summaryrefslogtreecommitdiff
path: root/gcc/cfgloop.c
diff options
context:
space:
mode:
authorrakdver <rakdver@138bc75d-0d04-0410-961f-82ee72b054a4>2007-02-06 21:49:49 +0000
committerrakdver <rakdver@138bc75d-0d04-0410-961f-82ee72b054a4>2007-02-06 21:49:49 +0000
commit4a6f9e197c022b9b9efb396b6f13a2c2dbc2234f (patch)
tree0b2228e5e39d0218784f7e5f8304e2e94d0d96c2 /gcc/cfgloop.c
parent0d8970e35cd11c6e895434af7ab691c1ebf0f4f4 (diff)
downloadgcc-4a6f9e197c022b9b9efb396b6f13a2c2dbc2234f.tar.gz
* doc/loop.texi: Document possibility not to perform disambiguation
of loops with multiple latches. * cfgloopmanip.c (alp_enum_p): Removed. (add_loop): Handle subloops. Use get_loop_body_with_size. (create_preheader): Do not allow ENTRY_BLOCK_PTR to be preheader. * cfghooks.c (redirect_edge_and_branch_force): Set dominator for the new forwarder block. (make_forwarder_block): Only call new_bb_cbk if it is not NULL. Handle the case latch is NULL. * tree-ssa-dom.c (tree_ssa_dominator_optimize): Avoid cfg modifications when marking loop exits. * ifcvt.c (if_convert): Ditto. Mark loop exits even if cfg cannot be modified. * loop-init.c (loop_optimizer_init): Do not modify cfg. Call disambiguate_loops_with_multiple_latches. * tree-cfgcleanup.c (cleanup_tree_cfg_loop): Calculate dominators before fix_loop_structure. * cfgloop.c: Include pointer-set.h and output.h. (canonicalize_loop_headers, HEADER_BLOCK, LATCH_EDGE, update_latch_info, mfb_keep_just, mfb_keep_nonlatch): Removed. (get_loop_latch_edges, find_subloop_latch_edge_by_profile, find_subloop_latch_edge_by_ivs, find_subloop_latch_edge, mfb_redirect_edges_in_set, form_subloop, merge_latch_edges, disambiguate_multiple_latches, get_loop_body_with_size, disambiguate_loops_with_multiple_latches): New functions. (flow_loop_dump): Dump multiple latch edges. (flow_loop_nodes_find): Handle loops with multiple latches. (flow_loops_find): Ditto. Do not call canonicalize_loop_headers. (glb_enum_p): Modified. (get_loop_body): Use get_loop_body_with_size. * cfgloop.h (LOOPS_HAVE_RECORDED_EXITS): New flag. (AVOID_CFG_MODIFICATIONS): New constant. (disambiguate_loops_with_multiple_latches, add_loop, get_loop_body_with_size): Declare. * Makefile.in (cfgloop.o): Add pointer-set.h and output.h. * gcc.dg/tree-ssa/loop-25.c: New test. git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@121670 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/cfgloop.c')
-rw-r--r--gcc/cfgloop.c557
1 files changed, 353 insertions, 204 deletions
diff --git a/gcc/cfgloop.c b/gcc/cfgloop.c
index bd9e6d351da..4465b119f91 100644
--- a/gcc/cfgloop.c
+++ b/gcc/cfgloop.c
@@ -32,18 +32,11 @@ Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
#include "flags.h"
#include "tree.h"
#include "tree-flow.h"
-
-/* Ratio of frequencies of edges so that one of more latch edges is
- considered to belong to inner loop with same header. */
-#define HEAVY_EDGE_RATIO 8
-
-#define HEADER_BLOCK(B) (* (int *) (B)->aux)
-#define LATCH_EDGE(E) (*(int *) (E)->aux)
+#include "pointer-set.h"
+#include "output.h"
static void flow_loops_cfg_dump (FILE *);
static void establish_preds (struct loop *);
-static void canonicalize_loop_headers (void);
-static bool glb_enum_p (basic_block, void *);
