summaryrefslogtreecommitdiff
path: root/gcc/fixed-value.c
diff options
context:
space:
mode:
authorchaoyingfu <chaoyingfu@138bc75d-0d04-0410-961f-82ee72b054a4>2007-08-06 23:18:57 +0000
committerchaoyingfu <chaoyingfu@138bc75d-0d04-0410-961f-82ee72b054a4>2007-08-06 23:18:57 +0000
commit5efd9b45c3936d9707b975a0a3145a9e1aa8faeb (patch)
treeaddc6eca4349b2f6c3297a7faaeaf123e6da7c68 /gcc/fixed-value.c
parent40555542b7fab2e5b54b7356f51ae1a322127712 (diff)
downloadgcc-5efd9b45c3936d9707b975a0a3145a9e1aa8faeb.tar.gz
* fixed-value.h: New file.
* fixed-value.c: New file. * Makefile.in (OBJS-common): Add fixed-value.o. (fixed-value.o): New rule. (GTFILES): Add fixed-value.h. * double-int.c (double_int_scmp): We should use unsigned HOST_WIDE_INT to compare a.low and b.low. * gengtype.c (main): Handle FIXED_VALUE_TYPE type as scalar typedef. git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@127260 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/fixed-value.c')
-rw-r--r--gcc/fixed-value.c1140
1 files changed, 1140 insertions, 0 deletions
diff --git a/gcc/fixed-value.c b/gcc/fixed-value.c
new file mode 100644
index 00000000000..705f4ca3de7
--- /dev/null
+++ b/gcc/fixed-value.c
@@ -0,0 +1,1140 @@
+/* Fixed-point arithmetic support.
+ Copyright (C) 2006, 2007 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "toplev.h"
+#include "fixed-value.h"
+
+/* Compare two fixed objects for bitwise identity. */
+
+bool
+fixed_identical (const FIXED_VALUE_TYPE *a, const FIXED_VALUE_TYPE *b)
+{
+ return (a->mode == b->mode
+ && a->data.high == b->data.high
+ && a->data.low == b->data.low);
+}
+
+/* Calculate a hash value. */
+
+unsigned int
+fixed_hash (const FIXED_VALUE_TYPE *f)
+{
+ return (unsigned int) (f->data.low ^ f->data.high);
+}
+
+/* Define the enum code for the range of the fixed-point value. */
+enum fixed_value_range_code {
+ FIXED_OK, /* The value is within the range. */
+ FIXED_UNDERFLOW, /* The value is less than the minimum. */
+ FIXED_GT_MAX_EPS, /* The value is greater than the maximum, but not equal
+ to the maximum plus the epsilon. */
+ FIXED_MAX_EPS /* The value equals the maximum plus the epsilon. */
+};
+
+/* Check REAL_VALUE against the range of the fixed-point mode.
+ Return FIXED_OK, if it is within the range.
+ FIXED_UNDERFLOW, if it is less than the minimum.
+ FIXED_GT_MAX_EPS, if it is greater than the maximum, but not equal to
+ the maximum plus the epsilon.
+ FIXED_MAX_EPS, if it is equal to the maximum plus the epsilon. */
+
+static enum fixed_value_range_code
+check_real_for_fixed_mode (REAL_VALUE_TYPE *real_value, enum machine_mode mode)
+{
+ REAL_VALUE_TYPE max_value, min_value, epsilon_value;
+
+ real_2expN (&max_value, GET_MODE_IBIT (mode));
+ real_2expN (&epsilon_value, -GET_MODE_FBIT (mode));
+
+ if (SIGNED_FIXED_POINT_MODE_P (mode))
+ min_value = REAL_VALUE_NEGATE (max_value);
+ else
+ real_from_string (&min_value, "0.0");
+
+ if (real_compare (LT_EXPR, real_value, &min_value))
+ return FIXED_UNDERFLOW;
+ if (real_compare (EQ_EXPR, real_value, &max_value))
+ return FIXED_MAX_EPS;
+ real_arithmetic (&max_value, MINUS_EXPR, &max_value, &epsilon_value);
+ if (real_compare (GT_EXPR, real_value, &max_value))
+ return FIXED_GT_MAX_EPS;
+ return FIXED_OK;
+}
+
+/* Initialize from a decimal or hexadecimal string. */
+
+void
+fixed_from_string (FIXED_VALUE_TYPE *f, const char *str, enum machine_mode mode)
+{
