summaryrefslogtreecommitdiff
path: root/gcc/ada/i-forlap.ads
diff options
context:
space:
mode:
authorcharlet <charlet@138bc75d-0d04-0410-961f-82ee72b054a4>2007-04-06 09:23:23 +0000
committercharlet <charlet@138bc75d-0d04-0410-961f-82ee72b054a4>2007-04-06 09:23:23 +0000
commit0d12640be4501b419982546d58feb5e48c65d56f (patch)
tree3dae18939bf7386b4ee86c6180790a3c352c21c5 /gcc/ada/i-forlap.ads
parentb4fde0cf29d17f951cc51fe014d8fb877ab9f47f (diff)
downloadgcc-0d12640be4501b419982546d58feb5e48c65d56f.tar.gz
2007-04-06 Geert Bosch <bosch@adacore.com>
Robert Dewar <dewar@adacore.com> * i-fortra.ads: Add Double_Complex type. * impunit.adb: (Is_Known_Unit): New function Add Gnat.Byte_Swapping Add GNAT.SHA1 Add new Ada 2005 units Ada.Numerics.Generic_Complex_Arrays, Ada.Numerics.Generic_Real_Arrays, Ada.Numerics.Complex_Arrays, Ada.Numerics.Real_Arrays, Ada.Numerics.Long_Complex_Arrays, Ada.Numerics.Long_Long_Complex_Arrays, Ada.Numerics.Long_Long_Real_Arrays and Ada.Numerics.Long_Real_Arrays * impunit.ads (Is_Known_Unit): New function * a-ngcoar.adb, a-ngcoar.ads, a-ngrear.adb, a-ngrear.ads, a-nlcoar.ads, a-nllcar.ads, a-nllrar.ads, a-nlrear.ads, a-nucoar.ads, a-nurear.ads, g-bytswa.adb, g-bytswa-x86.adb, g-bytswa.ads, g-sha1.adb, g-sha1.ads, i-forbla.ads, i-forlap.ads, s-gearop.adb, s-gearop.ads, s-gecobl.adb, s-gecobl.ads, s-gecola.adb, s-gecola.ads, s-gerebl.adb, s-gerebl.ads, s-gerela.adb, s-gerela.ads: New files. * Makefile.rtl: Add g-bytswa, g-sha1, a-fzteio and a-izteio * a-fzteio.ads, a-izteio.ads: New Ada 2005 run-time units. git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@123579 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/ada/i-forlap.ads')
-rw-r--r--gcc/ada/i-forlap.ads416
1 files changed, 416 insertions, 0 deletions
diff --git a/gcc/ada/i-forlap.ads b/gcc/ada/i-forlap.ads
new file mode 100644
index 00000000000..9faacceef70
--- /dev/null
+++ b/gcc/ada/i-forlap.ads
@@ -0,0 +1,416 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT RUN-TIME COMPONENTS --
+-- --
+-- INTERFACES.FORTRAN.LAPACK --
+-- --
+-- S p e c --
+-- --
+-- Copyright (C) 2006, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 2, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING. If not, write --
+-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
+-- Boston, MA 02110-1301, USA. --
+-- --
+-- As a special exception, if other files instantiate generics from this --
+-- unit, or you link this unit with other files to produce an executable, --
+-- this unit does not by itself cause the resulting executable to be --
+-- covered by the GNU General Public License. This exception does not --
+-- however invalidate any other reasons why the executable file might be --
+-- covered by the GNU Public License. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+-- Package comment required if non-RM package ???