/* Dump loop related CFG information. */
@@ -90,6 +83,24 @@ superloop_at_depth (struct loop *loop, unsigned depth)
return loop->pred[depth];
}
+/* Returns the list of the latch edges of LOOP. */
+
+static VEC (edge, heap) *
+get_loop_latch_edges (const struct loop *loop)
+{
+ edge_iterator ei;
+ edge e;
+ VEC (edge, heap) *ret = NULL;
+
+ FOR_EACH_EDGE (e, ei, loop->header->preds)
+ {
+ if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
+ VEC_safe_push (edge, heap, ret, e);
+ }
+
+ return ret;
+}
+
/* Dump the loop information specified by LOOP to the stream FILE
using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
@@ -100,14 +111,27 @@ flow_loop_dump (const struct loop *loop, FILE *file,
{
basic_block *bbs;
unsigned i;
+ VEC (edge, heap) *latches;
+ edge e;
if (! loop || ! loop->header)
return;
fprintf (file, ";;\n;; Loop %d\n", loop->num);
- fprintf (file, ";; header %d, latch %d\n",
- loop->header->index, loop->latch->index);
+ fprintf (file, ";; header %d, ", loop->header->index);
+ if (loop->latch)
+ fprintf (file, "latch %d\n", loop->latch->index);
+ else
+ {
+ fprintf (file, "multiple latches:");
+ latches = get_loop_latch_edges (loop);
+ for (i = 0; VEC_iterate (edge, latches, i, e); i++)
+ fprintf (file, " %d", e->src->index);
+ VEC_free (edge, heap, latches);
+ fprintf (file, "\n");
+ }
+
fprintf (file, ";; depth %d, outer %ld\n",
loop->depth, (long) (loop->outer ? loop->outer->num : -1));
@@ -198,46 +222,49 @@ flow_loops_free (struct loops *loops)
int
flow_loop_nodes_find (basic_block header, struct loop *loop)
{
- basic_block *stack;
- int sp;
+ VEC (basic_block, heap) *stack = NULL;
int num_nodes = 1;
+ edge latch;
+ edge_iterator latch_ei;
header->loop_father = loop;
header->loop_depth = loop->depth;
- if (loop->latch->loop_father != loop)
+ FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
{
- stack = XNEWVEC (basic_block, n_basic_blocks);
- sp = 0;
+ if (latch->src->loop_father == loop
+ || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
+ continue;
+
num_nodes++;
- stack[sp++] = loop->latch;
- loop->latch->loop_father = loop;
- loop->latch->loop_depth = loop->depth;
+ VEC_safe_push (basic_block, heap, stack, latch->src);
+ latch->src->loop_father = loop;
+ latch->src->loop_depth = loop->depth;
- while (sp)
+ while (!VEC_empty (basic_block, stack))
{
basic_block node;
edge e;
edge_iterator ei;
- node = stack[--sp];
+ node = VEC_pop (basic_block, stack);
FOR_EACH_EDGE (e, ei, node->preds)
{
basic_block ancestor = e->src;
- if (ancestor != ENTRY_BLOCK_PTR
- && ancestor->loop_father != loop)
+ if (ancestor->loop_father != loop)
{
ancestor->loop_father = loop;
ancestor->loop_depth = loop->depth;
num_nodes++;
- stack[sp++] = ancestor;
+ VEC_safe_push (basic_block, heap, stack, ancestor);
}
}
}
- free (stack);
}
+ VEC_free (basic_block, heap, stack);
+
return num_nodes;
}
@@ -299,156 +326,6 @@ flow_loop_tree_node_remove (struct loop *loop)
loop->pred = NULL;
}
-/* A callback to update latch and header info for basic block JUMP created
- by redirecting an edge. */
-
-static void
-update_latch_info (basic_block jump)
-{
- alloc_aux_for_block (jump, sizeof (int));
- HEADER_BLOCK (jump) = 0;
- alloc_aux_for_edge (single_pred_edge (jump), sizeof (int));
