diff options
author | nathan <nathan@138bc75d-0d04-0410-961f-82ee72b054a4> | 1999-09-21 14:40:13 +0000 |
---|---|---|
committer | nathan <nathan@138bc75d-0d04-0410-961f-82ee72b054a4> | 1999-09-21 14:40:13 +0000 |
commit | b9050420ea4bbba8f8896e6d3e18d840785edf3b (patch) | |
tree | 1b463c3798cfb2f7d8d92e4357594ad6134f5466 /gcc/cp/tinfo.cc | |
parent | 2402e02ac93c48d916943f3259451666ac901bff (diff) | |
download | gcc-b9050420ea4bbba8f8896e6d3e18d840785edf3b.tar.gz |
Reimplement dynamic cast and catch matching.
* cp-tree.h (get_dynamic_cast_base_type): Prototype new function
* search.c (dynamic_cast_base_recurse): New function.
(get_dynamic_cast_base_type): New function for dynamic cast.
* rtti.c (build_dynamic_cast_1): Determine source and target
class relationship. Call __dynamic_cast_2.
* tinfo.h (__user_type_info::upcast): New catch dispatcher.
(__user_type_info::dyncast): New dynamic cast dispatcher.
(__user_type_info::sub_kind): New nested enumeration.
(__user_type_info::contained_p): sub_kind predicate.
(__user_type_info::contained_public_p): Likewise.
(__user_type_info::contained_nonpublic_p): Likewise.
(__user_type_info::contained_nonvirtual_p: Likewise.
(__user_type_info::upcast_result): New nested struct.
(__user_type_info::dyncast_result): New nested struct.
(*::do_upcast): New catch function.
(*::do_dyncast): New dynamic cast function.
(__user_type_info::find_public_subobj): New dynamic cast
helper dispatcher.
(*::do_find_public_subobj): New dynamic cast helper function.
* tinfo.cc (__user_type_info::upcast): Define catch dispatcher.
(__user_type_info::dyncast): Define dynamic cast dispatcher.
(*::do_upcast): Define catch function.
(*::do_dyncast): Define dynamic cast function.
(*::do_find_public_subobj): Define dynamic cast helper function.
* tinfo2.cc (__throw_type_match_rtti_2): Use upcast.
(__dynamic_cast): Backwards compatibility wrapper. Use dyncast.
(__dynamic_cast_2): New dynamic cast runtime.
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@29544 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/cp/tinfo.cc')
-rw-r--r-- | gcc/cp/tinfo.cc | 507 |
1 files changed, 430 insertions, 77 deletions
diff --git a/gcc/cp/tinfo.cc b/gcc/cp/tinfo.cc index fe22e8de074..1d4885c9264 100644 --- a/gcc/cp/tinfo.cc +++ b/gcc/cp/tinfo.cc @@ -62,100 +62,453 @@ extern "C" void __rtti_user (void *addr, const char *name) { new (addr) __user_type_info (name); } -// dynamic_cast helper methods. -// Returns 1 if the cast succeeds, 0 otherwise. Stores the adjusted value -// in VALP. - +// Upcast for catch checking. OBJPTR points to the thrown object and might be +// NULL. Return 0 on failure, non-zero on success. Set *ADJPTR to adjusted +// object pointer. int __user_type_info:: -dcast (const type_info& to, int, void *addr, void **valp, - const type_info *, void *) const +upcast (const type_info &target, void *objptr, + void **adjptr) const +{ + upcast_result result; + + if (do_upcast (contained_public, target, objptr, result)) + return 0; + *adjptr = result.target_obj; + return contained_public_p (result.whole2target); +} + +// Down or cross cast for dynamic_cast. OBJPTR points to the most derrived +// object, SUBPTR points to the static base object. Both must not be NULL. +// TARGET specifies the desired target type, SUBTYPE specifies the static +// type. Both must be defined. Returns adjusted object pointer on success, +// NULL on failure. [expr.dynamic.cast]/8 says 'unambiguous public base'. This +// itself is an ambiguous statement. We choose it to mean the base must be +// separately unambiguous and public, rather than unambiguous considering only +// public bases. +void *__user_type_info:: +dyncast (int boff, + const type_info &target, void *objptr, + const type_info &subtype, void *subptr) const { - *valp = addr; - return (*this == to); + dyncast_result result; + + do_dyncast (boff, contained_public, + target, objptr, subtype, subptr, result); + if (!result.target_obj) + return NULL; + if (contained_public_p (result.target2sub)) + return result.target_obj; + if (contained_public_p (sub_kind (result.whole2sub & result.whole2target))) + // Found a valid cross cast + return result.target_obj; + if (contained_nonvirtual_p (result.whole2sub)) + // Found an invalid cross cast, which cannot also be a down cast + return NULL; + if (result.target2sub == unknown) + result.target2sub = static_cast <const __user_type_info &> (target) + .find_public_subobj (boff, subtype, + result.target_obj, subptr); + if (contained_public_p (result.target2sub)) + // Found a valid down cast + return result.target_obj; + // Must be an invalid down cast, or the cross cast wasn't bettered + return NULL; } -int __si_type_info:: -dcast (const type_info& to, int require_public, void *addr, void **valp, - const type_info *sub, void *subptr) const +// Catch cast helper. ACCESS_PATH is the access from the complete thrown +// object to this base. TARGET is the desired type we want to catch. OBJPTR +// points to this base within the throw object, it might be NULL. Fill in +// RESULT with what we find. Return true, should we determine catch must fail. +bool __user_type_info:: +do_upcast (sub_kind access_path, + const type_info &target, void *objptr, + upcast_result &__restrict result) const { - if (*this == to) + if (*this == target) { - *valp = addr; - return 1; + result.target_obj = objptr; + result.base_type = nonvirtual_base_type; + result.whole2target = access_path; + return contained_nonpublic_p (access_path); } - return base.dcast (to, require_public, addr, valp, sub, subptr); + return false; } -int __class_type_info:: -dcast (const type_info& desired, int is_public, void *objptr, void **valp, - const type_info *sub, void *subptr) const +// dynamic cast helper. ACCESS_PATH gives the access from the most derived +// object to this base. TARGET indicates the desired type we want. OBJPTR +// points to this base within the object. SUBTYPE indicates the static type +// started from and SUBPTR points to that base within the most derived object. +// Fill in RESULT with what we find. Return true if we have located an +// ambiguous match. +bool __user_type_info:: +do_dyncast (int, sub_kind access_path, + const type_info &target, void *objptr, + const type_info &subtype, void *subptr, + dyncast_result &__restrict result) const { - *valp = objptr; + if (objptr == subptr && *this == subtype) + { + // The subobject we started from. Indicate how we are accessible from + // the most derived object. + result.whole2sub = access_path; + return false; + } + if (*this == target) + { + result.target_obj = objptr; + result.whole2target = access_path; + result.target2sub = not_contained; + return false; + } + return false; +} - if (*this == desired) - return 1; +// find_public_subobj helper. Return contained_public if we are the desired +// subtype. OBJPTR points to this base type, SUBPTR points to the desired base +// object. +__user_type_info::sub_kind __user_type_info:: +do_find_public_subobj (int, const type_info &, void *objptr, void *subptr) const +{ + if (subptr == objptr) + // Must be our type, as the pointers match. + return contained_public; + return not_contained; +} - int match_found = 0; - void *match = 0; +// catch helper for single public inheritance types. See +// __user_type_info::do_upcast for semantics. +bool __si_type_info:: +do_upcast (sub_kind access_path, + const type_info &target, void *objptr, + upcast_result &__restrict result) const +{ + if (*this == target) + { + result.target_obj = objptr; + result.base_type = nonvirtual_base_type; + result.whole2target = access_path; + return contained_nonpublic_p (access_path); + } + return base.do_upcast (access_path, target, objptr, result); +} - for (size_t i = 0; i < n_bases; i++) +// dynamic cast helper for single public inheritance types. See +// __user_type_info::do_dyncast for semantics. BOFF indicates how SUBTYPE +// types are inherited by TARGET types. +bool __si_type_info:: +do_dyncast (int boff, sub_kind access_path, + const type_info &target, void *objptr, + const type_info &subtype, void *subptr, + dyncast_result &__restrict result) const +{ + if (objptr == subptr && *this == subtype) { - if (is_public && base_list[i].access != PUBLIC) - continue; + // The subobject we started from. Indicate how we are accessible from + // the most derived object. + result.whole2sub = access_path; + return false; + } + if (*this == target) + { + result.target_obj = objptr; + result.whole2target = access_path; + if (boff >= 0) + result.target2sub = ((char *)subptr - (char *)objptr) == boff + ? contained_public : not_contained; + else if (boff == -3) + result.target2sub = not_contained; + return false; + } + return base.do_dyncast (boff, access_path, + target, objptr, subtype, subptr, result); +} + +// find_public_subobj helper. See __user_type_info::do_find_public_subobj or +// semantics. BOFF indicates how SUBTYPE types are inherited by the original +// target object. +__user_type_info::sub_kind __si_type_info:: +do_find_public_subobj (int boff, const type_info &subtype, void *objptr, void *subptr) const +{ + if (subptr == objptr && subtype == *this) + return contained_public; + return base.do_find_public_subobj (boff, subtype, objptr, subptr); +} - void *p; +// catch helper for multiple or non-public inheritance types. See +// __user_type_info::do_upcast for semantics. +bool __class_type_info:: +do_upcast (sub_kind access_path, + const type_info &target, void *objptr, + upcast_result &__restrict result) const +{ + if (*this == target) + { + result.target_obj = objptr; + result.base_type = nonvirtual_base_type; + result.whole2target = access_path; + return contained_nonpublic_p (access_path); + } + + for (size_t i = n_bases; i--;) + { + upcast_result result2; + void *p = objptr; + sub_kind sub_access = access_path; + if (p) + p = (char *)p + base_list[i].offset; + if (base_list[i].is_virtual) + { + if (p) + p = *(void **)p; + sub_access = sub_kind (sub_access | contained_virtual_mask); + } + if (base_list[i].access != PUBLIC) + sub_access = sub_kind (sub_access & ~contained_public_mask); + if (base_list[i].base->do_upcast (sub_access, target, p, result2)) + return true; // must fail + if (result2.base_type) + { + if (result2.base_type == nonvirtual_base_type + && base_list[i].is_virtual) + result2.base_type = base_list[i].base; + if (!result.base_type) + result = result2; + else if (result.target_obj != result2.target_obj) + { + // Found an ambiguity. + result.target_obj = NULL; + result.whole2target = contained_ambig; + return true; + } + else if (result.target_obj) + { + // Ok, found real object via a virtual path. + result.whole2target + = sub_kind (result.whole2target | result2.whole2target); + } + else + { + // Dealing with a null pointer, need to check vbase + // containing each of the two choices. + if (result2.base_type == nonvirtual_base_type + || result.base_type == nonvirtual_base_type + || !(*result2.base_type == *result.base_type)) + { + // Already ambiguous, not virtual or via different virtuals. + // Cannot match. + result.whole2target = contained_ambig; + return true; + } + } + } + } + return false; +} - if (objptr) - { - p = (char *)objptr + base_list[i].offset; - if (base_list[i].is_virtual) - p = *(void **)p; - } - else - /* Preserve null pointer. */ - p = objptr; - - if (base_list[i].base->dcast (desired, is_public, p, &p, sub, subptr)) - { - if (! match_found) - { - match_found = 1; - match = p; - } - else if (match != p) - { - if (sub) - { - // Perhaps we're downcasting from *sub to desired; see if - // subptr is a subobject of exactly one of {match_found,p}. - - const __user_type_info &d = - static_cast <const __user_type_info &> (desired); - - void *os; - d.dcast (*sub, 1, match, &os); - void *ns; - d.dcast (*sub, 1, p, &ns); - - if (os == ns) - // Both have the same subobject, so we can't disambiguate; - // i.e. subptr is a virtual base. - return 0; - else if (os == subptr) - continue; - else if (ns == subptr) - { - match = p; - continue; - } - } - else - // We're not downcasting, so we can't disambiguate. - return 0; - } +// dynamic cast helper for non-public or multiple inheritance types. See +// __user_type_info::do_dyncast for overall semantics. +// This is a big hairy function. Although the run-time behaviour of +// dynamic_cast is simple to describe, it gives rise to some non-obvious +// behaviour. We also desire to determine as early as possible any definite +// answer we can get. Because it is unknown what the run-time ratio of +// succeeding to failing dynamic casts is, we do not know in which direction +// to bias any optimizations. To that end we make no particular effort towards +// early fail answers or early success answers. Instead we try to minimize +// work by filling in things lazily (when we know we need the information), +// and opportunisticly take early success or failure results. +bool __class_type_info:: +do_dyncast (int boff, sub_kind access_path, + const type_info &target, void *objptr, + const type_info &subtype, void *subptr, + dyncast_result &__restrict result) const +{ + if (objptr == subptr && *this == subtype) + { + // The subobject we started from. Indicate how we are accessible from + // the most derived object. + result.whole2sub = access_path; + return false; + } + if (*this == target) + { + result.target_obj = objptr; + result.whole2target = access_path; + if (boff >= 0) + result.target2sub = ((char *)subptr - (char *)objptr) == boff + ? contained_public : not_contained; + else if (boff == -3) + result.target2sub = not_contained; + return false; + } + bool result_ambig = false; + for (size_t i = n_bases; i--;) + { + dyncast_result result2; + void *p = (char *)objptr + base_list[i].offset; + sub_kind sub_access = access_path; + if (base_list[i].is_virtual) + { + p = *(void **)p; + sub_access = sub_kind (sub_access | contained_virtual_mask); } + if (base_list[i].access != PUBLIC) + sub_access = sub_kind (sub_access & ~contained_public_mask); + + bool result2_ambig + = base_list[i].base->do_dyncast (boff, sub_access, + target, p, subtype, subptr, result2); + result.whole2sub = sub_kind (result.whole2sub | result2.whole2sub); + if (result2.target2sub == contained_public + || result2.target2sub == contained_ambig) + { + result.target_obj = result2.target_obj; + result.whole2target = result2.whole2target; + result.target2sub = result2.target2sub; + // Found a downcast which can't be bettered or an ambiguous downcast + // which can't be disambiguated + return result2_ambig; + } + + if (!result_ambig && !result.target_obj) + { + // Not found anything yet. + result.target_obj = result2.target_obj; + result.whole2target = result2.whole2target; + result_ambig = result2_ambig; + } + else if (result.target_obj && result.target_obj == result2.target_obj) + { + // Found at same address, must be via virtual. Pick the most + // accessible path. + result.whole2target = + sub_kind (result.whole2target | result2.whole2target); + } + else if ((result.target_obj && result2.target_obj) + || (result_ambig && result2.target_obj) + || (result2_ambig && result.target_obj)) + { + // Found two different TARGET bases, or a valid one and a set of + // ambiguous ones, must disambiguate. See whether SUBOBJ is + // contained publicly within one of the non-ambiguous choices. + // If it is in only one, then that's the choice. If it is in + // both, then we're ambiguous and fail. If it is in neither, + // we're ambiguous, but don't yet fail as we might later find a + // third base which does contain SUBPTR. + + sub_kind new_sub_kind = result2.target2sub; + sub_kind old_sub_kind = result.target2sub; + + if (contained_nonvirtual_p (result.whole2sub)) + { + // We already found SUBOBJ as a non-virtual base of most + // derived. Therefore if it is in either choice, it can only be + // in one of them, and we will already know. + if (old_sub_kind == unknown) + old_sub_kind = not_contained; + if (new_sub_kind == unknown) + new_sub_kind = not_contained; + } + else + { + const __user_type_info &t = + static_cast <const __user_type_info &> (target); + + if (old_sub_kind >= not_contained) + ;// already calculated + else if (contained_nonvirtual_p (new_sub_kind)) + // Already found non-virtually inside the other choice, + // cannot be in this. + old_sub_kind = not_contained; + else + old_sub_kind = t.find_public_subobj (boff, subtype, + result.target_obj, subptr); + + if (new_sub_kind >= not_contained) + ;// already calculated + else if (contained_nonvirtual_p (old_sub_kind)) + // Already found non-virtually inside the other choice, + // cannot be in this. + new_sub_kind = not_contained; + else + new_sub_kind = t.find_public_subobj (boff, subtype, + result2.target_obj, subptr); + } + + // Neither sub_kind can be contained_ambig -- we bail out early + // when we find those. + if (contained_p (sub_kind (new_sub_kind ^ old_sub_kind))) + { + // Only on one choice, not ambiguous. + if (contained_p (new_sub_kind)) + { + // Only in new. + result.target_obj = result2.target_obj; + result.whole2target = result2.whole2target; + result_ambig = false; + old_sub_kind = new_sub_kind; + } + result.target2sub = old_sub_kind; + if (result.target2sub == contained_public) + return false; // Can't be an ambiguating downcast for later discovery. + } + else if (contained_p (sub_kind (new_sub_kind & old_sub_kind))) + { + // In both. + result.target_obj = NULL; + result.target2sub = contained_ambig; + return true; // Fail. + } + else + { + // In neither publicly, ambiguous for the moment, but keep + // looking. It is possible that it was private in one or + // both and therefore we should fail, but that's just tough. + result.target_obj = NULL; + result.target2sub = not_contained; + result_ambig = true; + } + } + + if (result.whole2sub == contained_private) + // We found SUBOBJ as a private non-virtual base, therefore all + // cross casts will fail. We have already found a down cast, if + // there is one. + return result_ambig; } - *valp = match; - return match_found; + return result_ambig; +} + +// find_public_subobj helper for non-public or multiple inheritance types. See +// __user_type_info::do_find_public_subobj for semantics. We make use of BOFF +// to prune the base class walk. +__user_type_info::sub_kind __class_type_info:: +do_find_public_subobj (int boff, const type_info &subtype, void *objptr, void *subptr) const +{ + if (objptr == subptr && subtype == *this) + return contained_public; + + for (size_t i = n_bases; i--;) + { + if (base_list[i].access != PUBLIC) + continue; // Not public, can't be here. + void *p = (char *)objptr + base_list[i].offset; + if (base_list[i].is_virtual) + { + if (boff == -1) + continue; // Not a virtual base, so can't be here. + p = *(void **)p; + } + + sub_kind base_kind = base_list[i].base->do_find_public_subobj + (boff, subtype, p, subptr); + if (contained_p (base_kind)) + { + if (base_list[i].is_virtual) + base_kind = sub_kind (base_kind | contained_virtual_mask); + return base_kind; + } + } + + return not_contained; } |