summaryrefslogtreecommitdiff
path: root/gcc/ada/s-gearop.adb
diff options
context:
space:
mode:
authorcharlet <charlet@138bc75d-0d04-0410-961f-82ee72b054a4>2007-04-06 09:23:23 +0000
committercharlet <charlet@138bc75d-0d04-0410-961f-82ee72b054a4>2007-04-06 09:23:23 +0000
commit0d12640be4501b419982546d58feb5e48c65d56f (patch)
tree3dae18939bf7386b4ee86c6180790a3c352c21c5 /gcc/ada/s-gearop.adb
parentb4fde0cf29d17f951cc51fe014d8fb877ab9f47f (diff)
downloadgcc-0d12640be4501b419982546d58feb5e48c65d56f.tar.gz
2007-04-06 Geert Bosch <bosch@adacore.com>
Robert Dewar <dewar@adacore.com> * i-fortra.ads: Add Double_Complex type. * impunit.adb: (Is_Known_Unit): New function Add Gnat.Byte_Swapping Add GNAT.SHA1 Add new Ada 2005 units Ada.Numerics.Generic_Complex_Arrays, Ada.Numerics.Generic_Real_Arrays, Ada.Numerics.Complex_Arrays, Ada.Numerics.Real_Arrays, Ada.Numerics.Long_Complex_Arrays, Ada.Numerics.Long_Long_Complex_Arrays, Ada.Numerics.Long_Long_Real_Arrays and Ada.Numerics.Long_Real_Arrays * impunit.ads (Is_Known_Unit): New function * a-ngcoar.adb, a-ngcoar.ads, a-ngrear.adb, a-ngrear.ads, a-nlcoar.ads, a-nllcar.ads, a-nllrar.ads, a-nlrear.ads, a-nucoar.ads, a-nurear.ads, g-bytswa.adb, g-bytswa-x86.adb, g-bytswa.ads, g-sha1.adb, g-sha1.ads, i-forbla.ads, i-forlap.ads, s-gearop.adb, s-gearop.ads, s-gecobl.adb, s-gecobl.ads, s-gecola.adb, s-gecola.ads, s-gerebl.adb, s-gerebl.ads, s-gerela.adb, s-gerela.ads: New files. * Makefile.rtl: Add g-bytswa, g-sha1, a-fzteio and a-izteio * a-fzteio.ads, a-izteio.ads: New Ada 2005 run-time units. git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@123579 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/ada/s-gearop.adb')
-rw-r--r--gcc/ada/s-gearop.adb518
1 files changed, 518 insertions, 0 deletions
diff --git a/gcc/ada/s-gearop.adb b/gcc/ada/s-gearop.adb
new file mode 100644
index 00000000000..b6a3c79b9e9
--- /dev/null
+++ b/gcc/ada/s-gearop.adb
@@ -0,0 +1,518 @@
+------------------------------------------------------------------------------
+-- --
+-- GNAT RUN-TIME COMPONENTS --
+-- --
+-- SYSTEM.GENERIC_ARRAY_OPERATIONS --
+-- --
+-- B o d y --
+-- --
+-- Copyright (C) 2006, Free Software Foundation, Inc. --
+-- --
+-- GNAT is free software; you can redistribute it and/or modify it under --
+-- terms of the GNU General Public License as published by the Free Soft- --
+-- ware Foundation; either version 2, or (at your option) any later ver- --
+-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
+-- for more details. You should have received a copy of the GNU General --
+-- Public License distributed with GNAT; see file COPYING. If not, write --
+-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
+-- Boston, MA 02110-1301, USA. --
+-- --
+-- As a special exception, if other files instantiate generics from this --
+-- unit, or you link this unit with other files to produce an executable, --
+-- this unit does not by itself cause the resulting executable to be --
+-- covered by the GNU General Public License. This exception does not --
+-- however invalidate any other reasons why the executable file might be --
+-- covered by the GNU Public License. --
+-- --
+-- GNAT was originally developed by the GNAT team at New York University. --
+-- Extensive contributions were provided by Ada Core Technologies Inc. --
+-- --
+------------------------------------------------------------------------------
+
+package body System.Generic_Array_Operations is
+
+ -- The local function Check_Unit_Last computes the index
+ -- of the last element returned by Unit_Vector or Unit_Matrix.
+ -- A separate function is needed to allow raising Constraint_Error
+ -- before declaring the function result variable. The result variable
+ -- needs to be declared first, to allow front-end inlining.