+
+with Interfaces.Fortran.BLAS;
+package Interfaces.Fortran.LAPACK is
+ pragma Pure;
+
+ type Integer_Vector is array (Integer range <>) of Integer;
+
+ Upper : aliased constant Character := 'U';
+ Lower : aliased constant Character := 'L';
+
+ subtype Real_Vector is BLAS.Real_Vector;
+ subtype Real_Matrix is BLAS.Real_Matrix;
+ subtype Double_Precision_Vector is BLAS.Double_Precision_Vector;
+ subtype Double_Precision_Matrix is BLAS.Double_Precision_Matrix;
+ subtype Complex_Vector is BLAS.Complex_Vector;
+ subtype Complex_Matrix is BLAS.Complex_Matrix;
+ subtype Double_Complex_Vector is BLAS.Double_Complex_Vector;
+ subtype Double_Complex_Matrix is BLAS.Double_Complex_Matrix;
+
+ -- LAPACK Computational Routines
+
+ -- gerfs Refines the solution of a system of linear equations with
+ -- a general matrix and estimates its error
+ -- getrf Computes LU factorization of a general m-by-n matrix
+ -- getri Computes inverse of an LU-factored general matrix
+ -- square matrix, with multiple right-hand sides
+ -- getrs Solves a system of linear equations with an LU-factored
+ -- square matrix, with multiple right-hand sides
+ -- hetrd Reduces a complex Hermitian matrix to tridiagonal form
+ -- heevr Computes selected eigenvalues and, optionally, eigenvectors of
+ -- a Hermitian matrix using the Relatively Robust Representations
+ -- orgtr Generates the real orthogonal matrix Q determined by sytrd
+ -- steqr Computes all eigenvalues and eigenvectors of a symmetric or
+ -- Hermitian matrix reduced to tridiagonal form (QR algorithm)
+ -- sterf Computes all eigenvalues of a real symmetric
+ -- tridiagonal matrix using QR algorithm
+ -- sytrd Reduces a real symmetric matrix to tridiagonal form
+
+ procedure sgetrf
+ (M : Natural;
+ N : Natural;
+ A : in out Real_Matrix;
+ Ld_A : Positive;
+ I_Piv : out Integer_Vector;
+ Info : access Integer);
+
+ procedure dgetrf
+ (M : Natural;
+ N : Natural;
+ A : in out Double_Precision_Matrix;
+ Ld_A : Positive;
+ I_Piv : out Integer_Vector;
+ Info : access Integer);
+
+ procedure cgetrf
+ (M : Natural;
+ N : Natural;
+ A : in out Complex_Matrix;
+ Ld_A : Positive;
+ I_Piv : out Integer_Vector;
+ Info : access Integer);
+
+ procedure zgetrf
+ (M : Natural;
+ N : Natural;
+ A : in out Double_Complex_Matrix;
+ Ld_A : Positive;
+ I_Piv : out Integer_Vector;
+ Info : access Integer);
+
+ procedure sgetri
+ (N : Natural;
+ A : in out Real_Matrix;
+ Ld_A : Positive;
+ I_Piv : Integer_Vector;
+ Work : in out Real_Vector;
+ L_Work : Integer;
+ Info : access Integer);
+
+ procedure dgetri
+ (N : Natural;
+ A : in out Double_Precision_Matrix;
+ Ld_A : Positive;
+ I_Piv : Integer_Vector;
+ Work : in out Double_Precision_Vector;
+ L_Work : Integer;
+ Info : access Integer);
+
+ procedure cgetri
+ (N : Natural;
+ A : in out Complex_Matrix;
+ Ld_A : Positive;
+ I_Piv : Integer_Vector;
+ Work : in out Complex_Vector;
+ L_Work : Integer;
+ Info : access Integer);
+
+ procedure zgetri
+ (N : Natural;
+ A : in out Double_Complex_Matrix;
+ Ld_A : Positive;
+ I_Piv : Integer_Vector;
+ Work : in out Double_Complex_Vector;
+ L_Work : Integer;
+ Info : access Integer);
+
+ procedure sgetrs
+ (Trans : access constant Character;
+ N : Natural;
+ N_Rhs : Natural;
+ A : Real_Matrix;
+ Ld_A : Positive;
+ I_Piv : Integer_Vector;
+ B : in out Real_Matrix;
+ Ld_B : Positive;
+ Info : access Integer);
+
+ procedure dgetrs
+ (Trans : access constant Character;
+ N : Natural;
+ N_Rhs : Natural;
+ A : Double_Precision_Matrix;