+ REAL_VALUE_TYPE real_value, fixed_value, base_value;
+ unsigned int fbit;
+ enum fixed_value_range_code temp;
+
+ f->mode = mode;
+ fbit = GET_MODE_FBIT (mode);
+
+ real_from_string (&real_value, str);
+ temp = check_real_for_fixed_mode (&real_value, f->mode);
+ /* We don't want to warn the case when the _Fract value is 1.0. */
+ if (temp == FIXED_UNDERFLOW
+ || temp == FIXED_GT_MAX_EPS
+ || (temp == FIXED_MAX_EPS && ALL_ACCUM_MODE_P (f->mode)))
+ warning (OPT_Woverflow,
+ "large fixed-point constant implicitly truncated to fixed-point type");
+ real_2expN (&base_value, fbit);
+ real_arithmetic (&fixed_value, MULT_EXPR, &real_value, &base_value);
+ real_to_integer2 ((HOST_WIDE_INT *)&f->data.low, &f->data.high,
+ &fixed_value);
+
+ if (temp == FIXED_MAX_EPS && ALL_FRACT_MODE_P (f->mode))
+ {
+ /* From the spec, we need to evaluate 1 to the maximal value. */
+ f->data.low = -1;
+ f->data.high = -1;
+ f->data = double_int_ext (f->data,
+ GET_MODE_FBIT (f->mode)
+ + GET_MODE_IBIT (f->mode), 1);
+ }
+ else
+ f->data = double_int_ext (f->data,
+ SIGNED_FIXED_POINT_MODE_P (f->mode)
+ + GET_MODE_FBIT (f->mode)
+ + GET_MODE_IBIT (f->mode),
+ UNSIGNED_FIXED_POINT_MODE_P (f->mode));
+}
+
+/* Render F as a decimal floating point constant. */
+
+void
+fixed_to_decimal (char *str, const FIXED_VALUE_TYPE *f_orig,
+ size_t buf_size)
+{
+ REAL_VALUE_TYPE real_value, base_value, fixed_value;
+
+ real_2expN (&base_value, GET_MODE_FBIT (f_orig->mode));
+ real_from_integer (&real_value, VOIDmode, f_orig->data.low, f_orig->data.high,
+ UNSIGNED_FIXED_POINT_MODE_P (f_orig->mode));
+ real_arithmetic (&fixed_value, RDIV_EXPR, &real_value, &base_value);
+ real_to_decimal (str, &fixed_value, buf_size, 0, 1);
+}
+
+/* If SAT_P, saturate A to the maximum or the minimum, and save to *F based on
+ the machine mode MODE.
+ Do not modify *F otherwise.
+ This function assumes the width of double_int is greater than the width
+ of the fixed-point value (the sum of a possible sign bit, possible ibits,
+ and fbits).
+ Return true, if !SAT_P and overflow. */
+
+static bool
+fixed_saturate1 (enum machine_mode mode, double_int a, double_int *f,
+ bool sat_p)
+{
+ bool overflow_p = false;
+ bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
+ int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
+
+ if (unsigned_p) /* Unsigned type. */
+ {
+ double_int max;
+ max.low = -1;
+ max.high = -1;
+ max = double_int_ext (max, i_f_bits, 1);
+ if (double_int_cmp (a, max, 1) == 1)
+ {
+ if (sat_p)
+ *f = max;
+ else
+ overflow_p = true;
+ }
+ }
+ else /* Signed type. */
+ {
+ double_int max, min;
+ max.high = -1;
+ max.low = -1;
+ max = double_int_ext (max, i_f_bits, 1);
+ min.high = 0;
+ min.low = 1;
+ lshift_double (min.low, min.high, i_f_bits,
+ 2 * HOST_BITS_PER_WIDE_INT,
+ &min.low, &min.high, 1);
+ min = double_int_ext (min, 1 + i_f_bits, 0);
+ if (double_int_cmp (a, max, 0) == 1)
+ {
+ if (sat_p)
+ *f = max;
+ else
+ overflow_p = true;
+ }
+ else if (double_int_cmp (a, min, 0) == -1)
+ {
+ if (sat_p)
+ *f = min;
+ else
+ overflow_p = true;
+ }
+ }
+ return overflow_p;
+}
+
+/* If SAT_P, saturate {A_HIGH, A_LOW} to the maximum or the minimum, and
+ save to *F based on the machine mode MODE.
+ Do not modify *F otherwise.
+ This function assumes the width of two double_int is greater than the width
+ of the fixed-point value (the sum of a possible sign bit, possible ibits,
+ and fbits).