+
+ function Check_Unit_Last
+ (Index : Integer;
+ Order : Positive;
+ First : Integer) return Integer;
+ pragma Inline_Always (Check_Unit_Last);
+
+ function Square_Matrix_Length (A : Matrix) return Natural is
+ begin
+ if A'Length (1) /= A'Length (2) then
+ raise Constraint_Error with "matrix is not square";
+ end if;
+
+ return A'Length (1);
+ end Square_Matrix_Length;
+
+ ---------------------
+ -- Check_Unit_Last --
+ ---------------------
+
+ function Check_Unit_Last
+ (Index : Integer;
+ Order : Positive;
+ First : Integer) return Integer is
+ begin
+ -- Order the tests carefully to avoid overflow
+
+ if Index < First
+ or else First > Integer'Last - Order + 1
+ or else Index > First + (Order - 1)
+ then
+ raise Constraint_Error;
+ end if;
+
+ return First + (Order - 1);
+ end Check_Unit_Last;
+
+ -------------------
+ -- Inner_Product --
+ -------------------
+
+ function Inner_Product
+ (Left : Left_Vector;
+ Right : Right_Vector)
+ return Result_Scalar
+ is
+ R : Result_Scalar := Zero;
+
+ begin
+ if Left'Length /= Right'Length then
+ raise Constraint_Error with
+ "vectors are of different length in inner product";
+ end if;
+
+ for J in Left'Range loop
+ R := R + Left (J) * Right (J - Left'First + Right'First);
+ end loop;
+
+ return R;
+ end Inner_Product;
+
+ ----------------------------------
+ -- Matrix_Elementwise_Operation --
+ ----------------------------------
+
+ function Matrix_Elementwise_Operation (X : X_Matrix) return Result_Matrix is
+ R : Result_Matrix (X'Range (1), X'Range (2));
+
+ begin
+ for J in R'Range (1) loop
+ for K in R'Range (2) loop
+ R (J, K) := Operation (X (J, K));
+ end loop;
+ end loop;
+
+ return R;
+ end Matrix_Elementwise_Operation;
+
+ ----------------------------------
+ -- Vector_Elementwise_Operation --
+ ----------------------------------
+
+ function Vector_Elementwise_Operation (X : X_Vector) return Result_Vector is
+ R : Result_Vector (X'Range);
+
+ begin
+ for J in R'Range loop
+ R (J) := Operation (X (J));
+ end loop;
+
+ return R;
+ end Vector_Elementwise_Operation;
+
+ -----------------------------------------
+ -- Matrix_Matrix_Elementwise_Operation --
+ -----------------------------------------
+
+ function Matrix_Matrix_Elementwise_Operation
+ (Left : Left_Matrix;
+ Right : Right_Matrix)
+ return Result_Matrix
+ is
+ R : Result_Matrix (Left'Range (1), Left'Range (2));
+ begin
+ if Left'Length (1) /= Right'Length (1)
+ or else Left'Length (2) /= Right'Length (2)
+ then
+ raise Constraint_Error with
+ "matrices are of different dimension in elementwise operation";
+ end if;
+
+ for J in R'Range (1) loop
+ for K in R'Range (2) loop
+ R (J, K) := Operation (Left (J, K), Right (J, K));
+ end loop;
+ end loop;
+
+ return R;
+ end Matrix_Matrix_Elementwise_Operation;
+
+ ------------------------------------------------
+ -- Matrix_Matrix_Scalar_Elementwise_Operation --
+ ------------------------------------------------
+
+ function Matrix_Matrix_Scalar_Elementwise_Operation
+ (X : X_Matrix;
+ Y : Y_Matrix;
+ Z : Z_Scalar) return Result_Matrix
+ is
+ R : Result_Matrix (X'Range (1), X'Range (2));
+
+ begin
+ if X'Length (1) /= Y'Length (1)
+ or else X'Length (2) /= Y'Length (2)
+ then
+ raise Constraint_Error with
+ "matrices are of different dimension in elementwise operation";
+ end if;
+
+ for J in R'Range (1) loop
+ for K in R'Range (2) loop
+ R (J, K) := Operation (X (J, K), Y (J, K), Z);
+ end loop;
+ end loop;
+
+ return R;
+ end Matrix_Matrix_Scalar_Elementwise_Operation;
+
+ -----------------------------------------
+ -- Vector_Vector_Elementwise_Operation --
+ -----------------------------------------
+
+ function Vector_Vector_Elementwise_Operation
+ (Left : Left_Vector;