- LATCH_EDGE (single_pred_edge (jump)) = 0;
- set_immediate_dominator (CDI_DOMINATORS, jump, single_pred (jump));
-}
-
-/* A callback for make_forwarder block, to redirect all edges except for
- MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
- whether to redirect it. */
-
-static edge mfb_kj_edge;
-static bool
-mfb_keep_just (edge e)
-{
- return e != mfb_kj_edge;
-}
-
-/* A callback for make_forwarder block, to redirect the latch edges into an
- entry part. E is the edge for that we should decide whether to redirect
- it. */
-
-static bool
-mfb_keep_nonlatch (edge e)
-{
- return LATCH_EDGE (e);
-}
-
-/* Takes care of merging natural loops with shared headers. */
-
-static void
-canonicalize_loop_headers (void)
-{
- basic_block header;
- edge e;
-
- alloc_aux_for_blocks (sizeof (int));
- alloc_aux_for_edges (sizeof (int));
-
- /* Split blocks so that each loop has only single latch. */
- FOR_EACH_BB (header)
- {
- edge_iterator ei;
- int num_latches = 0;
- int have_abnormal_edge = 0;
-
- FOR_EACH_EDGE (e, ei, header->preds)
- {
- basic_block latch = e->src;
-
- if (e->flags & EDGE_ABNORMAL)
- have_abnormal_edge = 1;
-
- if (latch != ENTRY_BLOCK_PTR
- && dominated_by_p (CDI_DOMINATORS, latch, header))
- {
- num_latches++;
- LATCH_EDGE (e) = 1;
- }
- }
- if (have_abnormal_edge)
- HEADER_BLOCK (header) = 0;
- else
- HEADER_BLOCK (header) = num_latches;
- }
-
- if (HEADER_BLOCK (single_succ (ENTRY_BLOCK_PTR)))
- {
- basic_block bb;
-
- /* We could not redirect edges freely here. On the other hand,
- we can simply split the edge from entry block. */
- bb = split_edge (single_succ_edge (ENTRY_BLOCK_PTR));
-
- alloc_aux_for_edge (single_succ_edge (bb), sizeof (int));
- LATCH_EDGE (single_succ_edge (bb)) = 0;
- alloc_aux_for_block (bb, sizeof (int));
- HEADER_BLOCK (bb) = 0;
- }
-
- FOR_EACH_BB (header)
- {
- int max_freq, is_heavy;
- edge heavy, tmp_edge;
- edge_iterator ei;
-
- if (HEADER_BLOCK (header) <= 1)
- continue;
-
- /* Find a heavy edge. */
- is_heavy = 1;
- heavy = NULL;
- max_freq = 0;
- FOR_EACH_EDGE (e, ei, header->preds)
- if (LATCH_EDGE (e) &&
- EDGE_FREQUENCY (e) > max_freq)
- max_freq = EDGE_FREQUENCY (e);
- FOR_EACH_EDGE (e, ei, header->preds)
- if (LATCH_EDGE (e) &&
- EDGE_FREQUENCY (e) >= max_freq / HEAVY_EDGE_RATIO)
- {
- if (heavy)
- {
- is_heavy = 0;
- break;
- }
- else
- heavy = e;
- }
-
- if (is_heavy)
- {
- /* Split out the heavy edge, and create inner loop for it. */
- mfb_kj_edge = heavy;
- tmp_edge = make_forwarder_block (header, mfb_keep_just,
- update_latch_info);
- alloc_aux_for_block (tmp_edge->dest, sizeof (int));
- HEADER_BLOCK (tmp_edge->dest) = 1;
- alloc_aux_for_edge (tmp_edge, sizeof (int));
- LATCH_EDGE (tmp_edge) = 0;
- HEADER_BLOCK (header)--;
- }
-
- if (HEADER_BLOCK (header) > 1)
- {
- /* Create a new latch block. */
- tmp_edge = make_forwarder_block (header, mfb_keep_nonlatch,
- update_latch_info);
- alloc_aux_for_block (tmp_edge->dest, sizeof (int));
- HEADER_BLOCK (tmp_edge->src) = 0;
- HEADER_BLOCK (tmp_edge->dest) = 1;
- alloc_aux_for_edge (tmp_edge, sizeof (int));
- LATCH_EDGE (tmp_edge) = 1;
- }
- }
-
- free_aux_for_blocks ();
- free_aux_for_edges ();
-
-#ifdef ENABLE_CHECKING
- verify_dominators (CDI_DOMINATORS);
