summaryrefslogtreecommitdiff
path: root/gcc/config
diff options
context:
space:
mode:
authorkenner <kenner@138bc75d-0d04-0410-961f-82ee72b054a4>1996-01-31 12:47:49 +0000
committerkenner <kenner@138bc75d-0d04-0410-961f-82ee72b054a4>1996-01-31 12:47:49 +0000
commit1cbf30174fabfdd3cdb3926602073a39851540ae (patch)
tree593ff2b6ec5ad883f93348adf40225cc78cf509c /gcc/config
parent3e648a2cf8f65589eafda84090aa89d375ffbab6 (diff)
downloadgcc-1cbf30174fabfdd3cdb3926602073a39851540ae.tar.gz
Initial revision
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@11131 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/config')
-rw-r--r--gcc/config/i386/ptx4-i.h247
-rw-r--r--gcc/config/ptx4.h860
2 files changed, 1107 insertions, 0 deletions
diff --git a/gcc/config/i386/ptx4-i.h b/gcc/config/i386/ptx4-i.h
new file mode 100644
index 00000000000..fdf21a471f1
--- /dev/null
+++ b/gcc/config/i386/ptx4-i.h
@@ -0,0 +1,247 @@
+/* Target definitions for GNU compiler for Intel 80386 running Dynix/ptx v4
+ Copyright (C) 1996 Free Software Foundation, Inc.
+
+ Modified from sysv4.h
+ Originally written by Ron Guilmette (rfg@netcom.com).
+ Modified by Tim Wright (timw@sequent.com).
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA. */
+
+#include "i386/i386.h" /* Base i386 target machine definitions */
+#include "i386/att.h" /* Use the i386 AT&T assembler syntax */
+#include "ptx4.h" /* Rest of definitions (non architecture dependent) */
+
+#undef TARGET_VERSION
+#define TARGET_VERSION fprintf (stderr, " (i386 Sequent Dynix/ptx Version 4)");
+
+/* The svr4 ABI for the i386 says that records and unions are returned
+ in memory. */
+
+#undef RETURN_IN_MEMORY
+#define RETURN_IN_MEMORY(TYPE) \
+ (TYPE_MODE (TYPE) == BLKmode)
+
+/* Define which macros to predefine. _SEQUENT_ is our extension. */
+/* This used to define X86, but james@bigtex.cactus.org says that
+ is supposed to be defined optionally by user programs--not by default. */
+#define CPP_PREDEFINES \
+ "-Di386 -Dunix -D_SEQUENT_ -Asystem(unix) -Asystem(ptx4) -Acpu(i386) -Amachine(i386)"
+
+/* This is how to output assembly code to define a `float' constant.
+ We always have to use a .long pseudo-op to do this because the native
+ SVR4 ELF assembler is buggy and it generates incorrect values when we
+ try to use the .float pseudo-op instead. */
+
+#undef ASM_OUTPUT_FLOAT
+#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
+do { long value; \
+ REAL_VALUE_TO_TARGET_SINGLE ((VALUE), value); \
+ if (sizeof (int) == sizeof (long)) \
+ fprintf((FILE), "%s\t0x%x\n", ASM_LONG, value); \
+ else \
+ fprintf((FILE), "%s\t0x%lx\n", ASM_LONG, value); \
+ } while (0)
+
+/* This is how to output assembly code to define a `double' constant.
+ We always have to use a pair of .long pseudo-ops to do this because
+ the native SVR4 ELF assembler is buggy and it generates incorrect
+ values when we try to use the the .double pseudo-op instead. */
+
+#undef ASM_OUTPUT_DOUBLE
+#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
+do { long value[2]; \
+ REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), value); \
+ if (sizeof (int) == sizeof (long)) \
+ { \
+ fprintf((FILE), "%s\t0x%x\n", ASM_LONG, value[0]); \
+ fprintf((FILE), "%s\t0x%x\n", ASM_LONG, value[1]); \
+ } \
+ else \
+ { \
+ fprintf((FILE), "%s\t0x%lx\n", ASM_LONG, value[0]); \
+ fprintf((FILE), "%s\t0x%lx\n", ASM_LONG, value[1]); \
+ } \
+ } while (0)
+
+
+#undef ASM_OUTPUT_LONG_DOUBLE
+#define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
+do { long value[3]; \
+ REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), value); \
+ if (sizeof (int) == sizeof (long)) \
+ { \
+ fprintf((FILE), "%s\t0x%x\n", ASM_LONG, value[0]); \
+ fprintf((FILE), "%s\t0x%x\n", ASM_LONG, value[1]); \
+ fprintf((FILE), "%s\t0x%x\n", ASM_LONG, value[2]); \
+ } \
+ else \
+ { \
+ fprintf((FILE), "%s\t0x%lx\n", ASM_LONG, value[0]); \
+ fprintf((FILE), "%s\t0x%lx\n", ASM_LONG, value[1]); \
+ fprintf((FILE), "%s\t0x%lx\n", ASM_LONG, value[2]); \
+ } \
+ } while (0)
+
+/* Output at beginning of assembler file. */
+/* The .file command should always begin the output. */
+
+#undef ASM_FILE_START
+#define ASM_FILE_START(FILE) \
+ do { \
+ output_file_directive (FILE, main_input_filename); \
+ fprintf (FILE, "\t.version\t\"01.01\"\n"); \
+ } while (0)
+
+/* Define the register numbers to be used in Dwarf debugging information.
+ The SVR4 reference port C compiler uses the following register numbers
+ in its Dwarf output code:
+
+ 0 for %eax (gnu regno = 0)
+ 1 for %ecx (gnu regno = 2)
+ 2 for %edx (gnu regno = 1)
+ 3 for %ebx (gnu regno = 3)
+ 4 for %esp (gnu regno = 7)
+ 5 for %ebp (gnu regno = 6)
+ 6 for %esi (gnu regno = 4)
+ 7 for %edi (gnu regno = 5)
+
+ The following three DWARF register numbers are never generated by
+ the SVR4 C compiler or by the GNU compilers, but SDB on x86/svr4
+ believes these numbers have these meanings.
