diff options
author | bje <bje@138bc75d-0d04-0410-961f-82ee72b054a4> | 2004-09-28 07:59:54 +0000 |
---|---|---|
committer | bje <bje@138bc75d-0d04-0410-961f-82ee72b054a4> | 2004-09-28 07:59:54 +0000 |
commit | cd665a06e2398f370313e6ec3df029d06e9dfffe (patch) | |
tree | bed4a5579487b418bb321141005a316e87e11b34 /gcc/cfganal.c | |
parent | 644b3b25055f2e96b6e4d7d028d3fc8eec63eb7f (diff) | |
download | gcc-cd665a06e2398f370313e6ec3df029d06e9dfffe.tar.gz |
2004-09-24 Ben Elliston <bje@au.ibm.com>
Steven Bosscher <stevenb@suse.de>
Andrew Pinski <pinskia@physics.uc.edu>
Merge from edge-vector-branch:
* basic-block.h: Include vec.h, errors.h. Instantiate a VEC(edge).
(struct edge_def): Remove pred_next, succ_next members.
(struct basic_block_def): Remove pred, succ members. Add preds
and succs members of type VEC(edge).
(FALLTHRU_EDGE): Redefine using EDGE_SUCC.
(BRANCH_EDGE): Likewise.
(EDGE_CRITICAL_P): Redefine using EDGE_COUNT.
(EDGE_COUNT, EDGE_I, EDGE_PRED, EDGE_SUCC): New.
(edge_iterator): New.
(ei_start, ei_last, ei_end_p, ei_one_before_end_p): New.
(ei_next, ei_prev, ei_edge, ei_safe_edge): Likewise.
(FOR_EACH_EDGE): New.
* bb-reorder.c (find_traces): Use FOR_EACH_EDGE and EDGE_* macros
where applicable.
(rotate_loop): Likewise.
(find_traces_1_route): Likewise.
(bb_to_key): Likewise.
(connect_traces): Likewise.
(copy_bb_p): Likewise.
(find_rarely_executed_basic_blocks_and_crossing_edges): Likewise.
(add_labels_and_missing_jumps): Likewise.
(fix_up_fall_thru_edges): Likewise.
(find_jump_block): Likewise.
(fix_crossing_conditional_branches): Likewise.
(fix_crossing_unconditional_branches): Likewise.
(add_reg_crossing_jump_notes): Likewise.
* bt-load.c (augment_live_range): Likewise.
* cfg.c (clear_edges): Likewise.
(unchecked_make_edge): Likewise.
(cached_make_edge): Likewise.
(make_single_succ_edge): Likewise.
(remove_edge): Likewise.
(redirect_edge_succ_nodup): Likewise.
(check_bb_profile): Likewise.
(dump_flow_info): Likewise.
(alloc_aux_for_edges): Likewise.
(clear_aux_for_edges): Likewise.
(dump_cfg_bb_info): Likewise.
* cfganal.c (forwarder_block_p): Likewise.
(can_fallthru): Likewise.
(could_fall_through): Likewise.
(mark_dfs_back_edges): Likewise.
(set_edge_can_fallthru_flag): Likewise.
(find_unreachable_blocks): Likewise.
(create_edge_list): Likewise.
(verify_edge_list): Likewise.
(add_noreturn_fake_exit_edges): Likewise.
(connect_infinite_loops_to_exit): Likewise.
(flow_reverse_top_sort_order_compute): Likewise.
(flow_depth_first_order_compute): Likewise.
(flow_preorder_transversal_compute): Likewise.
(flow_dfs_compute_reverse_execute): Likewise.
(dfs_enumerate_from): Likewise.
(compute_dominance_frontiers_1): Likewise.
* cfgbuild.c (make_edges): Likewise.
(compute_outgoing_frequencies): Likewise.
(find_many_sub_basic_blocks): Likewise.
(find_sub_basic_blocks): Likewise.
* cfgcleanup.c (try_simplify_condjump): Likewise.
(thread_jump): Likewise.
(try_forward_edges): Likewise.
(merge_blocks_move): Likewise.
(outgoing_edges_match): Likewise.
(try_crossjump_to_edge): Likewise.
