diff options
author | charlet <charlet@138bc75d-0d04-0410-961f-82ee72b054a4> | 2009-04-09 10:27:10 +0000 |
---|---|---|
committer | charlet <charlet@138bc75d-0d04-0410-961f-82ee72b054a4> | 2009-04-09 10:27:10 +0000 |
commit | d60c9ff7609bacfd60f686e1f3b935b0a67b793e (patch) | |
tree | 61e8efa1dd19ecaf93ec8ce28f75848c145f7599 /gcc/ada/sem_aux.adb | |
parent | bfd188a4e2828f54120df76e1339453a716d6d89 (diff) | |
download | gcc-d60c9ff7609bacfd60f686e1f3b935b0a67b793e.tar.gz |
2009-04-09 Robert Dewar <dewar@adacore.com>
* sem_aggr.adb, exp_ch5.adb, sem_ch3.adb, exp_atag.adb, layout.adb,
sem_dist.adb, exp_ch7.adb, sem_ch5.adb, sem_type.adb, exp_imgv.adb,
exp_util.adb, sem_aux.adb, sem_aux.ads, exp_attr.adb, exp_ch9.adb,
sem_ch7.adb, inline.adb, fe.h, sem_ch9.adb, exp_code.adb, einfo.adb,
einfo.ads, exp_pakd.adb, checks.adb, sem_ch12.adb, exp_smem.adb,
tbuild.adb, freeze.adb, sem_util.adb, sem_res.adb, sem_attr.adb,
exp_dbug.adb, sem_case.adb, exp_tss.adb, exp_ch4.adb, exp_ch6.adb,
sem_smem.adb, sem_ch4.adb, sem_mech.adb, sem_ch6.adb, exp_disp.adb,
sem_ch8.adb, exp_aggr.adb, sem_eval.adb, sem_cat.adb, exp_dist.adb,
sem_ch13.adb, exp_strm.adb, lib-xref.adb, sem_disp.adb, exp_ch3.adb:
Reorganize einfo/sem_aux, moving routines from einfo to sem_aux
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@145820 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/ada/sem_aux.adb')
-rwxr-xr-x | gcc/ada/sem_aux.adb | 713 |
1 files changed, 713 insertions, 0 deletions
diff --git a/gcc/ada/sem_aux.adb b/gcc/ada/sem_aux.adb index 58b5b5c0da7..4acfb1d48bd 100755 --- a/gcc/ada/sem_aux.adb +++ b/gcc/ada/sem_aux.adb @@ -30,8 +30,382 @@ -- -- ------------------------------------------------------------------------------ +with Atree; use Atree; +with Einfo; use Einfo; +with Namet; use Namet; +with Sinfo; use Sinfo; +with Snames; use Snames; +with Stand; use Stand; + package body Sem_Aux is + ---------------------- + -- Ancestor_Subtype -- + ---------------------- + + function Ancestor_Subtype (Typ : Entity_Id) return Entity_Id is + begin + -- If this is first subtype, or is a base type, then there is no + -- ancestor subtype, so we return Empty to indicate this fact. + + if Is_First_Subtype (Typ) or else Typ = Base_Type (Typ) then + return Empty; + end if; + + declare + D : constant Node_Id := Declaration_Node (Typ); + + begin + -- If we have a subtype declaration, get the ancestor subtype + + if Nkind (D) = N_Subtype_Declaration then + if Nkind (Subtype_Indication (D)) = N_Subtype_Indication then + return Entity (Subtype_Mark (Subtype_Indication (D))); + else + return Entity (Subtype_Indication (D)); + end if; + + -- If not, then no subtype indication is available + + else + return Empty; + end if; + end; + end Ancestor_Subtype; + + -------------------- + -- Available_View -- + -------------------- + + function Available_View (Typ : Entity_Id) return Entity_Id is + begin + if Is_Incomplete_Type (Typ) + and then Present (Non_Limited_View (Typ)) + then + -- The non-limited view may itself be an incomplete type, in which + -- case get its full view. + + return Get_Full_View (Non_Limited_View (Typ)); + + elsif Is_Class_Wide_Type (Typ) + and then Is_Incomplete_Type (Etype (Typ)) + and then Present (Non_Limited_View (Etype (Typ))) + then + return Class_Wide_Type (Non_Limited_View (Etype (Typ))); + + else + return Typ; + end if; + end Available_View; + + -------------------- + -- Constant_Value -- + -------------------- + + function Constant_Value (Ent : Entity_Id) return Node_Id is + D : constant Node_Id := Declaration_Node (Ent); + Full_D : Node_Id; + + begin + -- If we have no declaration node, then return no constant value. + -- Not clear how this can happen, but it does sometimes