+
+ 8 for %eip (no gnu equivalent)
+ 9 for %eflags (no gnu equivalent)
+ 10 for %trapno (no gnu equivalent)
+
+ It is not at all clear how we should number the FP stack registers
+ for the x86 architecture. If the version of SDB on x86/svr4 were
+ a bit less brain dead with respect to floating-point then we would
+ have a precedent to follow with respect to DWARF register numbers
+ for x86 FP registers, but the SDB on x86/svr4 is so completely
+ broken with respect to FP registers that it is hardly worth thinking
+ of it as something to strive for compatibility with.
+
+ The version of x86/svr4 SDB I have at the moment does (partially)
+ seem to believe that DWARF register number 11 is associated with
+ the x86 register %st(0), but that's about all. Higher DWARF
+ register numbers don't seem to be associated with anything in
+ particular, and even for DWARF regno 11, SDB only seems to under-
+ stand that it should say that a variable lives in %st(0) (when
+ asked via an `=' command) if we said it was in DWARF regno 11,
+ but SDB still prints garbage when asked for the value of the
+ variable in question (via a `/' command).
+
+ (Also note that the labels SDB prints for various FP stack regs
+ when doing an `x' command are all wrong.)
+
+ Note that these problems generally don't affect the native SVR4
+ C compiler because it doesn't allow the use of -O with -g and
+ because when it is *not* optimizing, it allocates a memory
+ location for each floating-point variable, and the memory
+ location is what gets described in the DWARF AT_location
+ attribute for the variable in question.
+
+ Regardless of the severe mental illness of the x86/svr4 SDB, we
+ do something sensible here and we use the following DWARF
+ register numbers. Note that these are all stack-top-relative
+ numbers.
+
+ 11 for %st(0) (gnu regno = 8)
+ 12 for %st(1) (gnu regno = 9)
+ 13 for %st(2) (gnu regno = 10)
+ 14 for %st(3) (gnu regno = 11)
+ 15 for %st(4) (gnu regno = 12)
+ 16 for %st(5) (gnu regno = 13)
+ 17 for %st(6) (gnu regno = 14)
+ 18 for %st(7) (gnu regno = 15)
+*/
+
+#undef DBX_REGISTER_NUMBER
+#define DBX_REGISTER_NUMBER(n) \
+((n) == 0 ? 0 \
+ : (n) == 1 ? 2 \
+ : (n) == 2 ? 1 \
+ : (n) == 3 ? 3 \
+ : (n) == 4 ? 6 \
+ : (n) == 5 ? 7 \
+ : (n) == 6 ? 5 \
+ : (n) == 7 ? 4 \
+ : ((n) >= FIRST_STACK_REG && (n) <= LAST_STACK_REG) ? (n)+3 \
+ : (-1))
+
+/* The routine used to output sequences of byte values. We use a special
+ version of this for most svr4 targets because doing so makes the
+ generated assembly code more compact (and thus faster to assemble)
+ as well as more readable. Note that if we find subparts of the
+ character sequence which end with NUL (and which are shorter than
+ STRING_LIMIT) we output those using ASM_OUTPUT_LIMITED_STRING. */
+
+#undef ASM_OUTPUT_ASCII
+#define ASM_OUTPUT_ASCII(FILE, STR, LENGTH) \
+ do \
+ { \
+ register unsigned char *_ascii_bytes = (unsigned char *) (STR); \
+ register unsigned char *limit = _ascii_bytes + (LENGTH); \
+ register unsigned bytes_in_chunk = 0; \
+ for (; _ascii_bytes < limit; _ascii_bytes++) \
+ { \
+ register unsigned char *p; \
+ if (bytes_in_chunk >= 64) \
+ { \
+ fputc ('\n', (FILE)); \
+ bytes_in_chunk = 0; \
+ } \
+ for (p = _ascii_bytes; p < limit && *p != '\0'; p++) \
+ continue; \
+ if (p < limit && (p - _ascii_bytes) <= STRING_LIMIT) \
+ { \
+ if (bytes_in_chunk > 0) \
+ { \
+ fputc ('\n', (FILE)); \
+ bytes_in_chunk = 0; \
+ } \
+ ASM_OUTPUT_LIMITED_STRING ((FILE), _ascii_bytes); \
+ _ascii_bytes = p; \
+ } \
+ else \
+ { \
+ if (bytes_in_chunk == 0) \
+ fprintf ((FILE), "\t.byte\t"); \
+ else \
+ fputc (',', (FILE)); \
+ fprintf ((FILE), "0x%02x", *_ascii_bytes); \
+ bytes_in_chunk += 5; \
+ } \
+ } \
+ if (bytes_in_chunk > 0) \
+ fprintf ((FILE), "\n"); \
+ } \
+ while (0)
+
+/* This is how to output an element of a case-vector that is relative.
+ This is only used for PIC code. See comments by the `casesi' insn in
+ i386.md for an explanation of the expression this outputs. */
+
+#undef ASM_OUTPUT_ADDR_DIFF_ELT
+#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
+ fprintf (FILE, "\t.long _GLOBAL_OFFSET_TABLE_+[.-%s%d]\n", LPREFIX, VALUE)
+
+/* Indicate that jump tables go in the text section. This is
+ necessary when compiling PIC code. */
+
+#define JUMP_TABLES_IN_TEXT_SECTION
diff --git a/gcc/config/ptx4.h b/gcc/config/ptx4.h
new file mode 100644
index 00000000000..c4f163c22d7
--- /dev/null
+++ b/gcc/config/ptx4.h
@@ -0,0 +1,860 @@
+/* Operating system specific defines to be used when targeting GCC for some
+ generic System V Release 4 system.