(try_crossjump_bb): Likewise.
(try_optimize_cfg): Likewise.
(merge_seq_blocks): Likewise.
* cfgexpand.c (expand_gimple_tailcall): Likewise.
(expand_gimple_basic_block): Likewise.
(construct_init_block): Likewise.
(construct_exit_block): Likewise.
* cfghooks.c (verify_flow_info): Likewise.
(dump_bb): Likewise.
(delete_basic_block): Likewise.
(split_edge): Likewise.
(merge_blocks): Likewise.
(make_forwarder_block): Likewise.
(tidy_fallthru_edges): Likewise.
(can_duplicate_block_p): Likewise.
(duplicate_block): Likewise.
* cfglayout.c (fixup_reorder_chain): Likewise.
(fixup_fallthru_exit_predecessor): Likewise.
(can_copy_bbs_p): Likewise.
(copy_bbs): Likewise.
* cfgloop.c (flow_loops_cfg_dump): Likewise.
(flow_loop_entry_edges_find): Likewise.
(flow_loop_exit_edges_find): Likewise.
(flow_loop_nodes_find): Likewise.
(mark_single_exit_loops): Likewise.
(flow_loop_pre_header_scan): Likewise.
(flow_loop_pre_header_find): Likewise.
(update_latch_info): Likewise.
(canonicalize_loop_headers): Likewise.
(flow_loops_find): Likewise.
(get_loop_body_in_bfs_order): Likewise.
(get_loop_exit_edges): Likewise.
(num_loop_branches): Likewise.
(verify_loop_structure): Likewise.
(loop_latch_edge): Likewise.
(loop_preheader_edge): Likewise.
* cfgloopanal.c (mark_irreducible_loops): Likewise.
(expected_loop_iterations): Likewise.
* cfgloopmanip.c (remove_bbs): Likewise.
(fix_bb_placement): Likewise.
(fix_irreducible_loops): Likewise.
(remove_path): Likewise.
(scale_bbs_frequencies): Likewise.
(loopify): Likewise.
(unloop): Likewise.
(fix_loop_placement): Likewise.
(loop_delete_branch_edge): Likewise.
(duplicate_loop_to_header_edge): Likewise.
(mfb_keep_just): Likewise.
(create_preheader): Likewise.
(force_single_succ_latches): Likewise.
(loop_split_edge_with): Likewise.
(create_loop_notes): Likewise.
* cfgrtl.c (rtl_split_block): Likewise.
(rtl_merge_blocks): Likewise.
(rtl_can_merge_blocks): Likewise.
(try_redirect_by_replacing_jump): Likewise.
(force_nonfallthru_and_redirect): Likewise.
(rtl_tidy_fallthru_edge): Likewise.
(commit_one_edge_insertion): Likewise.
(commit_edge_insertions): Likewise.
(commit_edge_insertions_watch_calls): Likewise.
(rtl_verify_flow_info_1): Likewise.
(rtl_verify_flow_info): Likewise.
(purge_dead_edges): Likewise.
(cfg_layout_redirect_edge_and_branch): Likewise.
(cfg_layout_can_merge_blocks_p): Likewise.
(rtl_flow_call_edges_add): Likewise.
* cse.c (cse_cc_succs): Likewise.
* df.c (hybrid_search): Likewise.
* dominance.c (calc_dfs_tree_nonrec): Likewise.
(calc_dfs_tree): Likewise.
(calc_idoms): Likewise.
(recount_dominator): Likewise.
* domwalk.c (walk_dominator_tree): Likewise.
* except.c (emit_to_new_bb_before): Likewise.
(connect_post_landing_pads): Likewise.
(sjlj_emit_function_enter): Likewise.
(sjlj_emit_function_exit): Likewise.
(finish_eh_generation): Likewise.
* final.c (compute_alignments): Likewise.
* flow.c (calculate_global_regs_live): Likewise.
(initialize_uninitialized_subregs): Likewise.
(init_propagate_block_info): Likewise.
* function.c (thread_prologue_and_epilogue_insns): Likewise.
* gcse.c (find_implicit_sets): Likewise.
(bypass_block): Likewise.
(bypass_conditional_jumps): Likewise.
