summaryrefslogtreecommitdiff
path: root/gcc/graphite-interchange.c
diff options
context:
space:
mode:
authorspop <spop@138bc75d-0d04-0410-961f-82ee72b054a4>2009-08-12 14:30:06 +0000
committerspop <spop@138bc75d-0d04-0410-961f-82ee72b054a4>2009-08-12 14:30:06 +0000
commit80020e9d6bb1ddd0897a520f1ade531332ab1421 (patch)
treef0bff5b8609d31cd4deec4fcf85361ab632abd52 /gcc/graphite-interchange.c
parentc9fce63414360f1b994d95aec28cd0877e8ccbbf (diff)
downloadgcc-80020e9d6bb1ddd0897a520f1ade531332ab1421.tar.gz
Reimplement interchange heuristic.
2009-08-11 Sebastian Pop <sebastian.pop@amd.com> Pranav Garg <pranav.garg2107@gmail.com> * graphite-interchange.c (gather_access_strides): Removed. (ppl_max_for_le): New. (build_linearized_memory_access): New. (memory_stride_in_loop): New. (pbb_interchange_profitable_p): Reimplemented. * graphite-ppl.h (ppl_new_id_map): New. (ppl_interchange): New. * testsuite/gcc.dg/graphite/interchange-6.c: XFAILed. git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@150692 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/graphite-interchange.c')
-rw-r--r--gcc/graphite-interchange.c246
1 files changed, 225 insertions, 21 deletions
diff --git a/gcc/graphite-interchange.c b/gcc/graphite-interchange.c
index af87ffb1ad2..c9da69be76e 100644
--- a/gcc/graphite-interchange.c
+++ b/gcc/graphite-interchange.c
@@ -53,47 +53,251 @@ along with GCC; see the file COPYING3. If not see
#include "graphite.h"
#include "graphite-poly.h"
-/* Computes ACCESS_STRIDES, the sum of all the strides of PDR at
- LOOP_DEPTH. */
+/* Return in RES the maximum of the linear expression LE on polyhedron PS. */
static void
-gather_access_strides (poly_dr_p pdr ATTRIBUTE_UNUSED,
- graphite_dim_t loop_depth ATTRIBUTE_UNUSED,
- Value access_strides ATTRIBUTE_UNUSED)
+ppl_max_for_le (ppl_Pointset_Powerset_C_Polyhedron_t ps,
+ ppl_Linear_Expression_t le, Value res)
{
- /* Empty for now. */
+ ppl_Coefficient_t num, denom;
+ Value dv, nv;
+ int maximum;
+
+ value_init (nv);
+ value_init (dv);
+ ppl_new_Coefficient (&num);
+ ppl_new_Coefficient (&denom);
+ ppl_Pointset_Powerset_C_Polyhedron_maximize (ps, le, num, denom, &maximum);
+
+ if (maximum)
+ {
+ ppl_Coefficient_to_mpz_t (num, nv);
+ ppl_Coefficient_to_mpz_t (denom, dv);
+ value_division (res, nv, dv);
+ }
+
+ value_clear (nv);
+ value_clear (dv);
+ ppl_delete_Coefficient (num);
+ ppl_delete_Coefficient (denom);
+}
+
+/* Builds a linear expression, of dimension DIM, representing PDR's
+ memory access:
+
+ L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
+
+ For an array A[10][20] with two subscript locations s0 and s1, the
+ linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
+ corresponds to a memory stride of 20. */
+
+static ppl_Linear_Expression_t
+build_linearized_memory_access (poly_dr_p pdr)
+{
+ ppl_Linear_Expression_t res;
+ ppl_Linear_Expression_t le;
+ ppl_dimension_type i;
+ ppl_dimension_type first = pdr_subscript_dim (pdr, 0);
+ ppl_dimension_type last = pdr_subscript_dim (pdr, PDR_NB_SUBSCRIPTS (pdr));
+ Value size, sub_size;
+ graphite_dim_t dim = pdr_dim (pdr);
+
+ ppl_new_Linear_Expression_with_dimension (&res, dim);
+
+ value_init (size);