+ Copyright (C) 1996 Free Software Foundation, Inc.
+ Contributed by Ron Guilmette (rfg@segfault.us.com).
+ Renamed and changed to suit Dynix/ptx v4 and later.
+ Modified by Tim Wright (timw@sequent.com).
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 59 Temple Place - Suite 330,
+Boston, MA 02111-1307, USA.
+
+*/
+
+/* Define a symbol indicating that we are using svr4.h. */
+#define USING_SVR4_H
+
+/* For the sake of libgcc2.c, indicate target supports atexit. */
+#define HAVE_ATEXIT
+
+/* Cpp, assembler, linker, library, and startfile spec's. */
+
+/* This defines which switch letters take arguments. On svr4, most of
+ the normal cases (defined in gcc.c) apply, and we also have -h* and
+ -z* options (for the linker). Note however that there is no such
+ thing as a -T option for svr4. */
+
+#define SWITCH_TAKES_ARG(CHAR) \
+ ( (CHAR) == 'D' \
+ || (CHAR) == 'U' \
+ || (CHAR) == 'o' \
+ || (CHAR) == 'e' \
+ || (CHAR) == 'u' \
+ || (CHAR) == 'I' \
+ || (CHAR) == 'm' \
+ || (CHAR) == 'L' \
+ || (CHAR) == 'A' \
+ || (CHAR) == 'h' \
+ || (CHAR) == 'z')
+
+/* This defines which multi-letter switches take arguments. On svr4,
+ there are no such switches except those implemented by GCC itself. */
+
+#define WORD_SWITCH_TAKES_ARG(STR) \
+ (DEFAULT_WORD_SWITCH_TAKES_ARG (STR) \
+ && strcmp (STR, "Tdata") && strcmp (STR, "Ttext") \
+ && strcmp (STR, "Tbss"))
+
+/* You should redefine CPP_PREDEFINES in any file which includes this one.
+ The definition should be appropriate for the type of target system
+ involved, and it should include any -A (assertion) options which are
+ appropriate for the given target system. */
+#undef CPP_PREDEFINES
+
+/* Provide an ASM_SPEC appropriate for svr4. Here we try to support as
+ many of the specialized svr4 assembler options as seems reasonable,
+ given that there are certain options which we can't (or shouldn't)
+ support directly due to the fact that they conflict with other options
+ for other svr4 tools (e.g. ld) or with other options for GCC itself.
+ For example, we don't support the -o (output file) or -R (remove
+ input file) options because GCC already handles these things. We
+ also don't support the -m (run m4) option for the assembler because
+ that conflicts with the -m (produce load map) option of the svr4
+ linker. We do however allow passing arbitrary options to the svr4
+ assembler via the -Wa, option.
+
+ Note that gcc doesn't allow a space to follow -Y in a -Ym,* or -Yd,*
+ option.
+*/
+
+#undef ASM_SPEC
+#define ASM_SPEC \
+ "-no_0f_fix %{V} %{v:%{!V:-V}} %{Qy:} %{!Qn:-Qy} %{n} %{T} %{Ym,*} %{Yd,*} %{Wa,*:%*}"
+
+/* svr4 assemblers need the `-' (indicating input from stdin) to come after
+ the -o option (and its argument) for some reason. If we try to put it
+ before the -o option, the assembler will try to read the file named as
+ the output file in the -o option as an input file (after it has already
+ written some stuff to it) and the binary stuff contained therein will
+ cause totally confuse the assembler, resulting in many spurious error
+ messages. */
+
+#undef ASM_FINAL_SPEC
+#define ASM_FINAL_SPEC "%{pipe:-}"
+
+/* Provide a LIB_SPEC appropriate for svr4. Here we tack on the default
+ standard C library (unless we are building a shared library). */
+
+#undef LIB_SPEC
+#define LIB_SPEC "%{!shared:%{!symbolic:-lc}}"
+
+/* Provide a LIBGCC_SPEC appropriate for svr4. We also want to exclude
+ libgcc when -symbolic. */
+
+#undef LIBGCC_SPEC
+#define LIBGCC_SPEC "%{!shared:%{!symbolic:-lgcc}}"
+
+/* Provide an ENDFILE_SPEC appropriate for svr4. Here we tack on our own
+ magical crtend.o file (see crtstuff.c) which provides part of the
+ support for getting C++ file-scope static object constructed before
+ entering `main', followed by the normal svr3/svr4 "finalizer" file,
+ which is either `gcrtn.o' or `crtn.o'. */
+
+#undef ENDFILE_SPEC
+#define ENDFILE_SPEC "crtend.o%s %{pg:gcrtn.o}%{!pg:crtn.o%s}"
+
+/* Provide a LINK_SPEC appropriate for svr4. Here we provide support
+ for the special GCC options -static, -shared, and -symbolic which
+ allow us to link things in one of these three modes by applying the
+ appropriate combinations of options at link-time. We also provide
+ support here for as many of the other svr4 linker options as seems
+ reasonable, given that some of them conflict with options for other
+ svr4 tools (e.g. the assembler). In particular, we do support the
+ -h*, -z*, -V, -b, -t, -Qy, -Qn, and -YP* options here, and the -e*,
+ -l*, -o*, -r, -s, -u*, and -L* options are directly supported
+ by gcc.c itself. We don't directly support the -m (generate load
+ map) option because that conflicts with the -m (run m4) option of
+ the svr4 assembler. We also don't directly support the svr4 linker's
+ -I* or -M* options because these conflict with existing GCC options.
+ We do however allow passing arbitrary options to the svr4 linker
+ via the -Wl, option. We don't support the svr4 linker's -a option
+ at all because it is totally useless and because it conflicts with
+ GCC's own -a option.
+
+ Note that gcc doesn't allow a space to follow -Y in a -YP,* option.