+ Return true, if !SAT_P and overflow. */
+
+static bool
+fixed_saturate2 (enum machine_mode mode, double_int a_high, double_int a_low,
+ double_int *f, bool sat_p)
+{
+ bool overflow_p = false;
+ bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
+ int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
+
+ if (unsigned_p) /* Unsigned type. */
+ {
+ double_int max_r, max_s;
+ max_r.high = 0;
+ max_r.low = 0;
+ max_s.high = -1;
+ max_s.low = -1;
+ max_s = double_int_ext (max_s, i_f_bits, 1);
+ if (double_int_cmp (a_high, max_r, 1) == 1
+ || (double_int_equal_p (a_high, max_r) &&
+ double_int_cmp (a_low, max_s, 1) == 1))
+ {
+ if (sat_p)
+ *f = max_s;
+ else
+ overflow_p = true;
+ }
+ }
+ else /* Signed type. */
+ {
+ double_int max_r, max_s, min_r, min_s;
+ max_r.high = 0;
+ max_r.low = 0;
+ max_s.high = -1;
+ max_s.low = -1;
+ max_s = double_int_ext (max_s, i_f_bits, 1);
+ min_r.high = -1;
+ min_r.low = -1;
+ min_s.high = 0;
+ min_s.low = 1;
+ lshift_double (min_s.low, min_s.high, i_f_bits,
+ 2 * HOST_BITS_PER_WIDE_INT,
+ &min_s.low, &min_s.high, 1);
+ min_s = double_int_ext (min_s, 1 + i_f_bits, 0);
+ if (double_int_cmp (a_high, max_r, 0) == 1
+ || (double_int_equal_p (a_high, max_r) &&
+ double_int_cmp (a_low, max_s, 1) == 1))
+ {
+ if (sat_p)
+ *f = max_s;
+ else
+ overflow_p = true;
+ }
+ else if (double_int_cmp (a_high, min_r, 0) == -1
+ || (double_int_equal_p (a_high, min_r) &&
+ double_int_cmp (a_low, min_s, 1) == -1))
+ {
+ if (sat_p)
+ *f = min_s;
+ else
+ overflow_p = true;
+ }
+ }
+ return overflow_p;
+}
+
+/* Return the sign bit based on I_F_BITS. */
+
+static inline int
+get_fixed_sign_bit (double_int a, int i_f_bits)
+{
+ if (i_f_bits < HOST_BITS_PER_WIDE_INT)
+ return (a.low >> i_f_bits) & 1;
+ else
+ return (a.high >> (i_f_bits - HOST_BITS_PER_WIDE_INT)) & 1;
+}
+
+/* Calculate F = A + (SUBTRACT_P ? -B : B).
+ If SAT_P, saturate the result to the max or the min.
+ Return true, if !SAT_P and overflow. */
+
+static bool
+do_fixed_add (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
+ const FIXED_VALUE_TYPE *b, bool subtract_p, bool sat_p)
+{
+ bool overflow_p = false;
+ double_int temp = subtract_p ? double_int_neg (b->data) : b->data;
+ bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
+ int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
+ f->mode = a->mode;
+ f->data = double_int_add (a->data, temp);
+ if (unsigned_p) /* Unsigned type. */
+ {
+ if (subtract_p) /* Unsigned subtraction. */
+ {
+ if (double_int_cmp (a->data, b->data, 1) == -1)
+ {
+ if (sat_p)
+ {
+ f->data.high = 0;
+ f->data.low = 0;
+ }
+ else
+ overflow_p = true;
+ }
+ }
+ else /* Unsigned addition. */
+ {
+ f->data = double_int_ext (f->data, i_f_bits, 1);
+ if (double_int_cmp (f->data, a->data, 1) == -1
+ || double_int_cmp (f->data, b->data, 1) == -1)
+ {
+ if (sat_p)
+ {
+ f->data.high = -1;
+ f->data.low = -1;
+ }
+ else
+ overflow_p = true;
+ }
+ }
+ }
+ else /* Signed type. */
+ {
+ if ((!subtract_p
+ && (get_fixed_sign_bit (a->data, i_f_bits)
+ == get_fixed_sign_bit (b->data, i_f_bits))
+ && (get_fixed_sign_bit (a->data, i_f_bits)
+ != get_fixed_sign_bit (f->data, i_f_bits)))
+ || (subtract_p
+ && (get_fixed_sign_bit (a->data, i_f_bits)
+ != get_fixed_sign_bit (b->data, i_f_bits))
+ && (get_fixed_sign_bit (a->data, i_f_bits)
+ != get_fixed_sign_bit (f->data, i_f_bits))))
+ {
+ if (sat_p)
+ {
+ f->data.low = 1;
+ f->data.high = 0;
+ lshift_double (f->data.low, f->data.high, i_f_bits,
+ 2 * HOST_BITS_PER_WIDE_INT,
+ &f->data.low, &f->data.high, 1);
+ if (get_fixed_sign_bit (a->data, i_f_bits) == 0)
+ {
+ double_int one;
+ one.low = 1;
+ one.high = 0;
+ f->data = double_int_add (f->data, double_int_neg (one));
+ }
+ }
+ else
+ overflow_p = true;
+ }
+ }
+ f->data = double_int_ext (f->data, (!unsigned_p) + i_f_bits, unsigned_p);
+ return overflow_p;
+}
+
+/* Calculate F = A * B.
+ If SAT_P, saturate the result to the max or the min.