+ Ld_A : Positive;
+ I_Piv : Integer_Vector;
+ B : in out Double_Precision_Matrix;
+ Ld_B : Positive;
+ Info : access Integer);
+
+ procedure cgetrs
+ (Trans : access constant Character;
+ N : Natural;
+ N_Rhs : Natural;
+ A : Complex_Matrix;
+ Ld_A : Positive;
+ I_Piv : Integer_Vector;
+ B : in out Complex_Matrix;
+ Ld_B : Positive;
+ Info : access Integer);
+
+ procedure zgetrs
+ (Trans : access constant Character;
+ N : Natural;
+ N_Rhs : Natural;
+ A : Double_Complex_Matrix;
+ Ld_A : Positive;
+ I_Piv : Integer_Vector;
+ B : in out Double_Complex_Matrix;
+ Ld_B : Positive;
+ Info : access Integer);
+
+ procedure cheevr
+ (Job_Z : access constant Character;
+ Rng : access constant Character;
+ Uplo : access constant Character;
+ N : Natural;
+ A : in out Complex_Matrix;
+ Ld_A : Positive;
+ Vl, Vu : Real := 0.0;
+ Il, Iu : Integer := 1;
+ Abs_Tol : Real := 0.0;
+ M : out Integer;
+ W : out Real_Vector;
+ Z : out Complex_Matrix;
+ Ld_Z : Positive;
+ I_Supp_Z : out Integer_Vector;
+ Work : out Complex_Vector;
+ L_Work : Integer;
+ R_Work : out Real_Vector;
+ LR_Work : Integer;
+ I_Work : out Integer_Vector;
+ LI_Work : Integer;
+ Info : access Integer);
+
+ procedure zheevr
+ (Job_Z : access constant Character;
+ Rng : access constant Character;
+ Uplo : access constant Character;
+ N : Natural;
+ A : in out Double_Complex_Matrix;
+ Ld_A : Positive;
+ Vl, Vu : Double_Precision := 0.0;
+ Il, Iu : Integer := 1;
+ Abs_Tol : Double_Precision := 0.0;
+ M : out Integer;
+ W : out Double_Precision_Vector;
+ Z : out Double_Complex_Matrix;
+ Ld_Z : Positive;
+ I_Supp_Z : out Integer_Vector;
+ Work : out Double_Complex_Vector;
+ L_Work : Integer;
+ R_Work : out Double_Precision_Vector;
+ LR_Work : Integer;
+ I_Work : out Integer_Vector;
+ LI_Work : Integer;
+ Info : access Integer);
+
+ procedure chetrd
+ (Uplo : access constant Character;
+ N : Natural;
+ A : in out Complex_Matrix;
+ Ld_A : Positive;
+ D : out Real_Vector;
+ E : out Real_Vector;
+ Tau : out Complex_Vector;
+ Work : out Complex_Vector;
+ L_Work : Integer;
+ Info : access Integer);
+
+ procedure zhetrd
+ (Uplo : access constant Character;
+ N : Natural;
+ A : in out Double_Complex_Matrix;
+ Ld_A : Positive;
+ D : out Double_Precision_Vector;
+ E : out Double_Precision_Vector;
+ Tau : out Double_Complex_Vector;
+ Work : out Double_Complex_Vector;
+ L_Work : Integer;
+ Info : access Integer);
+
+ procedure ssytrd
+ (Uplo : access constant Character;
+ N : Natural;
+ A : in out Real_Matrix;
+ Ld_A : Positive;
+ D : out Real_Vector;
+ E : out Real_Vector;
+ Tau : out Real_Vector;
+ Work : out Real_Vector;
+ L_Work : Integer;
+ Info : access Integer);
+
+ procedure dsytrd
+ (Uplo : access constant Character;
+ N : Natural;
+ A : in out Double_Precision_Matrix;
+ Ld_A : Positive;
+ D : out Double_Precision_Vector;
+ E : out Double_Precision_Vector;
+ Tau : out Double_Precision_Vector;
+ Work : out Double_Precision_Vector;
+ L_Work : Integer;
+ Info : access Integer);
+
+ procedure ssterf
+ (N : Natural;
+ D : in out Real_Vector;
+ E : in out Real_Vector;
+ Info : access Integer);
+
+ procedure dsterf
+ (N : Natural;
+ D : in out Double_Precision_Vector;
+ E : in out Double_Precision_Vector;
+ Info : access Integer);
+
+ procedure sorgtr
+ (Uplo : access constant Character;
+ N : Natural;
+ A : in out Real_Matrix;
+ Ld_A : Positive;
+ Tau : in Real_Vector;
+ Work : out Real_Vector;
+ L_Work : Integer;
+ Info : access Integer);
+
+ procedure dorgtr
+ (Uplo : access constant Character;