+
+ When the -G link option is used (-shared and -symbolic) a final link is
+ not being done. */
+
+#undef LINK_SPEC
+#define LINK_SPEC "%{h*} %{V} %{v:%{!V:-V}} \
+ %{b} %{Wl,*:%*} \
+ %{static:-dn -Bstatic} \
+ %{shared:-G -dy -z text %{!h*:%{o*:-h %*}}} \
+ %{symbolic:-Bsymbolic -G -dy -z text %{!h*:%{o*:-h %*}}} \
+ %{G:-G} \
+ %{YP,*} \
+ %{!YP,*:%{p:-Y P,/lib/libp:/usr/lib/libp:/lib:/usr/lib} \
+ %{!p:-Y P,/lib:/usr/lib}} \
+ %{Qy:} %{!Qn:-Qy}"
+
+/* Gcc automatically adds in one of the files /lib/values-Xc.o,
+ /lib/values-Xa.o, or /lib/values-Xt.o for each final link
+ step (depending upon the other gcc options selected, such as
+ -traditional and -ansi). These files each contain one (initialized)
+ copy of a special variable called `_lib_version'. Each one of these
+ files has `_lib_version' initialized to a different (enum) value.
+ The SVR4 library routines query the value of `_lib_version' at run
+ to decide how they should behave. Specifically, they decide (based
+ upon the value of `_lib_version') if they will act in a strictly ANSI
+ conforming manner or not.
+*/
+
+#undef STARTFILE_SPEC
+#define STARTFILE_SPEC "%{!shared: \
+ %{!symbolic: \
+ %{pg:gcrt1.o%s}%{!pg:%{p:mcrt1.o%s}%{!p:crt1.o%s}}}}\
+ %{pg:gcrti.o%s}%{!pg:crti.o%s} \
+ %{ansi:values-Xc.o%s} \
+ %{!ansi: \
+ %{traditional:values-Xt.o%s} \
+ %{!traditional:values-Xa.o%s}} \
+ crtbegin.o%s"
+
+/* Attach a special .ident directive to the end of the file to identify
+ the version of GCC which compiled this code. The format of the
+ .ident string is patterned after the ones produced by native svr4
+ C compilers. */
+
+#define IDENT_ASM_OP ".ident"
+
+#define ASM_FILE_END(FILE) \
+do { \
+ fprintf ((FILE), "\t%s\t\"GCC: (GNU) %s\"\n", \
+ IDENT_ASM_OP, version_string); \
+ } while (0)
+
+/* Allow #sccs in preprocessor. */
+
+#define SCCS_DIRECTIVE
+
+/* Output #ident as a .ident. */
+
+#define ASM_OUTPUT_IDENT(FILE, NAME) \
+ fprintf (FILE, "\t%s\t\"%s\"\n", IDENT_ASM_OP, NAME);
+
+/* Use periods rather than dollar signs in special g++ assembler names. */
+
+#define NO_DOLLAR_IN_LABEL
+
+/* Writing `int' for a bitfield forces int alignment for the structure. */
+
+#define PCC_BITFIELD_TYPE_MATTERS 1
+
+/* Implicit library calls should use memcpy, not bcopy, etc. */
+
+#define TARGET_MEM_FUNCTIONS
+
+/* Handle #pragma weak and #pragma pack. */
+
+#define HANDLE_SYSV_PRAGMA
+
+/* System V Release 4 uses DWARF debugging info. */
+
+#define DWARF_DEBUGGING_INFO
+
+/* The numbers used to denote specific machine registers in the System V
+ Release 4 DWARF debugging information are quite likely to be totally
+ different from the numbers used in BSD stabs debugging information
+ for the same kind of target machine. Thus, we undefine the macro
+ DBX_REGISTER_NUMBER here as an extra inducement to get people to
+ provide proper machine-specific definitions of DBX_REGISTER_NUMBER
+ (which is also used to provide DWARF registers numbers in dwarfout.c)
+ in their tm.h files which include this file. */
+
+#undef DBX_REGISTER_NUMBER
+
+/* gas on SVR4 supports the use of .stabs. Permit -gstabs to be used
+ in general, although it will only work when using gas. */
+
+#define DBX_DEBUGGING_INFO
+
+/* Use DWARF debugging info by default. */
+
+#ifndef PREFERRED_DEBUGGING_TYPE
+#define PREFERRED_DEBUGGING_TYPE DWARF_DEBUG
+#endif
+
+/* Make LBRAC and RBRAC addresses relative to the start of the
+ function. The native Solaris stabs debugging format works this
+ way, gdb expects it, and it reduces the number of relocation
+ entries. */
+
+#define DBX_BLOCKS_FUNCTION_RELATIVE 1
+
+/* When using stabs, gcc2_compiled must be a stabs entry, not an
+ ordinary symbol, or gdb won't see it. The stabs entry must be
+ before the N_SO in order for gdb to find it. */
+
+#define ASM_IDENTIFY_GCC(FILE) \
+do \
+ { \
+ if (write_symbols != DBX_DEBUG) \
+ fputs ("gcc2_compiled.:\n", FILE); \
+ else \
+ fputs ("\t.stabs\t\"gcc2_compiled.\", 0x3c, 0, 0, 0\n", FILE); \
+ } \
+while (0)
+
+/* Like block addresses, stabs line numbers are relative to the
+ current function. */
+
+#define ASM_OUTPUT_SOURCE_LINE(file, line) \
+do \
+ { \
+ static int sym_lineno = 1; \
+ fprintf (file, ".stabn 68,0,%d,.LM%d-", \
+ line, sym_lineno); \
+ assemble_name (file, \
+ XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0));\
+ fprintf (file, "\n.LM%d:\n", sym_lineno); \
+ sym_lineno += 1; \
+ } \
+while (0)
+
+/* In order for relative line numbers to work, we must output the
+ stabs entry for the function name first. */
+
+#define DBX_FUNCTION_FIRST
+
+/* Generate a blank trailing N_SO to mark the end of the .o file, since
+ we can't depend upon the linker to mark .o file boundaries with
+ embedded stabs. */
+
+#define DBX_OUTPUT_MAIN_SOURCE_FILE_END(FILE, FILENAME) \
+ fprintf (FILE, \
+ "\t.text\n\t.stabs \"\",%d,0,0,.Letext\n.Letext:\n", N_SO)
+
+/* Define the actual types of some ANSI-mandated types. (These
+ definitions should work for most SVR4 systems). */
+
+#undef SIZE_TYPE
+#define SIZE_TYPE "unsigned int"
+
+#undef PTRDIFF_TYPE
+#define PTRDIFF_TYPE "int"
+
+#undef WCHAR_TYPE
+#define WCHAR_TYPE "long int"
+
+#undef WCHAR_TYPE_SIZE
+#define WCHAR_TYPE_SIZE BITS_PER_WORD