and this is + -- the safest approach. + + if No (D) then + return Empty; + + -- Normal case where a declaration node is present + + elsif Nkind (D) = N_Object_Renaming_Declaration then + return Renamed_Object (Ent); + + -- If this is a component declaration whose entity is constant, it + -- is a prival within a protected function. It does not have + -- a constant value. + + elsif Nkind (D) = N_Component_Declaration then + return Empty; + + -- If there is an expression, return it + + elsif Present (Expression (D)) then + return (Expression (D)); + + -- For a constant, see if we have a full view + + elsif Ekind (Ent) = E_Constant + and then Present (Full_View (Ent)) + then + Full_D := Parent (Full_View (Ent)); + + -- The full view may have been rewritten as an object renaming + + if Nkind (Full_D) = N_Object_Renaming_Declaration then + return Name (Full_D); + else + return Expression (Full_D); + end if; + + -- Otherwise we have no expression to return + + else + return Empty; + end if; + end Constant_Value; + + ----------------------------- + -- Enclosing_Dynamic_Scope -- + ----------------------------- + + function Enclosing_Dynamic_Scope (Ent : Entity_Id) return Entity_Id is + S : Entity_Id; + + begin + -- The following test is an error defense against some syntax + -- errors that can leave scopes very messed up. + + if Ent = Standard_Standard then + return Ent; + end if; + + -- Normal case, search enclosing scopes + + -- Note: the test for Present (S) should not be required, it is a + -- defence against an ill-formed tree. + + S := Scope (Ent); + loop + -- If we somehow got an empty value for Scope, the tree must be + -- malformed. Rather than blow up we return Standard in this case. + + if No (S) then + return Standard_Standard; + + -- Quit if we get to standard or a dynamic scope + + elsif S = Standard_Standard + or else Is_Dynamic_Scope (S) + then + return S; + + -- Otherwise keep climbing + + else + S := Scope (S); + end if; + end loop; + end Enclosing_Dynamic_Scope; + + ------------------------ + -- First_Discriminant -- + ------------------------ + + function First_Discriminant (Typ : Entity_Id) return Entity_Id is + Ent : Entity_Id; + + begin + pragma Assert + (Has_Discriminants (Typ) + or else Has_Unknown_Discriminants (Typ)); + + Ent := First_Entity (Typ); + + -- The discriminants are not necessarily contiguous, because access + -- discriminants will generate itypes. They are not the first entities + -- either, because tag and controller record must be ahead of them. + + if Chars (Ent) = Name_uTag then + Ent := Next_Entity (Ent); + end if; + + if Chars (Ent) = Name_uController then + Ent := Next_Entity (Ent); + end if; + + -- Skip all hidden stored discriminants if any + + while Present (Ent) loop + exit when Ekind (Ent) = E_Discriminant + and then not Is_Completely_Hidden (Ent); + + Ent := Next_Entity (Ent); + end loop; + + pragma Assert (Ekind (Ent) = E_Discriminant); + + return Ent; + end First_Discriminant; + + ------------------------------- + -- First_Stored_Discriminant -- + ------------------------------- + + function First_Stored_Discriminant (Typ : Entity_Id) return Entity_Id is + Ent : Entity_Id; + + function Has_Completely_Hidden_Discriminant + (Typ : Entity_Id) return Boolean; + -- Scans the Discriminants to see whether any are Completely_Hidden + -- (the mechanism for describing non-specified stored discriminants) + + ---------------------------------------- + -- Has_Completely_Hidden_Discriminant -- + ---------------------------------------- + + function Has_Completely_Hidden_Discriminant + (Typ : Entity_Id) return Boolean + is + Ent : Entity_Id; + + begin + pragma Assert (Ekind (Typ) = E_Discriminant); + + Ent := Typ; + while