(compute_pre_data): Likewise.
(insert_insn_end_bb): Likewise.
(insert_store): Likewise.
(remove_reachable_equiv_notes): Likewise.
* global.c (global_conflicts): Likewise.
(calculate_reg_pav): Likewise.
* graph.c (print_rtl_graph_with_bb): Likewise.
* ifcvt.c (mark_loop_exit_edges): Likewise.
(merge_if_block): Likewise.
(find_if_header): Likewise.
(block_jumps_and_fallthru_p): Likewise.
(find_if_block): Likewise.
(find_cond_trap): Likewise.
(block_has_only_trap): Likewise.
(find_if_case1): Likewise.
(find_if_case_2): Likewise.
* lambda-code.c (lambda_loopnest_to_gcc_loopnest): Likewise.
(perfect_nestify): Likewise.
* lcm.c (compute_antinout_edge): Likewise.
(compute_laterin): Likewise.
(compute_available): Likewise.
(compute_nearerout): Likewise.
* loop-doloop.c (doloop_modify): Likewise.
* loop-init.c (loop_optimizer_init): Likewise.
* loop-invariant.c (find_exits): Likewise.
* loop-iv.c (simplify_using_initial_values): Likewise.
(check_simple_exit): Likewise.
(find_simple_exit): Likewise.
* loop-unroll.c (peel_loop_completely): Likewise.
(unroll_loop_constant_iterations): Likewise.
(unroll_loop_runtime_iterations): Likewise.
* loop-unswitch.c (may_unswitch_on): Likewise.
(unswitch_loop): Likewise.
* modulo-sched.c (generate_prolog_epilog): Likewise.
(sms_schedule): Likewise.
* postreload-gcse.c (eliminate_partially_redundant_load):
Likewise.
* predict.c (can_predict_insn_p): Likewise.
(set_even_probabilities): Likewise.
(combine_predictions_for_bb): Likewise.
(predict_loops): Likewise.
(estimate_probability): Likewise.
(tree_predict_by_opcode): Likewise.
(tree_estimate_probability): Likewise.
(last_basic_block_p): Likewise.
(propagate_freq): Likewise.
(estimate_loops_at_level): Likewise.
(estimate_bb_frequencies): Likewise.
* profile.c (instrument_edges): Likewise.
(get_exec_counts): Likewise.
(compute_branch_probabilities): Likewise.
(branch_prob): Likewise.
* ra-build.c (live_in): Likewise.
* ra-rewrite.c (rewrite_program2): Likewise.
* ra.c (reg_alloc): Likewise.
* reg-stack.c (reg_to_stack): Likewise.
(convert_regs_entry): Likewise.
(compensate_edge): Likewise.
(convert_regs_1): Likewise,
(convert_regs_2): Likewise.
(convert_regs): Likewise.
* regrename.c (copyprop_hardreg_forward): Likewise.
* reload1.c (fixup_abnormal_edges): Likewise.
* sbitmap.c (sbitmap_intersection_of_succs): Likewise.
(sbitmap_insersection_of_preds): Likewise.
(sbitmap_union_of_succs): Likewise.
(sbitmap_union_of_preds): Likewise.
* sched-ebb.c (compute_jump_reg_dependencies): Likewise.
(fix_basic_block_boundaries): Likewise.
(sched_ebbs): Likewise.
* sched-rgn.c (build_control_flow): Likewise.
(find_rgns): Likewise.
* tracer.c (find_best_successor): Likewise.
(find_best_predecessor): Likewise.
(tail_duplicate): Likewise.
* tree-cfg.c (make_edges): Likewise.
(make_ctrl_stmt_edges): Likewise.
(make_goto_expr_edges): Likewise.
(tree_can_merge_blocks_p): Likewise.
(tree_merge_blocks): Likewise.
(cfg_remove_useless_stmts_bb): Likewise.
(remove_phi_nodes_and_edges_for_unreachable_block): Likewise.
(tree_block_forwards_to): Likewise.
(cleanup_control_expr_graph): Likewise.
(find_taken_edge): Likewise.
(dump_cfg_stats): Likewise.
(tree_cfg2vcg): Likewise.
(disband_implicit_edges): Likewise.