+
+/* This causes trouble, because it requires the host machine
+ to support ANSI C. */
+/* #define MULTIBYTE_CHARS */
+
+#undef ASM_BYTE_OP
+#define ASM_BYTE_OP ".byte"
+
+#undef SET_ASM_OP
+#define SET_ASM_OP ".set"
+
+/* This is how to begin an assembly language file. Most svr4 assemblers want
+ at least a .file directive to come first, and some want to see a .version
+ directive come right after that. Here we just establish a default
+ which generates only the .file directive. If you need a .version
+ directive for any specific target, you should override this definition
+ in the target-specific file which includes this one. */
+
+#undef ASM_FILE_START
+#define ASM_FILE_START(FILE) \
+ output_file_directive ((FILE), main_input_filename)
+
+/* This is how to allocate empty space in some section. The .zero
+ pseudo-op is used for this on most svr4 assemblers. */
+
+#define SKIP_ASM_OP ".zero"
+
+#undef ASM_OUTPUT_SKIP
+#define ASM_OUTPUT_SKIP(FILE,SIZE) \
+ fprintf (FILE, "\t%s\t%u\n", SKIP_ASM_OP, (SIZE))
+
+/* This is how to output a reference to a user-level label named NAME.
+ `assemble_name' uses this.
+
+ For System V Release 4 the convention is *not* to prepend a leading
+ underscore onto user-level symbol names. */
+
+#undef ASM_OUTPUT_LABELREF
+#define ASM_OUTPUT_LABELREF(FILE,NAME) fprintf (FILE, "%s", NAME)
+
+/* This is how to output an internal numbered label where
+ PREFIX is the class of label and NUM is the number within the class.
+
+ For most svr4 systems, the convention is that any symbol which begins
+ with a period is not put into the linker symbol table by the assembler. */
+
+#undef ASM_OUTPUT_INTERNAL_LABEL
+#define ASM_OUTPUT_INTERNAL_LABEL(FILE, PREFIX, NUM) \
+do { \
+ fprintf (FILE, ".%s%d:\n", PREFIX, NUM); \
+} while (0)
+
+/* This is how to store into the string LABEL
+ the symbol_ref name of an internal numbered label where
+ PREFIX is the class of label and NUM is the number within the class.
+ This is suitable for output with `assemble_name'.
+
+ For most svr4 systems, the convention is that any symbol which begins
+ with a period is not put into the linker symbol table by the assembler. */
+
+#undef ASM_GENERATE_INTERNAL_LABEL
+#define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
+do { \
+ sprintf (LABEL, "*.%s%d", PREFIX, NUM); \
+} while (0)
+
+/* Output the label which precedes a jumptable. Note that for all svr4
+ systems where we actually generate jumptables (which is to say every
+ svr4 target except i386, where we use casesi instead) we put the jump-
+ tables into the .rodata section and since other stuff could have been
+ put into the .rodata section prior to any given jumptable, we have to
+ make sure that the location counter for the .rodata section gets pro-
+ perly re-aligned prior to the actual beginning of the jump table. */
+
+#define ALIGN_ASM_OP ".align"
+
+#ifndef ASM_OUTPUT_BEFORE_CASE_LABEL
+#define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
+ ASM_OUTPUT_ALIGN ((FILE), 2);
+#endif
+
+#undef ASM_OUTPUT_CASE_LABEL
+#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,JUMPTABLE) \
+ do { \
+ ASM_OUTPUT_BEFORE_CASE_LABEL (FILE, PREFIX, NUM, JUMPTABLE) \
+ ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
+ } while (0)
+
+/* The standard SVR4 assembler seems to require that certain builtin
+ library routines (e.g. .udiv) be explicitly declared as .globl
+ in each assembly file where they are referenced. */
+
+#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
+ ASM_GLOBALIZE_LABEL (FILE, XSTR (FUN, 0))
+
+/* This says how to output assembler code to declare an
+ uninitialized external linkage data object. Under SVR4,
+ the linker seems to want the alignment of data objects
+ to depend on their types. We do exactly that here. */
+
+#define COMMON_ASM_OP ".comm"
+
+#undef ASM_OUTPUT_ALIGNED_COMMON
+#define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN) \
+do { \
+ fprintf ((FILE), "\t%s\t", COMMON_ASM_OP); \
+ assemble_name ((FILE), (NAME)); \
+ fprintf ((FILE), ",%u,%u\n", (SIZE), (ALIGN) / BITS_PER_UNIT); \
+} while (0)
+
+/* This says how to output assembler code to declare an
+ uninitialized internal linkage data object. Under SVR4,
+ the linker seems to want the alignment of data objects
+ to depend on their types. We do exactly that here. */
+
+#define LOCAL_ASM_OP ".local"
+
+#undef ASM_OUTPUT_ALIGNED_LOCAL
+#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
+do { \
+ fprintf ((FILE), "\t%s\t", LOCAL_ASM_OP); \
+ assemble_name ((FILE), (NAME)); \
+ fprintf ((FILE), "\n"); \
+ ASM_OUTPUT_ALIGNED_COMMON (FILE, NAME, SIZE, ALIGN); \
+} while (0)
+
+/* This is the pseudo-op used to generate a 32-bit word of data with a
+ specific value in some section. This is the same for all known svr4
+ assemblers. */
+
+#define INT_ASM_OP ".long"
+
+/* This is the pseudo-op used to generate a contiguous sequence of byte
+ values from a double-quoted string WITHOUT HAVING A TERMINATING NUL
+ AUTOMATICALLY APPENDED. This is the same for most svr4 assemblers. */
+
+#undef ASCII_DATA_ASM_OP
+#define ASCII_DATA_ASM_OP ".ascii"
+
+/* Support const sections and the ctors and dtors sections for g++.