+ value_set_si (size, 1);
+ value_init (sub_size);
+ value_set_si (sub_size, 1);
+
+ for (i = last - 1; i >= first; i--)
+ {
+ ppl_set_coef_gmp (res, i, size);
+
+ ppl_new_Linear_Expression_with_dimension (&le, dim);
+ ppl_set_coef (le, i, 1);
+ ppl_max_for_le (PDR_ACCESSES (pdr), le, sub_size);
+ value_multiply (size, size, sub_size);
+ ppl_delete_Linear_Expression (le);
+ }
+
+ value_clear (sub_size);
+ value_clear (size);
+ return res;
}
-/* Returns true when it is profitable to interchange loop at depth1
- and loop at depth2 with depth1 < depth2 for the polyhedral black
- box PBB. */
+/* Set STRIDE to the stride of PDR in memory by advancing by one in
+ loop DEPTH. */
+
+static void
+memory_stride_in_loop (Value stride, graphite_dim_t depth, poly_dr_p pdr)
+{
+ ppl_Linear_Expression_t le, lma;
+ ppl_Constraint_t new_cstr;
+ ppl_Pointset_Powerset_C_Polyhedron_t p1, p2;
+ graphite_dim_t nb_subscripts = PDR_NB_SUBSCRIPTS (pdr);
+ ppl_dimension_type i, *map;
+ ppl_dimension_type dim = pdr_dim (pdr);
+ ppl_dimension_type dim_i = pdr_iterator_dim (pdr, depth);
+ ppl_dimension_type dim_k = dim;
+ ppl_dimension_type dim_L1 = dim + nb_subscripts + 1;
+ ppl_dimension_type dim_L2 = dim + nb_subscripts + 2;
+ ppl_dimension_type new_dim = dim + nb_subscripts + 3;
+
+ /* Add new dimensions to the polyhedron corresponding to
+ k, s0', s1',..., L1, and L2. These new variables are at
+ dimensions dim, dim + 1,... of the polyhedron P1 respectively. */
+ ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
+ (&p1, PDR_ACCESSES (pdr));
+ ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
+ (p1, nb_subscripts + 3);
+
+ lma = build_linearized_memory_access (pdr);
+ ppl_set_coef (lma, dim_L1, -1);
+ ppl_new_Constraint (&new_cstr, lma, PPL_CONSTRAINT_TYPE_EQUAL);
+ ppl_Pointset_Powerset_C_Polyhedron_add_constraint (p1, new_cstr);
+
+ /* Build P2. */
+ ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
+ (&p2, p1);
+ map = ppl_new_id_map (new_dim);
+ ppl_interchange (map, dim_L1, dim_L2);
+ ppl_interchange (map, dim_i, dim_k);
+ for (i = 0; i < PDR_NB_SUBSCRIPTS (pdr); i++)
+ ppl_interchange (map, pdr_subscript_dim (pdr, i), dim + i + 1);
+ ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (p2, map, new_dim);
+ free (map);
+
+ /* Add constraint k = i + 1. */
+ ppl_new_Linear_Expression_with_dimension (&le, new_dim);
+ ppl_set_coef (le, dim_i, 1);
+ ppl_set_coef (le, dim_k, -1);
+ ppl_set_inhomogeneous (le, 1);
+ ppl_new_Constraint (&new_cstr, le, PPL_CONSTRAINT_TYPE_EQUAL);
+ ppl_Pointset_Powerset_C_Polyhedron_add_constraint (p2, new_cstr);
+ ppl_delete_Linear_Expression (le);
+ ppl_delete_Constraint (new_cstr);
+
+ /* P1 = P1 inter P2. */
+ ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1, p2);
+ ppl_delete_Pointset_Powerset_C_Polyhedron (p2);
+
+ /* Maximise the expression L2 - L1. */
+ ppl_new_Linear_Expression_with_dimension (&le, new_dim);
+ ppl_set_coef (le, dim_L2, 1);
+ ppl_set_coef (le, dim_L1, -1);
+ ppl_max_for_le (p1, le, stride);
+ ppl_delete_Linear_Expression (le);
+}
+
+
+/* Returns true when it is profitable to interchange loop at DEPTH1
+ and loop at DEPTH2 with DEPTH1 < DEPTH2 for PBB.
