summaryrefslogtreecommitdiff
path: root/gcc/fortran/arith.c
diff options
context:
space:
mode:
authorpbrook <pbrook@138bc75d-0d04-0410-961f-82ee72b054a4>2004-05-16 11:26:25 +0000
committerpbrook <pbrook@138bc75d-0d04-0410-961f-82ee72b054a4>2004-05-16 11:26:25 +0000
commit8a33c725c8c98fccfcf764a1bf5fe9b5a8451f07 (patch)
tree284a20f4663a4b7e1d114618f00c1dd0d527b6a7 /gcc/fortran/arith.c
parent37a12fec30f31c98814b5115bdc1d562ee93fadc (diff)
downloadgcc-8a33c725c8c98fccfcf764a1bf5fe9b5a8451f07.tar.gz
* arith.c: Fix comment typos.
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@81912 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/fortran/arith.c')
-rw-r--r--gcc/fortran/arith.c8
1 files changed, 4 insertions, 4 deletions
diff --git a/gcc/fortran/arith.c b/gcc/fortran/arith.c
index b4041a61151..30957b585f8 100644
--- a/gcc/fortran/arith.c
+++ b/gcc/fortran/arith.c
@@ -87,7 +87,7 @@ int gfc_index_integer_kind;
We first get the argument into the range 0.5 to 1.5 by successive
multiplications or divisions by e. Then we use the series:
- ln(x) = (x-1) - (x-1)^/2 + (x-1)^3/3 - (x-1)^4/4 + ...
+ ln(x) = (x-1) - (x-1)^2/2 + (x-1)^3/3 - (x-1)^4/4 + ...
Because we are expanding in powers of (x-1), and 0.5 < x < 1.5, we
have -0.5 < (x-1) < 0.5. Ignoring the harmonic term, this means
@@ -179,7 +179,7 @@ common_logarithm (mpf_t * arg, mpf_t * result)
x = Nln2 + r
- Then we obtain exp(r) from the McLaurin series.
+ Then we obtain exp(r) from the Maclaurin series.
exp(x) is then recovered from the identity
exp(x) = 2^N*exp(r). */
@@ -266,7 +266,7 @@ exponential (mpf_t * arg, mpf_t * result)
x= N*2pi + r
- Then we obtain sin(r) from the McLaurin series. */
+ Then we obtain sin(r) from the Maclaurin series. */
void
sine (mpf_t * arg, mpf_t * result)
@@ -1173,7 +1173,7 @@ gfc_arith_neqv (gfc_expr * op1, gfc_expr * op2, gfc_expr ** resultp)
/* Make sure a constant numeric expression is within the range for
- it's type and kind. Note that there's also a gfc_check_range(),
+ its type and kind. Note that there's also a gfc_check_range(),
but that one deals with the intrinsic RANGE function. */
arith