+ Note that there appears to be two different ways to support const
+ sections at the moment. You can either #define the symbol
+ READONLY_DATA_SECTION (giving it some code which switches to the
+ readonly data section) or else you can #define the symbols
+ EXTRA_SECTIONS, EXTRA_SECTION_FUNCTIONS, SELECT_SECTION, and
+ SELECT_RTX_SECTION. We do both here just to be on the safe side. */
+
+#define USE_CONST_SECTION 1
+
+#define CONST_SECTION_ASM_OP ".section\t.rodata"
+
+/* Define the pseudo-ops used to switch to the .ctors and .dtors sections.
+
+ Note that we want to give these sections the SHF_WRITE attribute
+ because these sections will actually contain data (i.e. tables of
+ addresses of functions in the current root executable or shared library
+ file) and, in the case of a shared library, the relocatable addresses
+ will have to be properly resolved/relocated (and then written into) by
+ the dynamic linker when it actually attaches the given shared library
+ to the executing process. (Note that on SVR4, you may wish to use the
+ `-z text' option to the ELF linker, when building a shared library, as
+ an additional check that you are doing everything right. But if you do
+ use the `-z text' option when building a shared library, you will get
+ errors unless the .ctors and .dtors sections are marked as writable
+ via the SHF_WRITE attribute.) */
+
+#define CTORS_SECTION_ASM_OP ".section\t.ctors,\"aw\""
+#define DTORS_SECTION_ASM_OP ".section\t.dtors,\"aw\""
+
+/* On svr4, we *do* have support for the .init and .fini sections, and we
+ can put stuff in there to be executed before and after `main'. We let
+ crtstuff.c and other files know this by defining the following symbols.
+ The definitions say how to change sections to the .init and .fini
+ sections. This is the same for all known svr4 assemblers. */
+
+#define INIT_SECTION_ASM_OP ".section\t.init"
+#define FINI_SECTION_ASM_OP ".section\t.fini"
+
+/* A default list of other sections which we might be "in" at any given
+ time. For targets that use additional sections (e.g. .tdesc) you
+ should override this definition in the target-specific file which
+ includes this file. */
+
+#undef EXTRA_SECTIONS
+#define EXTRA_SECTIONS in_const, in_ctors, in_dtors
+
+/* A default list of extra section function definitions. For targets
+ that use additional sections (e.g. .tdesc) you should override this
+ definition in the target-specific file which includes this file. */
+
+#undef EXTRA_SECTION_FUNCTIONS
+#define EXTRA_SECTION_FUNCTIONS \
+ CONST_SECTION_FUNCTION \
+ CTORS_SECTION_FUNCTION \
+ DTORS_SECTION_FUNCTION
+
+#define READONLY_DATA_SECTION() const_section ()
+
+extern void text_section ();
+
+#define CONST_SECTION_FUNCTION \
+void \
+const_section () \
+{ \
+ if (!USE_CONST_SECTION) \
+ text_section(); \
+ else if (in_section != in_const) \
+ { \
+ fprintf (asm_out_file, "%s\n", CONST_SECTION_ASM_OP); \
+ in_section = in_const; \
+ } \
+}
+
+#define CTORS_SECTION_FUNCTION \
+void \
+ctors_section () \
+{ \
+ if (in_section != in_ctors) \
+ { \
+ fprintf (asm_out_file, "%s\n", CTORS_SECTION_ASM_OP); \
+ in_section = in_ctors; \
+ } \
+}
+
+#define DTORS_SECTION_FUNCTION \
+void \
+dtors_section () \
+{ \
+ if (in_section != in_dtors) \
+ { \
+ fprintf (asm_out_file, "%s\n", DTORS_SECTION_ASM_OP); \
+ in_section = in_dtors; \
+ } \
+}
+
+/* Switch into a generic section.
+ This is currently only used to support section attributes.