+ Right : Right_Vector) return Result_Vector
+ is
+ R : Result_Vector (Left'Range);
+
+ begin
+ if Left'Length /= Right'Length then
+ raise Constraint_Error with
+ "vectors are of different length in elementwise operation";
+ end if;
+
+ for J in R'Range loop
+ R (J) := Operation (Left (J), Right (J));
+ end loop;
+
+ return R;
+ end Vector_Vector_Elementwise_Operation;
+
+ ------------------------------------------------
+ -- Vector_Vector_Scalar_Elementwise_Operation --
+ ------------------------------------------------
+
+ function Vector_Vector_Scalar_Elementwise_Operation
+ (X : X_Vector;
+ Y : Y_Vector;
+ Z : Z_Scalar) return Result_Vector
+ is
+ R : Result_Vector (X'Range);
+
+ begin
+ if X'Length /= Y'Length then
+ raise Constraint_Error with
+ "vectors are of different length in elementwise operation";
+ end if;
+
+ for J in R'Range loop
+ R (J) := Operation (X (J), Y (J), Z);
+ end loop;
+
+ return R;
+ end Vector_Vector_Scalar_Elementwise_Operation;
+
+ -----------------------------------------
+ -- Matrix_Scalar_Elementwise_Operation --
+ -----------------------------------------
+
+ function Matrix_Scalar_Elementwise_Operation
+ (Left : Left_Matrix;
+ Right : Right_Scalar) return Result_Matrix
+ is
+ R : Result_Matrix (Left'Range (1), Left'Range (2));
+
+ begin
+ for J in R'Range (1) loop
+ for K in R'Range (2) loop
+ R (J, K) := Operation (Left (J, K), Right);
+ end loop;
+ end loop;
+
+ return R;
+ end Matrix_Scalar_Elementwise_Operation;
+
+ -----------------------------------------
+ -- Vector_Scalar_Elementwise_Operation --
+ -----------------------------------------
+
+ function Vector_Scalar_Elementwise_Operation
+ (Left : Left_Vector;
+ Right : Right_Scalar) return Result_Vector
+ is
+ R : Result_Vector (Left'Range);
+
+ begin
+ for J in R'Range loop
+ R (J) := Operation (Left (J), Right);
+ end loop;
+
+ return R;
+ end Vector_Scalar_Elementwise_Operation;
+
+ -----------------------------------------
+ -- Scalar_Matrix_Elementwise_Operation --
+ -----------------------------------------
+
+ function Scalar_Matrix_Elementwise_Operation
+ (Left : Left_Scalar;
+ Right : Right_Matrix) return Result_Matrix
+ is
+ R : Result_Matrix (Right'Range (1), Right'Range (2));
+
+ begin
+ for J in R'Range (1) loop
+ for K in R'Range (2) loop
+ R (J, K) := Operation (Left, Right (J, K));
+ end loop;
+ end loop;
+
+ return R;
+ end Scalar_Matrix_Elementwise_Operation;
+
+ -----------------------------------------
+ -- Scalar_Vector_Elementwise_Operation --
+ -----------------------------------------
+
+ function Scalar_Vector_Elementwise_Operation
+ (Left : Left_Scalar;
+ Right : Right_Vector) return Result_Vector
+ is
+ R : Result_Vector (Right'Range);
+
+ begin
+ for J in R'Range loop
+ R (J) := Operation (Left, Right (J));
+ end loop;
+
+ return R;
+ end Scalar_Vector_Elementwise_Operation;
+
+ ---------------------------
+ -- Matrix_Matrix_Product --
+ ---------------------------
+
+ function Matrix_Matrix_Product
+ (Left : Left_Matrix;
+ Right : Right_Matrix) return Result_Matrix
+ is
+ R : Result_Matrix (Left'Range (1), Right'Range (2));
+
+ begin
+ if Left'Length (2) /= Right'Length (1) then
+ raise Constraint_Error with
+ "incompatible dimensions in matrix multiplication";
+ end if;
+
+ for J in R'Range (1) loop
+ for K in R'Range (2) loop
+ declare
+ S : Result_Scalar := Zero;
+ begin
+ for M in Left'Range (2) loop
+ S := S + Left (J, M)
+ * Right (M - Left'First (2) + Right'First (1), K);
+ end loop;
+
+ R (J, K) := S;
+ end;
+ end loop;
+ end loop;
+
+ return R;
+ end Matrix_Matrix_Product;
+
+ ---------------------------
+ -- Matrix_Vector_Product --
+ ---------------------------
+
+ function Matrix_Vector_Product