+ Return true, if !SAT_P and overflow. */
+
+static bool
+do_fixed_multiply (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
+ const FIXED_VALUE_TYPE *b, bool sat_p)
+{
+ bool overflow_p = false;
+ bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
+ int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
+ f->mode = a->mode;
+ if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT)
+ {
+ f->data = double_int_mul (a->data, b->data);
+ lshift_double (f->data.low, f->data.high,
+ (-GET_MODE_FBIT (f->mode)),
+ 2 * HOST_BITS_PER_WIDE_INT,
+ &f->data.low, &f->data.high, !unsigned_p);
+ overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
+ }
+ else
+ {
+ /* The result of multiplication expands to two double_int. */
+ double_int a_high, a_low, b_high, b_low;
+ double_int high_high, high_low, low_high, low_low;
+ double_int r, s, temp1, temp2;
+ int carry = 0;
+
+ /* Decompose a and b to four double_int. */
+ a_high.low = a->data.high;
+ a_high.high = 0;
+ a_low.low = a->data.low;
+ a_low.high = 0;
+ b_high.low = b->data.high;
+ b_high.high = 0;
+ b_low.low = b->data.low;
+ b_low.high = 0;
+
+ /* Perform four multiplications. */
+ low_low = double_int_mul (a_low, b_low);
+ low_high = double_int_mul (a_low, b_high);
+ high_low = double_int_mul (a_high, b_low);
+ high_high = double_int_mul (a_high, b_high);
+
+ /* Accumulate four results to {r, s}. */
+ temp1.high = high_low.low;
+ temp1.low = 0;
+ s = double_int_add (low_low, temp1);
+ if (double_int_cmp (s, low_low, 1) == -1
+ || double_int_cmp (s, temp1, 1) == -1)
+ carry ++; /* Carry */
+ temp1.high = s.high;
+ temp1.low = s.low;
+ temp2.high = low_high.low;
+ temp2.low = 0;
+ s = double_int_add (temp1, temp2);
+ if (double_int_cmp (s, temp1, 1) == -1
+ || double_int_cmp (s, temp2, 1) == -1)
+ carry ++; /* Carry */
+
+ temp1.low = high_low.high;
+ temp1.high = 0;
+ r = double_int_add (high_high, temp1);
+ temp1.low = low_high.high;
+ temp1.high = 0;
+ r = double_int_add (r, temp1);
+ temp1.low = carry;
+ temp1.high = 0;
+ r = double_int_add (r, temp1);
+
+ /* We need to add neg(b) to r, if a < 0. */
+ if (!unsigned_p && a->data.high < 0)
+ r = double_int_add (r, double_int_neg (b->data));
+ /* We need to add neg(a) to r, if b < 0. */
+ if (!unsigned_p && b->data.high < 0)
+ r = double_int_add (r, double_int_neg (a->data));
+
+ /* Shift right the result by FBIT. */
+ if (GET_MODE_FBIT (f->mode) == 2 * HOST_BITS_PER_WIDE_INT)
+ {
+ s.low = r.low;
+ s.high = r.high;
+ if (unsigned_p)
+ {
+ r.low = 0;
+ r.high = 0;
+ }
+ else
+ {
+ r.low = -1;
+ r.high = -1;
+ }
+ f->data.low = s.low;
+ f->data.high = s.high;
+ }
+ else
+ {
+ lshift_double (s.low, s.high,
+ (-GET_MODE_FBIT (f->mode)),
+ 2 * HOST_BITS_PER_WIDE_INT,
+ &s.low, &s.high, 0);
+ lshift_double (r.low, r.high,
+ (2 * HOST_BITS_PER_WIDE_INT
+ - GET_MODE_FBIT (f->mode)),
+ 2 * HOST_BITS_PER_WIDE_INT,
+ &f->data.low, &f->data.high, 0);
+ f->data.low = f->data.low | s.low;
+ f->data.high = f->data.high | s.high;
+ s.low = f->data.low;
+ s.high = f->data.high;
+ lshift_double (r.low, r.high,
+ (-GET_MODE_FBIT (f->mode)),
+ 2 * HOST_BITS_PER_WIDE_INT,
+ &r.low, &r.high, !unsigned_p);
+ }
+
+ overflow_p = fixed_saturate2 (f->mode, r, s, &f->data, sat_p);
+ }
+
+ f->data = double_int_ext (f->data, (!unsigned_p) + i_f_bits, unsigned_p);
+ return overflow_p;
+}
+
+/* Calculate F = A / B.
+ If SAT_P, saturate the result to the max or the min.
+ Return true, if !SAT_P and overflow. */
+
+static bool
+do_fixed_divide (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
+ const FIXED_VALUE_TYPE *b, bool sat_p)
+{
+ bool overflow_p = false;
+ bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
+ int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
+ f->mode = a->mode;
+ if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT)
+ {
+ lshift_double (a->data.low, a->data.high,
+ GET_MODE_FBIT (f->mode),
+ 2 * HOST_BITS_PER_WIDE_INT,
+ &f->data.low, &f->data.high, !unsigned_p);
+ f->data = double_int_div (f->data, b->data, unsigned_p, TRUNC_DIV_EXPR);
+ overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
+ }
+ else
+ {
+ double_int pos_a, pos_b, r, s;
