IEEE_Rem := IEEE_Rem - abs Y; + end if; + + return Sign_X * IEEE_Rem; + + end Remainder; + + -------------- + -- Rounding -- + -------------- + + function Rounding (RT : R; X : T) return T is + Result : T; + Tail : T; + + begin + Result := Truncation (RT, abs X); + Tail := abs X - Result; + + if Tail >= Ureal_Half then + Result := Result + Ureal_1; + end if; + + if UR_Is_Negative (X) then + return -Result; + else + return Result; + end if; + + end Rounding; + + ------------- + -- Scaling -- + ------------- + + function Scaling (RT : R; X : T; Adjustment : UI) return T is + begin + if Rbase (X) = Radix then + return UR_From_Components + (Num => Numerator (X), + Den => Denominator (X) - Adjustment, + Rbase => Radix, + Negative => UR_Is_Negative (X)); + + elsif Adjustment >= 0 then + return X * Radix ** Adjustment; + else + return X / Radix ** (-Adjustment); + end if; + end Scaling; + + ---------- + -- Succ -- + ---------- + + function Succ (RT : R; X : T) return T is + Result_F : UI; + Result_X : UI; + + begin + if abs X < Eps_Model (RT) then + if Denorm_On_Target then + return X + Eps_Denorm (RT); + + elsif X < Ureal_0 then + -- Target does not support denorms, so successor is 0.0 + return Ureal_0; + + else + -- Target does not support denorms, and X is 0.0 + -- or at least smaller than Eps_Model (RT) + + return Eps_Model (RT); + end if; + + else + Decompose_Int (RT, X, Result_F, Result_X, Floor); + return UR_From_Components + (Num => Result_F + 1, + Den => Machine_Mantissa (RT) - Result_X, + Rbase => Radix, + Negative => False); + -- Result_F may be false, but this is OK as UR_From_Components + -- handles that situation. + end if; + end Succ; + + ---------------- + -- Truncation -- + ---------------- + + function Truncation (RT : R; X : T) return T is + begin + return UR_From_Uint (UR_Trunc (X)); + end Truncation; + + ----------------------- + -- Unbiased_Rounding -- + ----------------------- + + function Unbiased_Rounding (RT : R; X : T) return T is + Abs_X : constant T := abs X; + Result : T; + Tail : T; + + begin + Result := Truncation (RT, Abs_X); + Tail := Abs_X - Result; + + if Tail > Ureal_Half then + Result := Result + Ureal_1; + + elsif Tail = Ureal_Half then + Result := Ureal_2 * + Truncation (RT, (Result / Ureal_2) + Ureal_Half); + end if; + + if UR_Is_Negative (X) then + return -Result; + elsif UR_Is_Positive (X) then + return Result; + + -- For zero case, make sure sign of zero is preserved + + else + return X; + end if; + + end Unbiased_Rounding; + +end Eval_Fat; |