-#endif
-}
-
/* Allocates and returns new loop structure. */
struct loop *
@@ -494,9 +371,6 @@ flow_loops_find (struct loops *loops)
/* Ensure that the dominators are computed. */
calculate_dominance_info (CDI_DOMINATORS);
- /* Join loops with shared headers. */
- canonicalize_loop_headers ();
-
/* Count the number of loop headers. This should be the
same as the number of natural loops. */
headers = sbitmap_alloc (last_basic_block);
@@ -506,7 +380,6 @@ flow_loops_find (struct loops *loops)
FOR_EACH_BB (header)
{
edge_iterator ei;
- int more_latches = 0;
header->loop_depth = 0;
@@ -533,8 +406,6 @@ flow_loops_find (struct loops *loops)
&& dominated_by_p (CDI_DOMINATORS, latch, header))
{
/* Shared headers should be eliminated by now. */
- gcc_assert (!more_latches);
- more_latches = 1;
SET_BIT (headers, header->index);
num_loops++;
}
@@ -589,21 +460,26 @@ flow_loops_find (struct loops *loops)
loop->num = num_loops;
num_loops++;
- /* Look for the latch for this header block. */
+ flow_loop_tree_node_add (header->loop_father, loop);
+ loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
+
+ /* Look for the latch for this header block, if it has just a
+ single one. */
FOR_EACH_EDGE (e, ei, header->preds)
{
basic_block latch = e->src;
- if (latch != ENTRY_BLOCK_PTR
- && dominated_by_p (CDI_DOMINATORS, latch, header))
+ if (flow_bb_inside_loop_p (loop, latch))
{
+ if (loop->latch != NULL)
+ {
+ /* More than one latch edge. */
+ loop->latch = NULL;
+ break;
+ }
loop->latch = latch;
- break;
}
}
-
- flow_loop_tree_node_add (header->loop_father, loop);
- loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
}
free (dfs_order);
@@ -617,6 +493,264 @@ flow_loops_find (struct loops *loops)
return VEC_length (loop_p, loops->larray);
}
+/* Ratio of frequencies of edges so that one of more latch edges is
+ considered to belong to inner loop with same header. */
+#define HEAVY_EDGE_RATIO 8
+
+/* Minimum number of samples for that we apply
+ find_subloop_latch_edge_by_profile heuristics. */
+#define HEAVY_EDGE_MIN_SAMPLES 10
+
+/* If the profile info is available, finds an edge in LATCHES that much more
+ frequent than the remaining edges. Returns such an edge, or NULL if we do
+ not find one.
+
+ We do not use guessed profile here, only the measured one. The guessed
+ profile is usually too flat and unreliable for this (and it is mostly based
+ on the loop structure of the program, so it does not make much sense to
+ derive the loop structure from it). */
+
+static edge
+find_subloop_latch_edge_by_profile (VEC (edge, heap) *latches)
+{
+ unsigned i;
+ edge e, me = NULL;
+ gcov_type mcount = 0, tcount = 0;
+
+ for (i = 0; VEC_iterate (edge, latches, i, e); i++)
+ {
+ if (e->count > mcount)
+ {
+ me = e;
+ mcount = e->count;
+ }
+ tcount += e->count;
+ }
+
+ if (tcount < HEAVY_EDGE_MIN_SAMPLES
+ || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
+ return NULL;
+
+ if (dump_file)
+ fprintf (dump_file,
+ "Found latch edge %d -> %d using profile information.\n",
+ me->src->index, me->dest->index);
+ return me;
+}
+
+/* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
+ on the structure of induction variables. Returns this edge, or NULL if we
+ do not find any.