+ double_int quo_r, quo_s, mod, temp;
+ int num_of_neg = 0;
+ int i;
+
+ /* If a < 0, negate a. */
+ if (!unsigned_p && a->data.high < 0)
+ {
+ pos_a = double_int_neg (a->data);
+ num_of_neg ++;
+ }
+ else
+ pos_a = a->data;
+
+ /* If b < 0, negate b. */
+ if (!unsigned_p && b->data.high < 0)
+ {
+ pos_b = double_int_neg (b->data);
+ num_of_neg ++;
+ }
+ else
+ pos_b = b->data;
+
+ /* Left shift pos_a to {r, s} by FBIT. */
+ if (GET_MODE_FBIT (f->mode) == 2 * HOST_BITS_PER_WIDE_INT)
+ {
+ r = pos_a;
+ s.high = 0;
+ s.low = 0;
+ }
+ else
+ {
+ lshift_double (pos_a.low, pos_a.high,
+ GET_MODE_FBIT (f->mode),
+ 2 * HOST_BITS_PER_WIDE_INT,
+ &s.low, &s.high, 0);
+ lshift_double (pos_a.low, pos_a.high,
+ - (2 * HOST_BITS_PER_WIDE_INT
+ - GET_MODE_FBIT (f->mode)),
+ 2 * HOST_BITS_PER_WIDE_INT,
+ &r.low, &r.high, 0);
+ }
+
+ /* Divide r by pos_b to quo_r. The remanider is in mod. */
+ div_and_round_double (TRUNC_DIV_EXPR, 1, r.low, r.high, pos_b.low,
+ pos_b.high, &quo_r.low, &quo_r.high, &mod.low,
+ &mod.high);
+
+ quo_s.high = 0;
+ quo_s.low = 0;
+
+ for (i = 0; i < 2 * HOST_BITS_PER_WIDE_INT; i++)
+ {
+ /* Record the leftmost bit of mod. */
+ int leftmost_mod = (mod.high < 0);
+
+ /* Shift left mod by 1 bit. */
+ lshift_double (mod.low, mod.high, 1, 2 * HOST_BITS_PER_WIDE_INT,
+ &mod.low, &mod.high, 0);
+
+ /* Test the leftmost bit of s to add to mod. */
+ if (s.high < 0)
+ mod.low += 1;
+
+ /* Shift left quo_s by 1 bit. */
+ lshift_double (quo_s.low, quo_s.high, 1, 2 * HOST_BITS_PER_WIDE_INT,
+ &quo_s.low, &quo_s.high, 0);
+
+ /* Try to calculate (mod - pos_b). */
+ temp = double_int_add (mod, double_int_neg (pos_b));
+
+ if (leftmost_mod == 1 || double_int_cmp (mod, pos_b, 1) != -1)
+ {
+ quo_s.low += 1;
+ mod = temp;
+ }
+
+ /* Shift left s by 1 bit. */
+ lshift_double (s.low, s.high, 1, 2 * HOST_BITS_PER_WIDE_INT,
+ &s.low, &s.high, 0);
+
+ }
+
+ if (num_of_neg == 1)
+ {
+ quo_s = double_int_neg (quo_s);
+ if (quo_s.high == 0 && quo_s.low == 0)
+ quo_r = double_int_neg (quo_r);
+ else
+ {
+ quo_r.low = ~quo_r.low;
+ quo_r.high = ~quo_r.high;
+ }
+ }
+
+ f->data = quo_s;
+ overflow_p = fixed_saturate2 (f->mode, quo_r, quo_s, &f->data, sat_p);
+ }
+
+ f->data = double_int_ext (f->data, (!unsigned_p) + i_f_bits, unsigned_p);
+ return overflow_p;
+}
+
+/* Calculate F = A << B if LEFT_P. Otherwies, F = A >> B.
+ If SAT_P, saturate the result to the max or the min.
+ Return true, if !SAT_P and overflow. */
+
+static bool
+do_fixed_shift (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
+ const FIXED_VALUE_TYPE *b, bool left_p, bool sat_p)
+{
+ bool overflow_p = false;
+ bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
+ int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
+ f->mode = a->mode;
+
+ if (b->data.low == 0)
+ {
+ f->data = a->data;
+ return overflow_p;
+ }
+
+ if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT || (!left_p))
+ {
+ lshift_double (a->data.low, a->data.high,
+ left_p ? b->data.low : (-b->data.low),
+ 2 * HOST_BITS_PER_WIDE_INT,
+ &f->data.low, &f->data.high, !unsigned_p);
+ if (left_p) /* Only left shift saturates. */
+ overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
+ }
+ else /* We need two double_int to store the left-shift result. */
+ {
+ double_int temp_high, temp_low;
+ if (b->data.low == 2 * HOST_BITS_PER_WIDE_INT)
+ {
+ temp_high = a->data;
+ temp_low.high = 0;
+ temp_low.low = 0;
+ }
+ else
+ {
+ lshift_double (a->data.low, a->data.high,
+ b->data.low,
+ 2 * HOST_BITS_PER_WIDE_INT,
+ &temp_low.low, &temp_low.high, !unsigned_p);
+ /* Logical shift right to temp_high. */
+ lshift_double (a->data.low, a->data.high,
+ b->data.low - 2 * HOST_BITS_PER_WIDE_INT,
+ 2 * HOST_BITS_PER_WIDE_INT,
+ &temp_high.low, &temp_high.high, 0);
+ }
+ if (!unsigned_p && a->data.high < 0) /* Signed-extend temp_high. */
+ temp_high = double_int_ext (temp_high, b->data.low, unsigned_p);
+ f->data = temp_low;
+ overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
+ sat_p);
+ }
+ f->data = double_int_ext (f->data, (!unsigned_p) + i_f_bits, unsigned_p);
+ return overflow_p;
+}
+
+/* Calculate F = -A.
+ If SAT_P, saturate the result to the max or the min.