Present (Ent) and then Ekind (Ent) = E_Discriminant loop + if Is_Completely_Hidden (Ent) then + return True; + end if; + + Ent := Next_Entity (Ent); + end loop; + + return False; + end Has_Completely_Hidden_Discriminant; + + -- Start of processing for First_Stored_Discriminant + + begin + pragma Assert + (Has_Discriminants (Typ) + or else Has_Unknown_Discriminants (Typ)); + + Ent := First_Entity (Typ); + + if Chars (Ent) = Name_uTag then + Ent := Next_Entity (Ent); + end if; + + if Chars (Ent) = Name_uController then + Ent := Next_Entity (Ent); + end if; + + if Has_Completely_Hidden_Discriminant (Ent) then + + while Present (Ent) loop + exit when Is_Completely_Hidden (Ent); + Ent := Next_Entity (Ent); + end loop; + + end if; + + pragma Assert (Ekind (Ent) = E_Discriminant); + + return Ent; + end First_Stored_Discriminant; + + ------------------- + -- First_Subtype -- + ------------------- + + function First_Subtype (Typ : Entity_Id) return Entity_Id is + B : constant Entity_Id := Base_Type (Typ); + F : constant Node_Id := Freeze_Node (B); + Ent : Entity_Id; + + begin + -- If the base type has no freeze node, it is a type in standard, + -- and always acts as its own first subtype unless it is one of + -- the predefined integer types. If the type is formal, it is also + -- a first subtype, and its base type has no freeze node. On the other + -- hand, a subtype of a generic formal is not its own first_subtype. + -- Its base type, if anonymous, is attached to the formal type decl. + -- from which the first subtype is obtained. + + if No (F) then + + if B = Base_Type (Standard_Integer) then + return Standard_Integer; + + elsif B = Base_Type (Standard_Long_Integer) then + return Standard_Long_Integer; + + elsif B = Base_Type (Standard_Short_Short_Integer) then + return Standard_Short_Short_Integer; + + elsif B = Base_Type (Standard_Short_Integer) then + return Standard_Short_Integer; + + elsif B = Base_Type (Standard_Long_Long_Integer) then + return Standard_Long_Long_Integer; + + elsif Is_Generic_Type (Typ) then + if Present (Parent (B)) then + return Defining_Identifier (Parent (B)); + else + return Defining_Identifier (Associated_Node_For_Itype (B)); + end if; + + else + return B; + end if; + + -- Otherwise we check the freeze node, if it has a First_Subtype_Link + -- then we use that link, otherwise (happens with some Itypes), we use + -- the base type itself. + + else + Ent := First_Subtype_Link (F); + + if Present (Ent) then + return Ent; + else + return B; + end if; + end if; + end First_Subtype; + + ------------------------- + -- First_Tag_Component -- + ------------------------- + + function First_Tag_Component (Typ : Entity_Id) return Entity_Id is + Comp : Entity_Id; + Ctyp : Entity_Id; + + begin + Ctyp := Typ; + pragma Assert (Is_Tagged_Type (Ctyp)); + + if Is_Class_Wide_Type (Ctyp) then + Ctyp := Root_Type (Ctyp); + end if; + + if Is_Private_Type (Ctyp) then + Ctyp := Underlying_Type (Ctyp); + + -- If the underlying type is missing then the source program has + -- errors and there is nothing else to do (the full-type declaration + -- associated with the private type declaration is missing). + + if No (Ctyp) then + return Empty; + end if; + end if; + + Comp := First_Entity (Ctyp); + while Present (Comp) loop + if Is_Tag (Comp) then + return Comp; + end if; + + Comp := Next_Entity (Comp); + end loop; + + -- No tag component found + + return Empty; + end First_Tag_Component; + ---------------- -- Initialize -- ---------------- @@ -41,6 +415,345 @@ package body Sem_Aux is Obsolescent_Warnings.Init; end Initialize; + --------------------- + -- Is_By_Copy_Type -- + --------------------- + + function Is_By_Copy_Type (Ent : Entity_Id) return Boolean is + begin + -- If Id is a private type whose full declaration has not been seen, + -- we assume for now that it is not a By_Copy type. Clearly this + -- attribute should not be used before the type is frozen, but it is + -- needed to build the associated record of a protected type. Another + -- place where some lookahead for a full view is needed ??? + + return + Is_Elementary_Type (Ent) + or else (Is_Private_Type (Ent) + and then Present (Underlying_Type (Ent)) + and then Is_Elementary_Type (Underlying_Type (Ent))); + end Is_By_Copy_Type; + + -------------------------- + -- Is_By_Reference_Type -- + -------------------------- + + function Is_By_Reference_Type (Ent : Entity_Id) return Boolean is + Btype : constant Entity_Id := Base_Type (Ent); + + begin + if Error_Posted (Ent) + or else Error_Posted (Btype) + then + return False; + + elsif Is_Private_Type (Btype) then + declare + Utyp : constant Entity_Id := Underlying_Type (Btype); + begin + if No (Utyp) then + return False; + else + return Is_By_Reference_Type (Utyp); + end if; + end; + + elsif Is_Incomplete_Type (Btype) then + declare + Ftyp : constant Entity_Id := Full_View (Btype); + begin + if No (Ftyp) then + return False; + else + return Is_By_Reference_Type (Ftyp); + end if; + end; + + elsif Is_Concurrent_Type (Btype) then + return True; + + elsif Is_Record_Type (Btype) then + if Is_Limited_Record (Btype) + or else Is_Tagged_Type (Btype) + or else Is_Volatile (Btype) + then + return True; + + else + declare + C : Entity_Id; + + begin + C := First_Component (Btype); + while Present (C) loop + if Is_By_Reference_Type (Etype (C)) + or else Is_Volatile (Etype (C)) + then + return True; + end if; + + C := Next_Component (C); + end loop; + end; + + return False; + end if; + + elsif Is_Array_Type (Btype) then + return + Is_Volatile (Btype) + or else Is_By_Reference_Type (Component_Type (Btype)) + or else Is_Volatile (Component_Type (Btype)) + or else Has_Volatile_Components (Btype); + + else + return False; + end if; + end Is_By_Reference_Type; + + --------------------- + -- Is_Derived_Type -- + --------------------- + + function Is_Derived_Type (Ent : E) return B is + Par : Node_Id; + + begin + if Is_Type (Ent) + and then Base_Type (Ent) /= Root_Type (Ent) + and then not Is_Class_Wide_Type (Ent) + then + if not Is_Numeric_Type (Root_Type (Ent)) then + return True; + + else + Par := Parent (First_Subtype (Ent)); + + return Present (Par) + and then Nkind (Par) = N_Full_Type_Declaration + and then Nkind (Type_Definition (Par)) = + N_Derived_Type_Definition; + end if; + + else + return False; + end if; + end Is_Derived_Type; + + --------------------------- + -- Is_Indefinite_Subtype -- + --------------------------- + + function Is_Indefinite_Subtype (Ent : Entity_Id) return Boolean is + K : constant Entity_Kind := Ekind (Ent); + + begin + if Is_Constrained (Ent) then + return False; + + elsif K in Array_Kind + or else K in Class_Wide_Kind + or else Has_Unknown_Discriminants (Ent) + then + return True; + + -- Known discriminants: indefinite if there are no default values + + elsif K in Record_Kind + or else Is_Incomplete_Or_Private_Type (Ent) + or else Is_Concurrent_Type (Ent) + then + return (Has_Discriminants (Ent) + and then + No (Discriminant_Default_Value (First_Discriminant (Ent)))); + + else + return False; + end if; + end Is_Indefinite_Subtype; + + -------------------------------- + -- Is_Inherently_Limited_Type -- + -------------------------------- + + function Is_Inherently_Limited_Type (Ent : Entity_Id) return Boolean is + Btype : constant Entity_Id := Base_Type (Ent); + + begin + if Is_Private_Type (Btype) then + declare + Utyp : constant Entity_Id := Underlying_Type (Btype); + begin + if No (Utyp) then + return False; + else + return Is_Inherently_Limited_Type (Utyp); + end if; + end; + + elsif Is_Concurrent_Type (Btype) then + return True; + + elsif Is_Record_Type (Btype) then + if Is_Limited_Record (Btype) then + return not Is_Interface (Btype) + or else Is_Protected_Interface (Btype) + or else Is_Synchronized_Interface (Btype) + or else Is_Task_Interface (Btype); + + elsif Is_Class_Wide_Type (Btype) then + return Is_Inherently_Limited_Type (Root_Type (Btype)); + + else + declare + C : Entity_Id; + + begin + C := First_Component (Btype); + while Present (C) loop + if Is_Inherently_Limited_Type (Etype (C)) then + return True; + end if; + + C := Next_Component (C); + end loop; + end; + + return False; + end if; + + elsif Is_Array_Type (Btype) then + return Is_Inherently_Limited_Type (Component_Type (Btype)); + + else + return False; + end if; + end Is_Inherently_Limited_Type; + + --------------------- + -- Is_Limited_Type -- + --------------------- + + function Is_Limited_Type (Ent : Entity_Id) return Boolean is + Btype : constant E := Base_Type (Ent); + Rtype : constant E := Root_Type (Btype); + + begin + if not Is_Type (Ent) then + return False; + + elsif Ekind (Btype) = E_Limited_Private_Type + or else Is_Limited_Composite (Btype) + then + return True; + + elsif Is_Concurrent_Type (Btype) then + return True; + + -- The Is_Limited_Record flag normally indicates that the type is + -- limited. The exception is that a type does not inherit limitedness + -- from its interface ancestor. So the type may be derived from a + -- limited interface, but is not limited. + + elsif Is_Limited_Record (Ent) + and then not Is_Interface (Ent) + then + return True; + + -- Otherwise we will look around to see if there is some other reason + -- for it to be limited, except that if an error was posted on the + -- entity, then just assume it is non-limited, because it can cause + -- trouble to recurse into a murky erroneous entity! + + elsif Error_Posted (Ent) then + return False; + + elsif Is_Record_Type (Btype) then + + if Is_Limited_Interface (Ent) then + return True; + + -- AI-419: limitedness is not inherited from a limited interface + + elsif Is_Limited_Record (Rtype) then + return not Is_Interface (Rtype) + or else Is_Protected_Interface (Rtype) + or else Is_Synchronized_Interface (Rtype) + or else Is_Task_Interface (Rtype); + + elsif Is_Class_Wide_Type (Btype) then + return Is_Limited_Type (Rtype); + + else + declare + C : E; + + begin + C := First_Component (Btype); + while Present (C) loop + if Is_Limited_Type (Etype (C)) then + return True; + end if; + + C := Next_Component (C); + end loop; + end; + + return False; + end if; + + elsif Is_Array_Type (Btype) then + return Is_Limited_Type (Component_Type (Btype)); + + else + return False; + end if; + end Is_Limited_Type; + + ------------------------ + -- Next_Tag_Component -- + ------------------------ + + function Next_Tag_Component (Tag : Entity_Id) return Entity_Id is + Comp : Entity_Id; + + begin + pragma Assert (Is_Tag (Tag)); + + Comp := Next_Entity (Tag); + while Present (Comp) loop + if Is_Tag (Comp) then + pragma Assert (Chars (Comp) /= Name_uTag); + return Comp; + end if; + + Comp := Next_Entity (Comp); + end loop; + + -- No tag component found + + return Empty; + end Next_Tag_Component; + + -------------------------- + -- Number_Discriminants -- + -------------------------- + + function Number_Discriminants (Typ : Entity_Id) return Pos is + N : Int; + Discr : Entity_Id; + + begin + N := 0; + Discr := First_Discriminant (Typ); + while Present (Discr) loop + N := N + 1; + Discr := Next_Discriminant (Discr); + end loop; + + return N; + end Number_Discriminants; + --------------- -- Tree_Read -- --------------- |