+
+ We are quite conservative, and look just for an obvious simple innermost
+ loop (which is the case where we would lose the most performance by not
+ disambiguating the loop). More precisely, we look for the following
+ situation: The source of the chosen latch edge dominates sources of all
+ the other latch edges. Additionally, the header does not contain a phi node
+ such that the argument from the chosen edge is equal to the argument from
+ another edge. */
+
+static edge
+find_subloop_latch_edge_by_ivs (struct loop *loop, VEC (edge, heap) *latches)
+{
+ edge e, latch = VEC_index (edge, latches, 0);
+ unsigned i;
+ tree phi, lop;
+ basic_block bb;
+
+ /* Find the candidate for the latch edge. */
+ for (i = 1; VEC_iterate (edge, latches, i, e); i++)
+ if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
+ latch = e;
+
+ /* Verify that it dominates all the latch edges. */
+ for (i = 0; VEC_iterate (edge, latches, i, e); i++)
+ if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
+ return NULL;
+
+ /* Check for a phi node that would deny that this is a latch edge of
+ a subloop. */
+ for (phi = phi_nodes (loop->header); phi; phi = PHI_CHAIN (phi))
+ {
+ lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
+
+ /* Ignore the values that are not changed inside the subloop. */
+ if (TREE_CODE (lop) != SSA_NAME
+ || SSA_NAME_DEF_STMT (lop) == phi)
+ continue;
+ bb = bb_for_stmt (SSA_NAME_DEF_STMT (lop));
+ if (!bb || !flow_bb_inside_loop_p (loop, bb))
+ continue;
+
+ for (i = 0; VEC_iterate (edge, latches, i, e); i++)
+ if (e != latch
+ && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
+ return NULL;
+ }
+
+ if (dump_file)
+ fprintf (dump_file,
+ "Found latch edge %d -> %d using iv structure.\n",
+ latch->src->index, latch->dest->index);
+ return latch;
+}
+
+/* If we can determine that one of the several latch edges of LOOP behaves
+ as a latch edge of a separate subloop, returns this edge. Otherwise
+ returns NULL. */
+
+static edge
+find_subloop_latch_edge (struct loop *loop)
+{
+ VEC (edge, heap) *latches = get_loop_latch_edges (loop);
+ edge latch = NULL;
+
+ if (VEC_length (edge, latches) > 1)
+ {
+ latch = find_subloop_latch_edge_by_profile (latches);
+
+ if (!latch
+ /* We consider ivs to guess the latch edge only in SSA. Perhaps we
+ should use cfghook for this, but it is hard to imagine it would
+ be useful elsewhere. */
+ && current_ir_type () == IR_GIMPLE)
+ latch = find_subloop_latch_edge_by_ivs (loop, latches);
+ }
+
+ VEC_free (edge, heap, latches);
+ return latch;
+}
+
+/* Callback for make_forwarder_block. Returns true if the edge E is marked
+ in the set MFB_REIS_SET. */
+
+static struct pointer_set_t *mfb_reis_set;
+static bool
+mfb_redirect_edges_in_set (edge e)
+{
+ return pointer_set_contains (mfb_reis_set, e);
+}
+
+/* Creates a subloop of LOOP with latch edge LATCH. */
+
+static void
+form_subloop (struct loop *loop, edge latch)
+{
+ edge_iterator ei;
+ edge e, new_entry;
+ struct loop *new_loop;
+
+ mfb_reis_set = pointer_set_create ();
+ FOR_EACH_EDGE (e, ei, loop->header->preds)
+ {
+ if (e != latch)
+ pointer_set_insert (mfb_reis_set, e);
+ }
+ new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
+ NULL);
+ pointer_set_destroy (mfb_reis_set);
+
+ loop->header = new_entry->src;
+
+ /* Find the blocks and subloops that belong to the new loop, and add it to
+ the appropriate place in the loop tree. */
+ new_loop = alloc_loop ();
+ new_loop->header = new_entry->dest;
+ new_loop->latch = latch->src;
+ add_loop (new_loop, loop);
+}
+
+/* Make all the latch edges of LOOP to go to a single forwarder block --
+ a new latch of LOOP. */
+
+static void
+merge_latch_edges (struct loop *loop)
+{
+ VEC (edge, heap) *latches = get_loop_latch_edges (loop);
+ edge latch, e;
+ unsigned i;
+
+ gcc_assert (VEC_length (edge, latches) > 0);
+
+ if (VEC_length (edge, latches) == 1)
+ loop->latch = VEC_index (edge, latches, 0)->src;
+ else
+ {
+ if (dump_file)
+ fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
+
+ mfb_reis_set = pointer_set_create ();
+ for (i = 0; VEC_iterate (edge, latches, i, e); i++)
+ pointer_set_insert (mfb_reis_set, e);
+ latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
+ NULL);
+ pointer_set_destroy (mfb_reis_set);
+
+ loop->header = latch->dest;
+ loop->latch = latch->src;
+ }
+
+ VEC_free (edge, heap, latches);
+}
+
+/* LOOP may have several latch edges. Transform it into (possibly several)
+ loops with single latch edge. */
+
+static void
+disambiguate_multiple_latches (struct loop *loop)
+{
+ edge e;
+
+ /* We eliminate the mutiple latches by splitting the header to the forwarder
+ block F and the rest R, and redirecting the edges. There are two cases:
+
+ 1) If there is a latch edge E that corresponds to a subloop (we guess
+ that based on profile -- if it is taken much more often than the
+ remaining edges; and on trees, using the information about induction
+ variables of the loops), we redirect E to R, all the remaining edges to
+ F, then rescan the loops and try again for the outer loop.