(tree_find_edge_insert_loc): Likewise.
(bsi_commit_edge_inserts): Likewise.
(tree_split_edge): Likewise.
(tree_verify_flow_info): Likewise.
(tree_make_forwarder_block): Likewise.
(tree_forwarder_block_p): Likewise.
(thread_jumps): Likewise.
(tree_try_redirect_by_replacing_jump): Likewise.
(tree_split_block): Likewise.
(add_phi_args_after_copy_bb): Likewise.
(rewrite_to_new_ssa_names_bb): Likewise.
(dump_function_to_file): Likewise.
(print_pred_bbs): Likewise.
(print_loop): Likewise.
(tree_flow_call_edges_add): Likewise.
(split_critical_edges): Likewise.
(execute_warn_function_return): Likewise.
(extract_true_false_edges_from_block): Likewise.
* tree-if-conv.c (tree_if_conversion): Likewise.
(if_convertable_bb_p): Likewise.
(find_phi_replacement_condition): Likewise.
(combine_blocks): Likewise.
* tree-into-ssa.c (compute_global_livein): Likewise.
(ssa_mark_phi_uses): Likewise.
(ssa_rewrite_initialize_block): Likewise.
(rewrite_add_phi_arguments): Likewise.
(ssa_rewrite_phi_arguments): Likewise.
(insert_phi_nodes_for): Likewise.
(rewrite_into_ssa): Likewise.
(rewrite_ssa_into_ssa): Likewise.
* tree-mudflap.c (mf_build_check_statement_for): Likewise.
* tree-outof-ssa.c (coalesce_abnormal_edges): Likewise.
(rewrite_trees): Likewise.
* tree-pretty-print.c (dump_bb_header): Likewise.
(dump_implicit_edges): Likewise.
* tree-sra.c (insert_edge_copies): Likewise.
(find_obviously_necessary_stmts): Likewise.
(remove_data_stmt): Likewise.
* tree-ssa-dom.c (thread_across_edge): Likewise.
(dom_opt_finalize_block): Likewise.
(single_incoming_edge_ignoring_loop_edges): Likewise.
(record_equivalences_from_incoming_edges): Likewise.
(cprop_into_successor_phis): Likewise.
* tree-ssa-live.c (live_worklist): Likewise.
(calculate_live_on_entry): Likewise.
(calculate_live_on_exit): Likewise.
* tree-ssa-loop-ch.c (should_duplicate_loop_header_p): Likewise.
(copy_loop_headers): Likewise.
* tree-ssa-loop-im.c (loop_commit_inserts): Likewise.
(fill_always_executed_in): Likewise.
* tree-ssa-loop-ivcanon.c (create_canonical_iv): Likewise.
* tree-ssa-loop-ivopts.c (find_interesting_uses): Likewise.
(compute_phi_arg_on_exit): Likewise.
* tree-ssa-loop-manip.c (add_exit_phis_edge): Likewise.
(get_loops_exit): Likewise.
(split_loop_exit_edge): Likewise.
(ip_normal_pos): Likewise.
* tree-ssa-loop-niter.c (simplify_using_initial_conditions):
Likewise.
* tree-ssa-phiopt.c (candidate_bb_for_phi_optimization): Likewise.
(replace_phi_with_stmt): Likewise.
(value_replacement): Likewise.
* tree-ssa-pre.c (compute_antic_aux): Likewise.
(insert_aux): Likewise.
(init_pre): Likewise.
* tree-ssa-propagate.c (simulate_stmt): Likewise.
(simulate_block): Likewise.
(ssa_prop_init): Likewise.
* tree-ssa-threadupdate.c (thread_block): Likewise.
(create_block_for_threading): Likewise.
(remove_last_stmt_and_useless_edges): Likewise.
* tree-ssa.c (verify_phi_args): Likewise.
(verify_ssa): Likewise.
* tree_tailcall.c (independent_of_stmt_p): Likewise.
(find_tail_calls): Likewise.
(eliminate_tail_call): Likewise.
(tree_optimize_tail_calls_1): Likewise.
* tree-vectorizer.c (vect_transform_loop): Likewise.