+ Return true, if !SAT_P and overflow. */
+
+static bool
+do_fixed_neg (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a, bool sat_p)
+{
+ bool overflow_p = false;
+ bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
+ int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
+ f->mode = a->mode;
+ f->data = double_int_neg (a->data);
+ f->data = double_int_ext (f->data, (!unsigned_p) + i_f_bits, unsigned_p);
+
+ if (unsigned_p) /* Unsigned type. */
+ {
+ if (f->data.low != 0 || f->data.high != 0)
+ {
+ if (sat_p)
+ {
+ f->data.low = 0;
+ f->data.high = 0;
+ }
+ else
+ overflow_p = true;
+ }
+ }
+ else /* Signed type. */
+ {
+ if (!(f->data.high == 0 && f->data.low == 0)
+ && f->data.high == a->data.high && f->data.low == a->data.low )
+ {
+ if (sat_p)
+ {
+ /* Saturate to the maximum by subtracting f->data by one. */
+ f->data.low = -1;
+ f->data.high = -1;
+ f->data = double_int_ext (f->data, i_f_bits, 1);
+ }
+ else
+ overflow_p = true;
+ }
+ }
+ return overflow_p;
+}
+
+/* Perform the binary or unary operation described by CODE.
+ Note that OP0 and OP1 must have the same mode for binary operators.
+ For a unary operation, leave OP1 NULL.
+ Return true, if !SAT_P and overflow. */
+
+bool
+fixed_arithmetic (FIXED_VALUE_TYPE *f, int icode, const FIXED_VALUE_TYPE *op0,
+ const FIXED_VALUE_TYPE *op1, bool sat_p)
+{
+ switch (icode)
+ {
+ case NEGATE_EXPR:
+ return do_fixed_neg (f, op0, sat_p);
+ break;
+
+ case PLUS_EXPR:
+ gcc_assert (op0->mode == op1->mode);
+ return do_fixed_add (f, op0, op1, false, sat_p);
+ break;
+
+ case MINUS_EXPR:
+ gcc_assert (op0->mode == op1->mode);
+ return do_fixed_add (f, op0, op1, true, sat_p);
+ break;
+
+ case MULT_EXPR:
+ gcc_assert (op0->mode == op1->mode);
+ return do_fixed_multiply (f, op0, op1, sat_p);
+ break;
+
+ case TRUNC_DIV_EXPR:
+ gcc_assert (op0->mode == op1->mode);
+ return do_fixed_divide (f, op0, op1, sat_p);
+ break;
+
+ case LSHIFT_EXPR:
+ return do_fixed_shift (f, op0, op1, true, sat_p);
+ break;
+
+ case RSHIFT_EXPR:
+ return do_fixed_shift (f, op0, op1, false, sat_p);
+ break;
+
+ default:
+ gcc_unreachable ();
+ }
+ return false;
+}
+
+/* Compare fixed-point values by tree_code.
+ Note that OP0 and OP1 must have the same mode. */
+
+bool
+fixed_compare (int icode, const FIXED_VALUE_TYPE *op0,
+ const FIXED_VALUE_TYPE *op1)
+{
+ enum tree_code code = icode;
+ gcc_assert (op0->mode == op1->mode);
+
+ switch (code)
+ {
+ case NE_EXPR:
+ return !double_int_equal_p (op0->data, op1->data);
+
+ case EQ_EXPR:
+ return double_int_equal_p (op0->data, op1->data);
+
+ case LT_EXPR:
+ return double_int_cmp (op0->data, op1->data,
+ UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) == -1;
+
+ case LE_EXPR:
+ return double_int_cmp (op0->data, op1->data,
+ UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) != 1;
+
+ case GT_EXPR:
+ return double_int_cmp (op0->data, op1->data,
+ UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) == 1;
+
+ case GE_EXPR:
+ return double_int_cmp (op0->data, op1->data,
+ UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) != -1;
+
+ default:
+ gcc_unreachable ();
+ }
+}
+
+/* Extend or truncate to a new mode.
+ If SAT_P, saturate the result to the max or the min.