+ N : Natural;
+ A : in out Double_Precision_Matrix;
+ Ld_A : Positive;
+ Tau : in Double_Precision_Vector;
+ Work : out Double_Precision_Vector;
+ L_Work : Integer;
+ Info : access Integer);
+
+ procedure sstebz
+ (Rng : access constant Character;
+ Order : access constant Character;
+ N : in Natural;
+ Vl, Vu : in Real := 0.0;
+ Il, Iu : in Integer := 1;
+ Abs_Tol : in Real := 0.0;
+ D : in Real_Vector;
+ E : in Real_Vector;
+ M : out Natural;
+ N_Split : out Natural;
+ W : out Real_Vector;
+ I_Block : out Integer_Vector;
+ I_Split : out Integer_Vector;
+ Work : out Real_Vector;
+ I_Work : out Integer_Vector;
+ Info : access Integer);
+
+ procedure dstebz
+ (Rng : access constant Character;
+ Order : access constant Character;
+ N : in Natural;
+ Vl, Vu : in Double_Precision := 0.0;
+ Il, Iu : in Integer := 1;
+ Abs_Tol : in Double_Precision := 0.0;
+ D : in Double_Precision_Vector;
+ E : in Double_Precision_Vector;
+ M : out Natural;
+ N_Split : out Natural;
+ W : out Double_Precision_Vector;
+ I_Block : out Integer_Vector;
+ I_Split : out Integer_Vector;
+ Work : out Double_Precision_Vector;
+ I_Work : out Integer_Vector;
+ Info : access Integer);
+
+ procedure ssteqr
+ (Comp_Z : access constant Character;
+ N : Natural;
+ D : in out Real_Vector;
+ E : in out Real_Vector;
+ Z : in out Real_Matrix;
+ Ld_Z : Positive;
+ Work : out Real_Vector;
+ Info : access Integer);
+
+ procedure dsteqr
+ (Comp_Z : access constant Character;
+ N : Natural;
+ D : in out Double_Precision_Vector;
+ E : in out Double_Precision_Vector;
+ Z : in out Double_Precision_Matrix;
+ Ld_Z : Positive;
+ Work : out Double_Precision_Vector;
+ Info : access Integer);
+
+ procedure csteqr
+ (Comp_Z : access constant Character;
+ N : Natural;
+ D : in out Real_Vector;
+ E : in out Real_Vector;
+ Z : in out Complex_Matrix;
+ Ld_Z : Positive;
+ Work : out Real_Vector;
+ Info : access Integer);
+
+ procedure zsteqr
+ (Comp_Z : access constant Character;
+ N : Natural;
+ D : in out Double_Precision_Vector;
+ E : in out Double_Precision_Vector;
+ Z : in out Double_Complex_Matrix;
+ Ld_Z : Positive;
+ Work : out Double_Precision_Vector;
+ Info : access Integer);
+
+private
+ pragma Import (Fortran, csteqr, "csteqr_");
+ pragma Import (Fortran, cgetrf, "cgetrf_");
+ pragma Import (Fortran, cgetri, "cgetri_");
+ pragma Import (Fortran, cgetrs, "cgetrs_");
+ pragma Import (Fortran, cheevr, "cheevr_");
+ pragma Import (Fortran, chetrd, "chetrd_");
+ pragma Import (Fortran, dgetrf, "dgetrf_");
+ pragma Import (Fortran, dgetri, "dgetri_");
+ pragma Import (Fortran, dgetrs, "dgetrs_");
+ pragma Import (Fortran, dsytrd, "dsytrd_");
+ pragma Import (Fortran, dstebz, "dstebz_");
+ pragma Import (Fortran, dsterf, "dsterf_");
+ pragma Import (Fortran, dorgtr, "dorgtr_");
+ pragma Import (Fortran, dsteqr, "dsteqr_");
+ pragma Import (Fortran, sgetrf, "sgetrf_");
+ pragma Import (Fortran, sgetri, "sgetri_");
+ pragma Import (Fortran, sgetrs, "sgetrs_");
+ pragma Import (Fortran, sorgtr, "sorgtr_");
+ pragma Import (Fortran, sstebz, "sstebz_");
+ pragma Import (Fortran, ssterf, "ssterf_");
+ pragma Import (Fortran, ssteqr, "ssteqr_");
+ pragma Import (Fortran, ssytrd, "ssytrd_");
+ pragma Import (Fortran, zgetrf, "zgetrf_");
+ pragma Import (Fortran, zgetri, "zgetri_");
+ pragma Import (Fortran, zgetrs, "zgetrs_");
+ pragma Import (Fortran, zheevr, "zheevr_");
+ pragma Import (Fortran, zhetrd, "zhetrd_");
+ pragma Import (Fortran, zsteqr, "zsteqr_");
+end Interfaces.Fortran.LAPACK;