* var-tracking.c (prologue_stack_adjust): Likewise.
(vt_stack_adjustments): Likewise.
(vt_find_locations): Likewise.
* config/frv/frv.c (frv_ifcvt_modify_tests): Likewise.
* config/i386/i386.c (ix86_pad_returns): Likewise.
* config/ia64/ia64.c (ia64_expand_prologue): Likewise.
* config/rs6000/rs6000.c (rs6000_emit_prologue): Likewise.
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@88222 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/cfganal.c')
-rw-r--r-- | gcc/cfganal.c | 169 |
1 files changed, 87 insertions, 82 deletions
diff --git a/gcc/cfganal.c b/gcc/cfganal.c index 01f5f7d04b6..30aa5c40db3 100644 --- a/gcc/cfganal.c +++ b/gcc/cfganal.c @@ -85,7 +85,7 @@ forwarder_block_p (basic_block bb) rtx insn; if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR - || !bb->succ || bb->succ->succ_next) + || EDGE_COUNT (bb->succs) != 1) return false; for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn)) @@ -105,15 +105,16 @@ can_fallthru (basic_block src, basic_block target) rtx insn = BB_END (src); rtx insn2; edge e; + edge_iterator ei; if (target == EXIT_BLOCK_PTR) return true; if (src->next_bb != target) return 0; - for (e = src->succ; e; e = e->succ_next) + FOR_EACH_EDGE (e, ei, src->succs) if (e->dest == EXIT_BLOCK_PTR && e->flags & EDGE_FALLTHRU) - return 0; + return 0; insn2 = BB_HEAD (target); if (insn2 && !active_insn_p (insn2)) @@ -130,13 +131,14 @@ bool could_fall_through (basic_block src, basic_block target) { edge e; + edge_iterator ei; if (target == EXIT_BLOCK_PTR) return true; - for (e = src->succ; e; e = e->succ_next) + FOR_EACH_EDGE (e, ei, src->succs) if (e->dest == EXIT_BLOCK_PTR && e->flags & EDGE_FALLTHRU) - return 0; + return 0; return true; } @@ -153,7 +155,7 @@ could_fall_through (basic_block src, basic_block target) bool mark_dfs_back_edges (void) { - edge *stack; + edge_iterator *stack; int *pre; int *post; int sp; @@ -167,7 +169,7 @@ mark_dfs_back_edges (void) post = xcalloc (last_basic_block, sizeof (int)); /* Allocate stack for back-tracking up CFG. */ - stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge)); + stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator)); sp = 0; /* Allocate bitmap to track nodes that have been visited. */ @@ -177,19 +179,19 @@ mark_dfs_back_edges (void) sbitmap_zero (visited); /* Push the first edge on to the stack. */ - stack[sp++] = ENTRY_BLOCK_PTR->succ; + stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs); while (sp) { - edge e; + edge_iterator ei; basic_block src; basic_block dest; /* Look at the edge on the top of the stack. */ - e = stack[sp - 1]; - src = e->src; - dest = e->dest; - e->flags &= ~EDGE_DFS_BACK; + ei = stack[sp - 1]; + src = ei_edge (ei)->src; + dest = ei_edge (ei)->dest; + ei_edge (ei)->flags &= ~EDGE_DFS_BACK; /* Check if the edge destination has been visited yet. */ if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index)) @@ -198,11 +200,11 @@ mark_dfs_back_edges (void) SET_BIT (visited, dest->index); pre[dest->index] = prenum++; - if (dest->succ) + if (EDGE_COUNT (dest->succs) > 0) { /* Since the DEST node has been visited for the first time, check its successors. */ - stack[sp++] = dest->succ; + stack[sp++] = ei_start (dest->succs); } else post[dest->index] = postnum++; @@ -212,13 +214,13 @@ mark_dfs_back_edges (void) if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR && pre[src->index] >= pre[dest->index] && post[dest->index] == 0) - e->flags |= EDGE_DFS_BACK, found = true; + ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true; - if (! e->succ_next && src != ENTRY_BLOCK_PTR) + if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR) post[src->index] = postnum++; - if (e->succ_next) - stack[sp - 1] = e->succ_next; + if (!ei_one_before_end_p (ei)) + ei_next (&stack[sp - 1]); else sp--; } @@ -242,8 +244,9 @@ set_edge_can_fallthru_flag (void) FOR_EACH_BB (bb) { edge e; + edge_iterator ei; - for (e = bb->succ; e; e = e->succ_next) + FOR_EACH_EDGE (e, ei, bb->succs) { e->flags &= ~EDGE_CAN_FALLTHRU; @@ -254,15 +257,15 @@ set_edge_can_fallthru_flag (void) /* If the BB ends with an invertible condjump all (2) edges are CAN_FALLTHRU edges. */ - if (!bb->succ || !bb->succ->succ_next || bb->succ->succ_next->succ_next) + if (EDGE_COUNT (bb->succs) != 2) continue; if (!any_condjump_p (BB_END (bb))) continue; if (!invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0)) continue; invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0); - bb->succ->flags |= EDGE_CAN_FALLTHRU; - bb->succ->succ_next->flags |= EDGE_CAN_FALLTHRU; + EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU; + EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU; } } @@ -274,6 +277,7 @@ void find_unreachable_blocks (void) { edge e; + edge_iterator ei; basic_block *tos, *worklist, bb; tos = worklist = xmalloc (sizeof (basic_block) * n_basic_blocks); @@ -287,7 +291,7 @@ find_unreachable_blocks (void) be only one. It isn't inconceivable that we might one day directly support Fortran alternate entry points. */ - for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next) + FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs) { *tos++ = e->dest; @@ -301,7 +305,7 @@ find_unreachable_blocks (void) { basic_block b = *--tos; - for (e = b->succ; e; e = e->succ_next) + FOR_EACH_EDGE (e, ei, b->succs) if (!(e->dest->flags & BB_REACHABLE)) { *tos++ = e->dest; @@ -333,6 +337,7 @@ create_edge_list (void) int num_edges; int block_count; basic_block bb; + edge_iterator ei; block_count = n_basic_blocks + 2; /* Include the entry and exit blocks. */ @@ -342,8 +347,7 @@ create_edge_list (void) edges on each basic block. */ FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb) { - for (e = bb->succ; e; e = e->succ_next) - num_edges++; + num_edges += EDGE_COUNT (bb->succs); } elist = xmalloc (sizeof (struct edge_list)); @@ -355,7 +359,7 @@ create_edge_list (void) /* Follow successors of blocks, and register these edges. */ FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb) - for (e = bb->succ; e; e = e->succ_next) + FOR_EACH_EDGE (e, ei, bb->succs) elist->index_to_edge[num_edges++] = e; return elist; @@ -408,10 +412,11 @@ verify_edge_list (FILE *f, struct edge_list *elist) int pred, succ, index; edge e; basic_block bb, p, s; + edge_iterator ei; FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb) { - for (e = bb->succ; e; e = e->succ_next) + FOR_EACH_EDGE (e, ei, bb->succs) { pred = e->src->index; succ = e->dest->index; @@ -439,14 +444,14 @@ verify_edge_list (FILE *f, struct edge_list *elist) { int found_edge = 0; - for (e = p->succ; e; e = e->succ_next) + FOR_EACH_EDGE (e, ei, p->succs) if (e->dest == s) { found_edge = 1; break; } - for (e = s->pred; e; e = e->pred_next) + FOR_EACH_EDGE (e, ei, s->preds) if (e->src == p) { found_edge = 1; @@ -471,8 +476,9 @@ edge find_edge (basic_block pred, basic_block succ) { edge e; + edge_iterator ei; - for (e = pred->succ; e; e = e->succ_next) + FOR_EACH_EDGE (e, ei, pred->succs) if (e->dest == succ) return e; @@ -537,14 +543,14 @@ static void remove_fake_predecessors (basic_block bb) { edge e; + edge_iterator ei; - for (e = bb->pred; e;) + for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); ) { - edge tmp = e; - - e = e->pred_next; - if ((tmp->flags & EDGE_FAKE) == EDGE_FAKE) - remove_edge (tmp); + if ((e->flags & EDGE_FAKE) == EDGE_FAKE) + remove_edge (e); + else + ei_next (&ei); } } @@ -580,7 +586,7 @@ add_noreturn_fake_exit_edges (void) basic_block bb; FOR_EACH_BB (bb) - if (bb->succ == NULL) + if (EDGE_COUNT (bb->succs) == 0) make_single_succ_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE); } @@ -626,13 +632,13 @@ connect_infinite_loops_to_exit (void) void flow_reverse_top_sort_order_compute (int *rts_order) { - edge *stack; + edge_iterator *stack; int sp; int postnum = 0; sbitmap visited; /* Allocate stack for back-tracking up CFG. */ - stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge)); + stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator)); sp = 0; /* Allocate bitmap to track nodes that have been visited. */ @@ -642,18 +648,18 @@ flow_reverse_top_sort_order_compute (int *rts_order) sbitmap_zero (visited); /* Push the first edge on to the stack. */ - stack[sp++] = ENTRY_BLOCK_PTR->succ; + stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs); while (sp) { - edge e; + edge_iterator ei; basic_block src; basic_block dest; /* Look at the edge on the top of the stack. */ - e = stack[sp - 1]; - src = e->src; - dest = e->dest; + ei = stack[sp - 1]; + src = ei_edge (ei)->src; + dest = ei_edge (ei)->dest; /* Check if the edge destination has been visited yet. */ if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index)) @@ -661,20 +667,20 @@ flow_reverse_top_sort_order_compute (int *rts_order) /* Mark that we have visited the destination. */ SET_BIT (visited, dest->index); - if (dest->succ) + if (EDGE_COUNT (dest->succs) > 0) /* Since the DEST node has been visited for the first time, check its successors. */ - stack[sp++] = dest->succ; + stack[sp++] = ei_start (dest->succs); else rts_order[postnum++] = dest->index; } else { - if (! e->succ_next && src != ENTRY_BLOCK_PTR) + if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR) rts_order[postnum++] = src->index; - if (e->succ_next) - stack[sp - 1] = e->succ_next; + if (!ei_one_before_end_p (ei)) + ei_next (&stack[sp - 1]); else sp--; } @@ -694,14 +700,14 @@ flow_reverse_top_sort_order_compute (int *rts_order) int flow_depth_first_order_compute (int *dfs_order, int *rc_order) { - edge *stack; + edge_iterator *stack; int sp; int dfsnum = 0; int rcnum = n_basic_blocks - 1; sbitmap visited; /* Allocate stack for back-tracking up CFG. */ - stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge)); + stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator)); sp = 0; /* Allocate bitmap to track nodes that have been visited. */ @@ -711,18 +717,18 @@ flow_depth_first_order_compute (int *dfs_order, int *rc_order) sbitmap_zero (visited); /* Push the first edge on to the stack. */ - stack[sp++] = ENTRY_BLOCK_PTR->succ; + stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs); while (sp) { - edge e; + edge_iterator ei; basic_block src; basic_block dest; /* Look at the edge on the top of the stack. */ - e = stack[sp - 1]; - src = e->src; - dest = e->dest; + ei = stack[sp - 1]; + src = ei_edge (ei)->src; + dest = ei_edge (ei)->dest; /* Check if the edge destination has been visited yet. */ if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index)) @@ -735,10 +741,10 @@ flow_depth_first_order_compute (int *dfs_order, int *rc_order) dfsnum++; - if (dest->succ) + if (EDGE_COUNT (dest->succs) > 0) /* Since the DEST node has been visited for the first time, check its successors. */ - stack[sp++] = dest->succ; + stack[sp++] = ei_start (dest->succs); else if (rc_order) /* There are no successors for the DEST node so assign its reverse completion number. */ @@ -746,14 +752,14 @@ flow_depth_first_order_compute (int *dfs_order, int *rc_order) } else { - if (! e->succ_next && src != ENTRY_BLOCK_PTR + if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR && rc_order) /* There are no more successors for the SRC node so assign its reverse completion number. */ rc_order[rcnum--] = src->index; - if (e->succ_next) - stack[sp - 1] = e->succ_next; + if (!ei_one_before_end_p (ei)) + ei_next (&stack[sp - 1]); else sp--; } @@ -789,8 +795,7 @@ struct dfst_node void flow_preorder_transversal_compute (int *pot_order) { - edge e; - edge *stack; + edge_iterator *stack, ei; int i; int max_successors; int sp; @@ -808,10 +813,7 @@ flow_preorder_transversal_compute (int *pot_order) FOR_EACH_BB (bb) { - max_successors = 0; - for (e = bb->succ; e; e = e->succ_next) - max_successors++; - + max_successors = EDGE_COUNT (bb->succs); dfst[bb->index].node = (max_successors ? xcalloc (max_successors, sizeof (struct dfst_node *)) : NULL); @@ -824,7 +826,7 @@ flow_preorder_transversal_compute (int *pot_order) sbitmap_zero (visited); /* Push the first edge on to the stack. */ - stack[sp++] = ENTRY_BLOCK_PTR->succ; + stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs); while (sp) { @@ -832,9 +834,9 @@ flow_preorder_transversal_compute (int *pot_order) basic_block dest; /* Look at the edge on the top of the stack. */ - e = stack[sp - 1]; - src = e->src; - dest = e->dest; + ei = stack[sp - 1]; + src = ei_edge (ei)->src; + dest = ei_edge (ei)->dest; /* Check if the edge destination has been visited yet. */ if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index)) @@ -850,14 +852,14 @@ flow_preorder_transversal_compute (int *pot_order) dfst[dest->index].up = &dfst[src->index]; } - if (dest->succ) + if (EDGE_COUNT (dest->succs) > 0) /* Since the DEST node has been visited for the first time, check its successors. */ - stack[sp++] = dest->succ; + stack[sp++] = ei_start (dest->succs); } - else if (e->succ_next) - stack[sp - 1] = e->succ_next; + else if (! ei_one_before_end_p (ei)) + ei_next (&stack[sp - 1]); else sp--; } @@ -960,13 +962,14 @@ flow_dfs_compute_reverse_execute (depth_first_search_ds data) { basic_block bb; edge e; + edge_iterator ei; while (data->sp > 0) { bb = data->stack[--data->sp]; /* Perform depth-first search on adjacent vertices. */ - for (e = bb->pred; e; e = e->pred_next) + FOR_EACH_EDGE (e, ei, bb->preds) if (!TEST_BIT (data->visited_blocks, e->src->index - (INVALID_BLOCK + 1))) flow_dfs_compute_reverse_add_bb (data, e->src); @@ -1007,10 +1010,11 @@ dfs_enumerate_from (basic_block bb, int reverse, while (sp) { edge e; + edge_iterator ei; lbb = st[--sp]; if (reverse) { - for (e = lbb->pred; e; e = e->pred_next) + FOR_EACH_EDGE (e, ei, lbb->preds) if (!(e->src->flags & BB_VISITED) && predicate (e->src, data)) { gcc_assert (tv != rslt_max); @@ -1020,7 +1024,7 @@ dfs_enumerate_from (basic_block bb, int reverse, } else { - for (e = lbb->succ; e; e = e->succ_next) + FOR_EACH_EDGE (e, ei, lbb->succs) if (!(e->dest->flags & BB_VISITED) && predicate (e->dest, data)) { gcc_assert (tv != rslt_max); @@ -1056,6 +1060,7 @@ static void compute_dominance_frontiers_1 (bitmap *frontiers, basic_block bb, sbitmap done) { edge e; + edge_iterator ei; basic_block c; SET_BIT (done, bb->index); @@ -1072,7 +1077,7 @@ compute_dominance_frontiers_1 (bitmap *frontiers, basic_block bb, sbitmap done) } /* Find blocks conforming to rule (1) above. */ - for (e = bb->succ; e; e = e->succ_next) + FOR_EACH_EDGE (e, ei, bb->succs) { if (e->dest == EXIT_BLOCK_PTR) continue; @@ -1106,7 +1111,7 @@ compute_dominance_frontiers (bitmap *frontiers) sbitmap_zero (done); - compute_dominance_frontiers_1 (frontiers, ENTRY_BLOCK_PTR->succ->dest, done); + compute_dominance_frontiers_1 (frontiers, EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->dest, done); sbitmap_free (done); |