+ 2) If there is no such edge, we redirect all latch edges to F, and the
+ entry edges to R, thus making F the single latch of the loop. */
+
+ if (dump_file)
+ fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
+ loop->num);
+
+ /* During latch merging, we may need to redirect the entry edges to a new
+ block. This would cause problems if the entry edge was the one from the
+ entry block. To avoid having to handle this case specially, split
+ such entry edge. */
+ e = find_edge (ENTRY_BLOCK_PTR, loop->header);
+ if (e)
+ split_edge (e);
+
+ while (1)
+ {
+ e = find_subloop_latch_edge (loop);
+ if (!e)
+ break;
+
+ form_subloop (loop, e);
+ }
+
+ merge_latch_edges (loop);
+}
+
+/* Split loops with multiple latch edges. */
+
+void
+disambiguate_loops_with_multiple_latches (void)
+{
+ loop_iterator li;
+ struct loop *loop;
+
+ FOR_EACH_LOOP (li, loop, 0)
+ {
+ if (!loop->latch)
+ disambiguate_multiple_latches (loop);
+ }
+}
+
/* Return nonzero if basic block BB belongs to LOOP. */
bool
flow_bb_inside_loop_p (const struct loop *loop, const basic_block bb)
@@ -630,44 +764,59 @@ flow_bb_inside_loop_p (const struct loop *loop, const basic_block bb)
return loop == source_loop || flow_loop_nested_p (loop, source_loop);
}
-/* Enumeration predicate for get_loop_body. */
+/* Enumeration predicate for get_loop_body_with_size. */
static bool
-glb_enum_p (basic_block bb, void *glb_header)
+glb_enum_p (basic_block bb, void *glb_loop)
+{
+ struct loop *loop = glb_loop;
+ return (bb != loop->header
+ && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
+}
+
+/* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
+ order against direction of edges from latch. Specially, if
+ header != latch, latch is the 1-st block. LOOP cannot be the fake
+ loop tree root, and its size must be at most MAX_SIZE. The blocks
+ in the LOOP body are stored to BODY, and the size of the LOOP is
+ returned. */
+
+unsigned
+get_loop_body_with_size (const struct loop *loop, basic_block *body,
+ unsigned max_size)
{
- return bb != (basic_block) glb_header;
+ return dfs_enumerate_from (loop->header, 1, glb_enum_p,
+ body, max_size, (void *) loop);
}
/* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
order against direction of edges from latch. Specially, if
header != latch, latch is the 1-st block. */
+
basic_block *
get_loop_body (const struct loop *loop)
{
- basic_block *tovisit, bb;
+ basic_block *body, bb;
unsigned tv = 0;
gcc_assert (loop->num_nodes);
- tovisit = XCNEWVEC (basic_block, loop->num_nodes);
- tovisit[tv++] = loop->header;
+ body = XCNEWVEC (basic_block, loop->num_nodes);
if (loop->latch == EXIT_BLOCK_PTR)
{
- /* There may be blocks unreachable from EXIT_BLOCK. */
+ /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
+ special-case the fake loop that contains the whole function. */
gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks);
+ body[tv++] = loop->header;
+ body[tv++] = EXIT_BLOCK_PTR;
FOR_EACH_BB (bb)
- tovisit[tv++] = bb;
- tovisit[tv++] = EXIT_BLOCK_PTR;
- }
- else if (loop->latch != loop->header)
- {
- tv = dfs_enumerate_from (loop->latch, 1, glb_enum_p,
- tovisit + 1, loop->num_nodes - 1,
- loop->header) + 1;
+ body[tv++] = bb;
}
+ else
+ tv = get_loop_body_with_size (loop, body, loop->num_nodes);
gcc_assert (tv == loop->num_nodes);
- return tovisit;
+ return body;
}
/* Fills dominance descendants inside LOOP of the basic block BB into