+
+ Example:
+
+ | int a[100][100];
+ |
+ | int
+ | foo (int N)
+ | {
+ | int j;
+ | int i;
+ |
+ | for (i = 0; i < N; i++)
+ | for (j = 0; j < N; j++)
+ | a[j][2 * i] += 1;
+ |
+ | return a[N][12];
+ | }
+
+ The data access A[j][i] is described like this:
+
+ | i j N a s0 s1 1
+ | 0 0 0 1 0 0 -5 = 0
+ | 0 -1 0 0 1 0 0 = 0
+ |-2 0 0 0 0 1 0 = 0
+ | 0 0 0 0 1 0 0 >= 0
+ | 0 0 0 0 0 1 0 >= 0
+ | 0 0 0 0 -1 0 100 >= 0
+ | 0 0 0 0 0 -1 100 >= 0
+
+ The linearized memory access L to A[100][100] is:
+
+ | i j N a s0 s1 1
+ | 0 0 0 0 100 1 0
+
+ Next, to measure the impact of iterating once in loop "i", we build
+ a maximization problem: first, we add to DR accesses the dimensions
+ k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: polyhedron P1.
+
+ | i j N a s0 s1 k s2 s3 L1 L2 D1 1
+ | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
+ | 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
+ |-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
+ | 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
+ | 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
+ | 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
+ | 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
+ | 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
+
+ Then, we generate the polyhedron P2 by interchanging the dimensions
+ (s0, s2), (s1, s3), (L1, L2), (i0, i)
+
+ | i j N a s0 s1 k s2 s3 L1 L2 D1 1
+ | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
+ | 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
+ | 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
+ | 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
+ | 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
+ | 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
+ | 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
+ | 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
+
+ then we add to P2 the equality k = i + 1:
+
+ |-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
+
+ and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
+
+ For determining the impact of one iteration on loop "j", we
+ interchange (k, j), we add "k = j + 1", and we compute D2 the
+ maximal value of the difference.
+
+ Finally, the profitability test is D1 < D2: if in the outer loop
+ the strides are smaller than in the inner loop, then it is
+ profitable to interchange the loops at DEPTH1 and DEPTH2. */
static bool
-pbb_interchange_profitable_p (graphite_dim_t depth1, graphite_dim_t depth2, poly_bb_p pbb)
+pbb_interchange_profitable_p (graphite_dim_t depth1, graphite_dim_t depth2,
+ poly_bb_p pbb)
{
int i;
poly_dr_p pdr;
- Value access_strides1, access_strides2;
+ Value d1, d2, s;
bool res;
gcc_assert (depth1 < depth2);
- value_init (access_strides1);
- value_init (access_strides2);
-
- value_set_si (access_strides1, 0);
- value_set_si (access_strides2, 0);
+ value_init (d1);
+ value_set_si (d1, 0);
+ value_init (d2);
+ value_set_si (d2, 0);
+ value_init (s);
for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb), i, pdr); i++)
{
- gather_access_strides (pdr, depth1, access_strides1);
- gather_access_strides (pdr, depth2, access_strides2);
+ memory_stride_in_loop (s, depth1, pdr);
+ value_addto (d1, d1, s);
+
+ memory_stride_in_loop (s, depth2, pdr);
+ value_addto (d2, d2, s);
}
- res = value_lt (access_strides1, access_strides2);
+ res = value_lt (d1, d2);
- value_clear (access_strides1);
- value_clear (access_strides2);
+ value_clear (d1);
+ value_clear (d2);
+ value_clear (s);
return res;
}