+ Return true, if !SAT_P and overflow. */
+
+bool
+fixed_convert (FIXED_VALUE_TYPE *f, enum machine_mode mode,
+ const FIXED_VALUE_TYPE *a, bool sat_p)
+{
+ bool overflow_p = false;
+ if (mode == a->mode)
+ {
+ *f = *a;
+ return overflow_p;
+ }
+
+ if (GET_MODE_FBIT (mode) > GET_MODE_FBIT (a->mode))
+ {
+ /* Left shift a to temp_high, temp_low based on a->mode. */
+ double_int temp_high, temp_low;
+ int amount = GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode);
+ lshift_double (a->data.low, a->data.high,
+ amount,
+ 2 * HOST_BITS_PER_WIDE_INT,
+ &temp_low.low, &temp_low.high,
+ SIGNED_FIXED_POINT_MODE_P (a->mode));
+ /* Logical shift right to temp_high. */
+ lshift_double (a->data.low, a->data.high,
+ amount - 2 * HOST_BITS_PER_WIDE_INT,
+ 2 * HOST_BITS_PER_WIDE_INT,
+ &temp_high.low, &temp_high.high, 0);
+ if (SIGNED_FIXED_POINT_MODE_P (a->mode)
+ && a->data.high < 0) /* Signed-extend temp_high. */
+ temp_high = double_int_ext (temp_high, amount, 0);
+ f->mode = mode;
+ f->data = temp_low;
+ if (SIGNED_FIXED_POINT_MODE_P (a->mode) ==
+ SIGNED_FIXED_POINT_MODE_P (f->mode))
+ overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
+ sat_p);
+ else
+ {
+ /* Take care of the cases when converting between signed and
+ unsigned. */
+ if (SIGNED_FIXED_POINT_MODE_P (a->mode))
+ {
+ /* Signed -> Unsigned. */
+ if (a->data.high < 0)
+ {
+ if (sat_p)
+ {
+ f->data.low = 0; /* Set to zero. */
+ f->data.high = 0; /* Set to zero. */
+ }
+ else
+ overflow_p = true;
+ }
+ else
+ overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
+ &f->data, sat_p);
+ }
+ else
+ {
+ /* Unsigned -> Signed. */
+ if (temp_high.high < 0)
+ {
+ if (sat_p)
+ {
+ /* Set to maximum. */
+ f->data.low = -1; /* Set to all ones. */
+ f->data.high = -1; /* Set to all ones. */
+ f->data = double_int_ext (f->data,
+ GET_MODE_FBIT (f->mode)
+ + GET_MODE_IBIT (f->mode),
+ 1); /* Clear the sign. */
+ }
+ else
+ overflow_p = true;
+ }
+ else
+ overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
+ &f->data, sat_p);
+ }
+ }
+ }
+ else
+ {
+ /* Right shift a to temp based on a->mode. */
+ double_int temp;
+ lshift_double (a->data.low, a->data.high,
+ GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode),
+ 2 * HOST_BITS_PER_WIDE_INT,
+ &temp.low, &temp.high,
+ SIGNED_FIXED_POINT_MODE_P (a->mode));
+ f->mode = mode;
+ f->data = temp;
+ if (SIGNED_FIXED_POINT_MODE_P (a->mode) ==
+ SIGNED_FIXED_POINT_MODE_P (f->mode))
+ overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
+ else
+ {
+ /* Take care of the cases when converting between signed and
+ unsigned. */
+ if (SIGNED_FIXED_POINT_MODE_P (a->mode))
+ {
+ /* Signed -> Unsigned. */
+ if (a->data.high < 0)
+ {
+ if (sat_p)
+ {
+ f->data.low = 0; /* Set to zero. */
+ f->data.high = 0; /* Set to zero. */
+ }
+ else
+ overflow_p = true;
+ }
+ else
+ overflow_p = fixed_saturate1 (f->mode, f->data, &f->data,
+ sat_p);
+ }
+ else
+ {
+ /* Unsigned -> Signed. */
+ if (temp.high < 0)
+ {
+ if (sat_p)
+ {
+ /* Set to maximum. */
+ f->data.low = -1; /* Set to all ones. */
+ f->data.high = -1; /* Set to all ones. */
+ f->data = double_int_ext (f->data,
+ GET_MODE_FBIT (f->mode)
+ + GET_MODE_IBIT (f->mode),
+ 1); /* Clear the sign. */
+ }
+ else
+ overflow_p = true;
+ }
+ else
+ overflow_p = fixed_saturate1 (f->mode, f->data, &f->data,
+ sat_p);
+ }
+ }
+ }
+
+ f->data = double_int_ext (f->data,
+ SIGNED_FIXED_POINT_MODE_P (f->mode)
+ + GET_MODE_FBIT (f->mode)
+ + GET_MODE_IBIT (f->mode),
+ UNSIGNED_FIXED_POINT_MODE_P (f->mode));
+ return overflow_p;
+}
+
+/* Convert to a new fixed-point mode from an integer.
+ If UNSIGNED_P, this integer is unsigned.
+ If SAT_P, saturate the result to the max or the min.