+
+ We make the section read-only and executable for a function decl,
+ read-only for a const data decl, and writable for a non-const data decl. */
+#define ASM_OUTPUT_SECTION_NAME(FILE, DECL, NAME) \
+ fprintf (FILE, ".section\t%s,\"%s\",@progbits\n", NAME, \
+ (DECL) && TREE_CODE (DECL) == FUNCTION_DECL ? "ax" : \
+ (DECL) && TREE_READONLY (DECL) ? "a" : "aw")
+
+
+/* A C statement (sans semicolon) to output an element in the table of
+ global constructors. */
+#define ASM_OUTPUT_CONSTRUCTOR(FILE,NAME) \
+ do { \
+ ctors_section (); \
+ fprintf (FILE, "\t%s\t ", INT_ASM_OP); \
+ assemble_name (FILE, NAME); \
+ fprintf (FILE, "\n"); \
+ } while (0)
+
+/* A C statement (sans semicolon) to output an element in the table of
+ global destructors. */
+#define ASM_OUTPUT_DESTRUCTOR(FILE,NAME) \
+ do { \
+ dtors_section (); \
+ fprintf (FILE, "\t%s\t ", INT_ASM_OP); \
+ assemble_name (FILE, NAME); \
+ fprintf (FILE, "\n"); \
+ } while (0)
+
+/* A C statement or statements to switch to the appropriate
+ section for output of DECL. DECL is either a `VAR_DECL' node
+ or a constant of some sort. RELOC indicates whether forming
+ the initial value of DECL requires link-time relocations. */
+
+#define SELECT_SECTION(DECL,RELOC) \
+{ \
+ if (TREE_CODE (DECL) == STRING_CST) \
+ { \
+ if (! flag_writable_strings) \
+ const_section (); \
+ else \
+ data_section (); \
+ } \
+ else if (TREE_CODE (DECL) == VAR_DECL) \
+ { \
+ if ((flag_pic && RELOC) \
+ || !TREE_READONLY (DECL) || TREE_SIDE_EFFECTS (DECL) \
+ || !DECL_INITIAL (DECL) \
+ || (DECL_INITIAL (DECL) != error_mark_node \
+ && !TREE_CONSTANT (DECL_INITIAL (DECL)))) \
+ data_section (); \
+ else \
+ const_section (); \
+ } \
+ else \
+ const_section (); \
+}
+
+/* A C statement or statements to switch to the appropriate
+ section for output of RTX in mode MODE. RTX is some kind
+ of constant in RTL. The argument MODE is redundant except
+ in the case of a `const_int' rtx. Currently, these always
+ go into the const section. */
+
+#undef SELECT_RTX_SECTION
+#define SELECT_RTX_SECTION(MODE,RTX) const_section()
+
+/* Define the strings used for the special svr4 .type and .size directives.
+ These strings generally do not vary from one system running svr4 to
+ another, but if a given system (e.g. m88k running svr) needs to use
+ different pseudo-op names for these, they may be overridden in the
+ file which includes this one. */
+
+#define TYPE_ASM_OP ".type"
+#define SIZE_ASM_OP ".size"
+
+/* This is how we tell the assembler that a symbol is weak. */
+
+#define ASM_WEAKEN_LABEL(FILE,NAME) \
+ do { fputs ("\t.weak\t", FILE); assemble_name (FILE, NAME); \
+ fputc ('\n', FILE); } while (0)
+
+/* The following macro defines the format used to output the second
+ operand of the .type assembler directive. Different svr4 assemblers
+ expect various different forms for this operand. The one given here
+ is just a default. You may need to override it in your machine-
+ specific tm.h file (depending upon the particulars of your assembler). */
+
+#define TYPE_OPERAND_FMT "@%s"
+
+/* Write the extra assembler code needed to declare a function's result.
+ Most svr4 assemblers don't require any special declaration of the
+ result value, but there are exceptions. */
+
+#ifndef ASM_DECLARE_RESULT
+#define ASM_DECLARE_RESULT(FILE, RESULT)
+#endif
+
+/* These macros generate the special .type and .size directives which
+ are used to set the corresponding fields of the linker symbol table
+ entries in an ELF object file under SVR4. These macros also output
+ the starting labels for the relevant functions/objects. */
+
+/* Write the extra assembler code needed to declare a function properly.
+ Some svr4 assemblers need to also have something extra said about the
+ function's return value. We allow for that here. */
+
+#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
+ do { \
+ fprintf (FILE, "\t%s\t ", TYPE_ASM_OP); \
+ assemble_name (FILE, NAME); \
+ putc (',', FILE); \
+ fprintf (FILE, TYPE_OPERAND_FMT, "function"); \
+ putc ('\n', FILE); \
+ ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
+ ASM_OUTPUT_LABEL(FILE, NAME); \
+ } while (0)
+
+/* Write the extra assembler code needed to declare an object properly. */
+
+#define ASM_DECLARE_OBJECT_NAME(FILE, NAME, DECL) \
+ do { \
+ fprintf (FILE, "\t%s\t ", TYPE_ASM_OP); \
+ assemble_name (FILE, NAME); \
+ putc (',', FILE); \
+ fprintf (FILE, TYPE_OPERAND_FMT, "object"); \
+ putc ('\n', FILE); \
+ size_directive_output = 0; \
+ if (!flag_inhibit_size_directive && DECL_SIZE (DECL)) \
+ { \
+ size_directive_output = 1; \
+ fprintf (FILE, "\t%s\t ", SIZE_ASM_OP); \
+ assemble_name (FILE, NAME); \
+ fprintf (FILE, ",%d\n", int_size_in_bytes (TREE_TYPE (DECL))); \
+ } \
+ ASM_OUTPUT_LABEL(FILE, NAME); \
+ } while (0)
+
+/* Output the size directive for a decl in rest_of_decl_compilation
+ in the case where we did not do so before the initializer.
+ Once we find the error_mark_node, we know that the value of
+ size_directive_output was set
+ by ASM_DECLARE_OBJECT_NAME when it was run for the same decl. */
+
+#define ASM_FINISH_DECLARE_OBJECT(FILE, DECL, TOP_LEVEL, AT_END) \
+do { \
+ char *name = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
+ if (!flag_inhibit_size_directive && DECL_SIZE (DECL) \
+ && ! AT_END && TOP_LEVEL \
+ && DECL_INITIAL (DECL) == error_mark_node \
+ && !size_directive_output) \
+ { \
+ size_directive_output = 1; \
+ fprintf (FILE, "\t%s\t ", SIZE_ASM_OP); \
+ assemble_name (FILE, name); \
+ fprintf (FILE, ",%d\n", int_size_in_bytes (TREE_TYPE (DECL))); \
+ } \
+ } while (0)
+
+/* This is how to declare the size of a function. */
+
+#define ASM_DECLARE_FUNCTION_SIZE(FILE, FNAME, DECL) \
+ do { \
+ if (!flag_inhibit_size_directive) \
+ { \
+ char label[256]; \
+ static int labelno; \
+ labelno++; \
+ ASM_GENERATE_INTERNAL_LABEL (label, "Lfe", labelno); \
+ ASM_OUTPUT_INTERNAL_LABEL (FILE, "Lfe", labelno); \
+ fprintf (FILE, "\t%s\t ", SIZE_ASM_OP); \
+ assemble_name (FILE, (FNAME)); \
+ fprintf (FILE, ","); \
+ assemble_name (FILE, label); \
+ fprintf (FILE, "-"); \
+ assemble_name (FILE, (FNAME)); \
+ putc ('\n', FILE); \
+ } \
+ } while (0)
+
+/* A table of bytes codes used by the ASM_OUTPUT_ASCII and
+ ASM_OUTPUT_LIMITED_STRING macros. Each byte in the table
+ corresponds to a particular byte value [0..255]. For any
+ given byte value, if the value in the corresponding table
+ position is zero, the given character can be output directly.