+ (Left : Matrix;
+ Right : Right_Vector) return Result_Vector
+ is
+ R : Result_Vector (Left'Range (1));
+
+ begin
+ if Left'Length (2) /= Right'Length then
+ raise Constraint_Error with
+ "incompatible dimensions in matrix-vector multiplication";
+ end if;
+
+ for J in Left'Range (1) loop
+ declare
+ S : Result_Scalar := Zero;
+ begin
+ for K in Left'Range (2) loop
+ S := S + Left (J, K) * Right (K - Left'First (2) + Right'First);
+ end loop;
+
+ R (J) := S;
+ end;
+ end loop;
+
+ return R;
+ end Matrix_Vector_Product;
+
+ -------------------
+ -- Outer_Product --
+ -------------------
+
+ function Outer_Product
+ (Left : Left_Vector;
+ Right : Right_Vector) return Matrix
+ is
+ R : Matrix (Left'Range, Right'Range);
+
+ begin
+ for J in R'Range (1) loop
+ for K in R'Range (2) loop
+ R (J, K) := Left (J) * Right (K);
+ end loop;
+ end loop;
+
+ return R;
+ end Outer_Product;
+
+ ---------------
+ -- Transpose --
+ ---------------
+
+ procedure Transpose (A : Matrix; R : out Matrix) is
+ begin
+ for J in R'Range (1) loop
+ for K in R'Range (2) loop
+ R (J, K) := A (J - R'First (1) + A'First (1),
+ K - R'First (2) + A'First (2));
+ end loop;
+ end loop;
+ end Transpose;
+
+ -------------------------------
+ -- Update_Matrix_With_Matrix --
+ -------------------------------
+
+ procedure Update_Matrix_With_Matrix (X : in out X_Matrix; Y : Y_Matrix) is
+ begin
+ if X'Length (1) /= Y'Length (1)
+ or else X'Length (2) /= Y'Length (2)
+ then
+ raise Constraint_Error with
+ "matrices are of different dimension in update operation";
+ end if;
+
+ for J in X'Range (1) loop
+ for K in X'Range (2) loop
+ Update (X (J, K), Y (J - X'First (1) + Y'First (1),
+ K - X'First (2) + Y'First (2)));
+ end loop;
+ end loop;
+ end Update_Matrix_With_Matrix;
+
+ -------------------------------
+ -- Update_Vector_With_Vector --
+ -------------------------------
+
+ procedure Update_Vector_With_Vector (X : in out X_Vector; Y : Y_Vector) is
+ begin
+ if X'Length /= Y'Length then
+ raise Constraint_Error with
+ "vectors are of different length in update operation";
+ end if;
+
+ for J in X'Range loop
+ Update (X (J), Y (J - X'First + Y'First));
+ end loop;
+ end Update_Vector_With_Vector;
+
+ -----------------
+ -- Unit_Matrix --
+ -----------------
+
+ function Unit_Matrix
+ (Order : Positive;
+ First_1 : Integer := 1;
+ First_2 : Integer := 1) return Matrix
+ is
+ R : Matrix (First_1 .. Check_Unit_Last (First_1, Order, First_1),
+ First_2 .. Check_Unit_Last (First_2, Order, First_2));
+
+ begin
+ R := (others => (others => Zero));
+
+ for J in 0 .. Order - 1 loop
+ R (First_1 + J, First_2 + J) := One;
+ end loop;
+
+ return R;
+ end Unit_Matrix;
+
+ -----------------
+ -- Unit_Vector --
+ -----------------
+
+ function Unit_Vector
+ (Index : Integer;
+ Order : Positive;
+ First : Integer := 1) return Vector
+ is
+ R : Vector (First .. Check_Unit_Last (Index, Order, First));
+ begin
+ R := (others => Zero);
+ R (Index) := One;
+ return R;
+ end Unit_Vector;
+
+ ---------------------------
+ -- Vector_Matrix_Product --
+ ---------------------------
+
+ function Vector_Matrix_Product
+ (Left : Left_Vector;
+ Right : Matrix) return Result_Vector
+ is
+ R : Result_Vector (Right'Range (2));
+
+ begin
+ if Left'Length /= Right'Length (2) then
+ raise Constraint_Error with
+ "incompatible dimensions in vector-matrix multiplication";
+ end if;
+
+ for J in Right'Range (2) loop
+ declare
+ S : Result_Scalar := Zero;
+
+ begin
+ for K in Right'Range (1) loop
+ S := S + Left (J - Right'First (1) + Left'First) * Right (K, J);
+ end loop;
+
+ R (J) := S;
+ end;
+ end loop;
+
+ return R;
+ end Vector_Matrix_Product;
+
+end System.Generic_Array_Operations;