diff options
author | zack <zack@138bc75d-0d04-0410-961f-82ee72b054a4> | 2003-03-15 19:54:10 +0000 |
---|---|---|
committer | zack <zack@138bc75d-0d04-0410-961f-82ee72b054a4> | 2003-03-15 19:54:10 +0000 |
commit | 0653bda398261b7f4b9d2bbaa8e1caf5c9123175 (patch) | |
tree | e7f396c4a9ab0711d7638802c2dab55e302b10ee /gcc/doc/libgcc.texi | |
parent | 6d86422581c0c8a546618463afeffb81ca59ca64 (diff) | |
download | gcc-0653bda398261b7f4b9d2bbaa8e1caf5c9123175.tar.gz |
2003-03-15 Aldy Hernandez <aldyh@redhat.com>
Zack Weinberg <zack@codesourcery.com>
* Makefile.in (TEXI_GCCINT_FILES): Add libgcc.texi.
* doc/libgcc.texi: New file.
* doc/interface.texi: Delete paragraph about libgcc interface.
* doc/gccint.texi: Add libgcc menu entry and @include libgcc.texi.
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@64416 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/doc/libgcc.texi')
-rw-r--r-- | gcc/doc/libgcc.texi | 368 |
1 files changed, 368 insertions, 0 deletions
diff --git a/gcc/doc/libgcc.texi b/gcc/doc/libgcc.texi new file mode 100644 index 00000000000..19074ba985a --- /dev/null +++ b/gcc/doc/libgcc.texi @@ -0,0 +1,368 @@ +@c Copyright (C) 2003 Free Software Foundation, Inc. +@c This is part of the GCC manual. +@c For copying conditions, see the file gcc.texi. +@c Contributed by Aldy Hernandez <aldy@quesejoda.com> + +@node Libgcc +@chapter The GCC low-level runtime library + +GCC provides a low-level runtime library, @file{libgcc.a} or +@file{libgcc_s.so.1} on some platforms. GCC generates calls to +routines in this library automatically, whenever it needs to perform +some operation that is too complicated to emit inline code for. + +Most of the routines in @code{libgcc} handle arithmetic operations +that the target processor cannot perform directly. This includes +integer multiply and divide on some machines, and all floating-point +operations on other machines. @code{libgcc} also includes routines +for exception handling, and a handful of miscellaneous operations. + +Some of these routines can be defined in mostly machine-independent C. +Others must be hand-written in assembly language for each processor +that needs them. + +GCC will also generate calls to C library routines, such as +@code{memcpy} and @code{memset}, in some cases. The set of routines +that GCC may possibly use is documented in @ref{Other +Builtins,,,gcc, Using the GNU Compiler Collection (GCC)}. + +@menu +* Integer library routines:: +* Soft float library routines:: +* Exception handling routines:: +* Miscellaneous routines:: +@end menu + +@node Integer library routines +@section Routines for integer arithmetic + +document me! + +@example + __absvsi2 + __addvsi3 + __ashlsi3 + __ashrsi3 + __divsi3 + __lshrsi3 + __modsi3 + __mulsi3 + __mulvsi3 + __negvsi2 + __subvsi3 + __udivsi3 + __umodsi3 + + __absvdi2 + __addvdi3 + __ashldi3 + __ashrdi3 + __cmpdi2 + __divdi3 + __ffsdi2 + __fixdfdi + __fixsfdi + __fixtfdi + __fixxfdi + __fixunsdfdi + __fixunsdfsi + __fixunssfsi + __fixunssfdi + __fixunstfdi + __fixunstfsi + __fixunsxfdi + __fixunsxfsi + __floatdidf + __floatdisf + __floatdixf + __floatditf + __lshrdi3 + __moddi3 + __muldi3 + __mulvdi3 + __negdi2 + __negvdi2 + __subvdi3 + __ucmpdi2 + __udivdi3 + __udivmoddi4 + __umoddi3 + + __ashlti3 + __ashrti3 + __cmpti2 + __divti3 + __ffsti2 + __fixdfti + __fixsfti + __fixtfti + __fixxfti + __lshrti3 + __modti3 + __multi3 + __negti2 + __ucmpti2 + __udivmodti4 + __udivti3 + __umodti3 + __fixunsdfti + __fixunssfti + __fixunstfti + __fixunsxfti + __floattidf + __floattisf + __floattixf + __floattitf + + __clzsi2 + __clzdi2 + __clzti2 + __ctzsi2 + __ctzdi2 + __ctzti2 + __popcountsi2 + __popcountdi2 + __popcountti2 + __paritysi2 + __paritydi2 + __parityti2 +@end example + + +@node Soft float library routines +@section Routines for floating point emulation +@cindex soft float library +@cindex arithmetic library +@cindex math library +@opindex msoft-float + +The software floating point library is used on machines which do not +have hardware support for floating point. It is also used whenever +@option{-msoft-float} is used to disable generation of floating point +instructions. (Not all targets support this switch.) + +For compatibility with other compilers, the floating point emulation +routines can be renamed with the @code{DECLARE_LIBRARY_RENAMES} macro +(@pxref{Library Calls}). In this section, the default names are used. + +These routines take arguments and return values of a specific machine +mode, not a specific C type. @xref{Machine Modes}, for an explanation +of this concept. For illustrative purposes, in this section +@code{float} is assumed to correspond to @code{SFmode}; @code{double} +to @code{DFmode}; @code{@w{long double}} to @code{TFmode}; and +@code{int} to @code{SImode}. This is a common mapping, but not the +only possibility. + +Presently the library does not support @code{XFmode}, which is used +for @code{long double} on some architectures. + +@subsection Arithmetic functions + +@deftypefn {Runtime Function} float __addsf3 (float @var{a}, float @var{b}) +@deftypefnx {Runtime Function} double __adddf3 (double @var{a}, double @var{b}) +@deftypefnx {Runtime Function} long double __addtf3 (long double @var{a}, long double @var{b}) +These functions return the sum of @var{a} and @var{b}. +@end deftypefn + +@deftypefn {Runtime Function} float __subsf3 (float @var{a}, float @var{b}) +@deftypefnx {Runtime Function} double __subdf3 (double @var{a}, double @var{b}) +@deftypefnx {Runtime Function} long double __subtf3 (long double @var{a}, long double @var{b}) +These functions return the difference between @var{b} and @var{a}; +that is, @w{@math{@var{a} - @var{b}}}. +@end deftypefn + +@deftypefn {Runtime Function} float __mulsf3 (float @var{a}, float @var{b}) +@deftypefnx {Runtime Function} double __muldf3 (double @var{a}, double @var{b}) +@deftypefnx {Runtime Function} long double __multf3 (long double @var{a}, long double @var{b}) +These functions return the product of @var{a} and @var{b}. +@end deftypefn + +@deftypefn {Runtime Function} float __divsf3 (float @var{a}, float @var{b}) +@deftypefnx {Runtime Function} double __divdf3 (double @var{a}, double @var{b}) +@deftypefnx {Runtime Function} long double __divtf3 (long double @var{a}, long double @var{b}) +These functions return the quotient of @var{a} and @var{b}; that is, +@w{@math{@var{a} / @var{b}}}. +@end deftypefn + +@deftypefn {Runtime Function} double __negdf2 (double @var{a}) +@deftypefnx {Runtime Function} long double __negtf2 (long double @var{a}) +@deftypefnx {Runtime Function} float __negsf2 (float @var{a}) +These functions return the negation of @var{a}. They simply flip the +sign bit, so they can produce negative zero and negative NaN. +@end deftypefn + +@subsection Conversion functions + +@deftypefn {Runtime Function} double __extendsfdf2 (float @var{a}) +@deftypefnx {Runtime Function} long double __extendsftf2 (float @var{a}) +@deftypefnx {Runtime Function} long double __extenddftf2 (double @var{a}) +These functions extend @var{a} to the wider mode of their return +type. +@end deftypefn + +@deftypefn {Runtime Function} double __trunctfdf2 (long double @var{a}) +@deftypefnx {Runtime Function} float __trunctfsf2 (long double @var{a}) +@deftypefnx {Runtime Function} float __truncdfsf2 (double @var{a}) +These functions truncate @var{a} to the narrower mode of their return +type, rounding toward zero. +@end deftypefn + +@deftypefn {Runtime Function} int __fixsfsi (float @var{a}) +@deftypefnx {Runtime Function} int __fixdfsi (double @var{a}) +@deftypefnx {Runtime Function} int __fixtfsi (long double @var{a}) +These functions convert @var{a} to a signed integer, rounding toward zero. +@end deftypefn + +@deftypefn {Runtime Function} unsigned int __fixunssfsi (float @var{a}) +@deftypefnx {Runtime Function} unsigned int __fixunsdfsi (double @var{a}) +@deftypefnx {Runtime Function} unsigned int __fixunstfsi (long double @var{a}) +These functions convert @var{a} to an unsigned integer, rounding +toward zero. Negative values all become zero. +@end deftypefn + +@deftypefn {Runtime Function} float __floatsisf (int @var{i}) +@deftypefnx {Runtime Function} double __floatsidf (int @var{i}) +@deftypefnx {Runtime Function} long double __floatsitf (int @var{i}) +These functions convert @var{i}, a signed integer, to floating point. +@end deftypefn + +@deftypefn {Runtime Function} float __floatunsisf (unsigned int @var{n}) +@deftypefnx {Runtime Function} double __floatunsidf (unsigned int @var{n}) +@deftypefnx {Runtime Function} long double __floatunsitf (unsigned int @var{n}) +These functions convert @var{n}, an unsigned integer, to floating point. +@end deftypefn + +There are no functions to convert @code{DImode} integers to or from +floating point; this reflects the fact that such conversions are rare, +and processors with native 64-bit arithmetic tend to have hardware +floating point support. If such routines ever get added, they will be +named @code{__fixsfdi}, @code{__floatdisf}, and so on. + +@subsection Comparison functions + +There are two sets of basic comparison functions. + +@deftypefn {Runtime Function} int __cmpsf2 (float @var{a}, float @var{b}) +@deftypefnx {Runtime Function} int __cmpdf2 (double @var{a}, double @var{b}) +@deftypefnx {Runtime Function} int __cmptf2 (long double @var{a}, long double @var{b}) +These functions calculate @math{a <=> b}. That is, if @var{a} is less +than @var{b}, they return -1; if @var{a} is greater than @var{b}, they +return 1; and if @var{a} and @var{b} are equal they return 0. If +either argument is NaN they return 1, but you should not rely on this; +if NaN is a possibility, use one of the higher-level comparison +functions. +@end deftypefn + +@deftypefn {Runtime Function} int __unordsf2 (float @var{a}, float @var{b}) +@deftypefnx {Runtime Function} int __unorddf2 (double @var{a}, double @var{b}) +@deftypefnx {Runtime Function} int __unordtf2 (long double @var{a}, long double @var{b}) +These functions return 1 if either argument is NaN, otherwise 0. +@end deftypefn + +There is also a complete group of higher level functions which +correspond directly to comparison operators. They implement the ISO@tie{}C +semantics for floating-point comparisons, taking NaN into account. +Pay careful attention to the return values defined for each set. +Under the hood, all of these routines are implemented as + +@smallexample + if (__unord@var{X}f2 (a, b)) + return @var{E}; + return __cmp@var{X}f2 (a, b); +@end smallexample + +@noindent +where @var{E} is a constant chosen to give the proper behavior for +NaN. Thus, the meaning of the return value is different for each set. +Do not rely on this implementation; only the semantics documented +below are guaranteed. + +@deftypefn {Runtime Function} int __eqsf2 (float @var{a}, float @var{b}) +@deftypefnx {Runtime Function} int __eqdf2 (double @var{a}, double @var{b}) +@deftypefnx {Runtime Function} int __eqtf2 (long double @var{a}, long double @var{b}) +These functions return zero if neither argument is NaN, and @var{a} and +@var{b} are equal. +@end deftypefn + +@deftypefn {Runtime Function} int __nesf2 (float @var{a}, float @var{b}) +@deftypefnx {Runtime Function} int __nedf2 (double @var{a}, double @var{b}) +@deftypefnx {Runtime Function} int __netf2 (long double @var{a}, long double @var{b}) +These functions return a nonzero value if either argument is NaN, or +if @var{a} and @var{b} are unequal. +@end deftypefn + +@deftypefn {Runtime Function} int __gesf2 (float @var{a}, float @var{b}) +@deftypefnx {Runtime Function} int __gedf2 (double @var{a}, double @var{b}) +@deftypefnx {Runtime Function} int __getf2 (long double @var{a}, long double @var{b}) +These functions return a value greater than or equal to zero if +neither argument is NaN, and @var{a} is greater than or equal to +@var{b}. +@end deftypefn + +@deftypefn {Runtime Function} int __ltsf2 (float @var{a}, float @var{b}) +@deftypefnx {Runtime Function} int __ltdf2 (double @var{a}, double @var{b}) +@deftypefnx {Runtime Function} int __lttf2 (long double @var{a}, long double @var{b}) +These functions return a value less than zero if neither argument is +NaN, and @var{a} is strictly less than @var{b}. +@end deftypefn + +@deftypefn {Runtime Function} int __lesf2 (float @var{a}, float @var{b}) +@deftypefnx {Runtime Function} int __ledf2 (double @var{a}, double @var{b}) +@deftypefnx {Runtime Function} int __letf2 (long double @var{a}, long double @var{b}) +These functions return a value less than or equal to zero if neither +argument is NaN, and @var{a} is less than or equal to @var{b}. +@end deftypefn + +@deftypefn {Runtime Function} int __gtsf2 (float @var{a}, float @var{b}) +@deftypefnx {Runtime Function} int __gtdf2 (double @var{a}, double @var{b}) +@deftypefnx {Runtime Function} int __gttf2 (long double @var{a}, long double @var{b}) +These functions return a value greater than zero if neither argument +is NaN, and @var{a} is strictly greater than @var{b}. +@end deftypefn + +@node Exception handling routines +@section Language-independent routines for exception handling + +document me! + +@example + _Unwind_DeleteException + _Unwind_Find_FDE + _Unwind_ForcedUnwind + _Unwind_GetGR + _Unwind_GetIP + _Unwind_GetLanguageSpecificData + _Unwind_GetRegionStart + _Unwind_GetTextRelBase + _Unwind_GetDataRelBase + _Unwind_RaiseException + _Unwind_Resume + _Unwind_SetGR + _Unwind_SetIP + _Unwind_FindEnclosingFunction + _Unwind_SjLj_Register + _Unwind_SjLj_Unregister + _Unwind_SjLj_RaiseException + _Unwind_SjLj_ForcedUnwind + _Unwind_SjLj_Resume + __deregister_frame + __deregister_frame_info + __deregister_frame_info_bases + __register_frame + __register_frame_info + __register_frame_info_bases + __register_frame_info_table + __register_frame_info_table_bases + __register_frame_table +@end example + +@node Miscellaneous routines +@section Miscellaneous runtime library routines + +document me! + +@example + __clear_cache +@end example + +any others? |