+ Return true, if !SAT_P and overflow. */
+
+bool
+fixed_convert_from_int (FIXED_VALUE_TYPE *f, enum machine_mode mode,
+ double_int a, bool unsigned_p, bool sat_p)
+{
+ bool overflow_p = false;
+ /* Left shift a to temp_high, temp_low. */
+ double_int temp_high, temp_low;
+ int amount = GET_MODE_FBIT (mode);
+ if (amount == 2 * HOST_BITS_PER_WIDE_INT)
+ {
+ temp_high = a;
+ temp_low.low = 0;
+ temp_low.high = 0;
+ }
+ else
+ {
+ lshift_double (a.low, a.high,
+ amount,
+ 2 * HOST_BITS_PER_WIDE_INT,
+ &temp_low.low, &temp_low.high, 0);
+
+ /* Logical shift right to temp_high. */
+ lshift_double (a.low, a.high,
+ amount - 2 * HOST_BITS_PER_WIDE_INT,
+ 2 * HOST_BITS_PER_WIDE_INT,
+ &temp_high.low, &temp_high.high, 0);
+ }
+ if (!unsigned_p && a.high < 0) /* Signed-extend temp_high. */
+ temp_high = double_int_ext (temp_high, amount, 0);
+
+ f->mode = mode;
+ f->data = temp_low;
+
+ if (unsigned_p == UNSIGNED_FIXED_POINT_MODE_P (f->mode))
+ overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
+ sat_p);
+ else
+ {
+ /* Take care of the cases when converting between signed and unsigned. */
+ if (!unsigned_p)
+ {
+ /* Signed -> Unsigned. */
+ if (a.high < 0)
+ {
+ if (sat_p)
+ {
+ f->data.low = 0; /* Set to zero. */
+ f->data.high = 0; /* Set to zero. */
+ }
+ else
+ overflow_p = true;
+ }
+ else
+ overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
+ &f->data, sat_p);
+ }
+ else
+ {
+ /* Unsigned -> Signed. */
+ if (temp_high.high < 0)
+ {
+ if (sat_p)
+ {
+ /* Set to maximum. */
+ f->data.low = -1; /* Set to all ones. */
+ f->data.high = -1; /* Set to all ones. */
+ f->data = double_int_ext (f->data,
+ GET_MODE_FBIT (f->mode)
+ + GET_MODE_IBIT (f->mode),
+ 1); /* Clear the sign. */
+ }
+ else
+ overflow_p = true;
+ }
+ else
+ overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
+ &f->data, sat_p);
+ }
+ }
+ f->data = double_int_ext (f->data,
+ SIGNED_FIXED_POINT_MODE_P (f->mode)
+ + GET_MODE_FBIT (f->mode)
+ + GET_MODE_IBIT (f->mode),
+ UNSIGNED_FIXED_POINT_MODE_P (f->mode));
+ return overflow_p;
+}
+
+/* Convert to a new fixed-point mode from a real.
+ If SAT_P, saturate the result to the max or the min.
+ Return true, if !SAT_P and overflow. */
+
+bool
+fixed_convert_from_real (FIXED_VALUE_TYPE *f, enum machine_mode mode,
+ const REAL_VALUE_TYPE *a, bool sat_p)
+{
+ bool overflow_p = false;
+ REAL_VALUE_TYPE real_value, fixed_value, base_value;
+ bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
+ int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
+ unsigned int fbit = GET_MODE_FBIT (mode);
+ enum fixed_value_range_code temp;
+
+ real_value = *a;
+ f->mode = mode;
+ real_2expN (&base_value, fbit);
+ real_arithmetic (&fixed_value, MULT_EXPR, &real_value, &base_value);
+ real_to_integer2 ((HOST_WIDE_INT *)&f->data.low, &f->data.high, &fixed_value);
+ temp = check_real_for_fixed_mode (&real_value, mode);
+ if (temp == FIXED_UNDERFLOW) /* Minimum. */
+ {
+ if (sat_p)
+ {
+ if (unsigned_p)
+ {
+ f->data.low = 0;
+ f->data.high = 0;
+ }
+ else
+ {
+ f->data.low = 1;
+ f->data.high = 0;
+ lshift_double (f->data.low, f->data.high, i_f_bits,
+ 2 * HOST_BITS_PER_WIDE_INT,
+ &f->data.low, &f->data.high, 1);
+ f->data = double_int_ext (f->data, 1 + i_f_bits, 0);
+ }
+ }
+ else
+ overflow_p = true;
+ }
+ else if (temp == FIXED_GT_MAX_EPS || temp == FIXED_MAX_EPS) /* Maximum. */
+ {
+ if (sat_p)
+ {
+ f->data.low = -1;
+ f->data.high = -1;
+ f->data = double_int_ext (f->data, i_f_bits, 1);
+ }
+ else
+ overflow_p = true;
+ }
+ f->data = double_int_ext (f->data, (!unsigned_p) + i_f_bits, unsigned_p);
+ return overflow_p;
+}
+
+/* Convert to a new real mode from a fixed-point. */
+
+void
+real_convert_from_fixed (REAL_VALUE_TYPE *r, enum machine_mode mode,
+ const FIXED_VALUE_TYPE *f)
+{
+ REAL_VALUE_TYPE base_value, fixed_value, real_value;
+
+ real_2expN (&base_value, GET_MODE_FBIT (f->mode));
+ real_from_integer (&fixed_value, VOIDmode, f->data.low, f->data.high,
+ UNSIGNED_FIXED_POINT_MODE_P (f->mode));
+ real_arithmetic (&real_value, RDIV_EXPR, &fixed_value, &base_value);
+ real_convert (r, mode, &real_value);
+}
+
+/* Determine whether a fixed-point value F is negative. */
+
+bool
+fixed_isneg (const FIXED_VALUE_TYPE *f)
+{
+ if (SIGNED_FIXED_POINT_MODE_P (f->mode))
+ {
+ int i_f_bits = GET_MODE_IBIT (f->mode) + GET_MODE_FBIT (f->mode);
+ int sign_bit = get_fixed_sign_bit (f->data, i_f_bits);
+ if (sign_bit == 1)
+ return true;
+ }
+
+ return false;
+}