+ If the table value is 1, the byte must be output as a \ooo
+ octal escape. If the tables value is anything else, then the
+ byte value should be output as a \ followed by the value
+ in the table. Note that we can use standard UN*X escape
+ sequences for many control characters, but we don't use
+ \a to represent BEL because some svr4 assemblers (e.g. on
+ the i386) don't know about that. Also, we don't use \v
+ since some versions of gas, such as 2.2 did not accept it. */
+
+#define ESCAPES \
+"\1\1\1\1\1\1\1\1btn\1fr\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
+\0\0\"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\\\0\0\0\
+\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\1\
+\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
+\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
+\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\
+\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1"
+
+/* Some svr4 assemblers have a limit on the number of characters which
+ can appear in the operand of a .string directive. If your assembler
+ has such a limitation, you should define STRING_LIMIT to reflect that
+ limit. Note that at least some svr4 assemblers have a limit on the
+ actual number of bytes in the double-quoted string, and that they
+ count each character in an escape sequence as one byte. Thus, an
+ escape sequence like \377 would count as four bytes.
+
+ If your target assembler doesn't support the .string directive, you
+ should define this to zero.
+*/
+
+#define STRING_LIMIT ((unsigned) 256)
+
+#define STRING_ASM_OP ".string"
+
+/* The routine used to output NUL terminated strings. We use a special
+ version of this for most svr4 targets because doing so makes the
+ generated assembly code more compact (and thus faster to assemble)
+ as well as more readable, especially for targets like the i386
+ (where the only alternative is to output character sequences as
+ comma separated lists of numbers). */
+
+#define ASM_OUTPUT_LIMITED_STRING(FILE, STR) \
+ do \
+ { \
+ register unsigned char *_limited_str = (unsigned char *) (STR); \
+ register unsigned ch; \
+ fprintf ((FILE), "\t%s\t\"", STRING_ASM_OP); \
+ for (; ch = *_limited_str; _limited_str++) \
+ { \
+ register int escape; \
+ switch (escape = ESCAPES[ch]) \
+ { \
+ case 0: \
+ putc (ch, (FILE)); \
+ break; \
+ case 1: \
+ fprintf ((FILE), "\\%03o", ch); \
+ break; \
+ default: \
+ putc ('\\', (FILE)); \
+ putc (escape, (FILE)); \
+ break; \
+ } \
+ } \
+ fprintf ((FILE), "\"\n"); \
+ } \
+ while (0)
+
+/* The routine used to output sequences of byte values. We use a special
+ version of this for most svr4 targets because doing so makes the
+ generated assembly code more compact (and thus faster to assemble)
+ as well as more readable. Note that if we find subparts of the
+ character sequence which end with NUL (and which are shorter than
+ STRING_LIMIT) we output those using ASM_OUTPUT_LIMITED_STRING. */
+
+#undef ASM_OUTPUT_ASCII
+#define ASM_OUTPUT_ASCII(FILE, STR, LENGTH) \
+ do \
+ { \
+ register unsigned char *_ascii_bytes = (unsigned char *) (STR); \
+ register unsigned char *limit = _ascii_bytes + (LENGTH); \
+ register unsigned bytes_in_chunk = 0; \
+ for (; _ascii_bytes < limit; _ascii_bytes++) \
+ { \
+ register unsigned char *p; \
+ if (bytes_in_chunk >= 60) \
+ { \
+ fprintf ((FILE), "\"\n"); \
+ bytes_in_chunk = 0; \
+ } \
+ for (p = _ascii_bytes; p < limit && *p != '\0'; p++) \
+ continue; \
+ if (p < limit && (p - _ascii_bytes) <= STRING_LIMIT) \
+ { \
+ if (bytes_in_chunk > 0) \
+ { \
+ fprintf ((FILE), "\"\n"); \
+ bytes_in_chunk = 0; \
+ } \
+ ASM_OUTPUT_LIMITED_STRING ((FILE), _ascii_bytes); \
+ _ascii_bytes = p; \
+ } \
+ else \
+ { \
+ register int escape; \
+ register unsigned ch; \
+ if (bytes_in_chunk == 0) \
+ fprintf ((FILE), "\t%s\t\"", ASCII_DATA_ASM_OP); \
+ switch (escape = ESCAPES[ch = *_ascii_bytes]) \
+ { \
+ case 0: \
+ putc (ch, (FILE)); \
+ bytes_in_chunk++; \
+ break; \
+ case 1: \
+ fprintf ((FILE), "\\%03o", ch); \
+ bytes_in_chunk += 4; \
+ break; \
+ default: \
+ putc ('\\', (FILE)); \
+ putc (escape, (FILE)); \
+ bytes_in_chunk += 2; \
+ break; \
+ } \
+ } \
+ } \
+ if (bytes_in_chunk > 0) \
+ fprintf ((FILE), "\"\n"); \
+ } \
+ while (0)
+
+/* All SVR4 targets use the ELF object file format. */
+#define OBJECT_FORMAT_ELF